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ABSTRACT
Compound is widely considered to be the most significant
protocol that facilitates participants to trustlessly supply
and borrow Ethereum assets. The protocol has grown in
popularity in recent years due to the transparency of mech-
anism, appealing interest rates for borrowers and passive
income for suppliers. Despite the increased transparency,
understanding the market risk to participate in the protocol
is difficult because of the complexity of decentralized mar-
ket dynamics. The causes of complexity are the multitude
of participant behaviors and their interactions with the pro-
tocol’s endogenous variables and exogenous markets. This
paper gives an overview of the market risks, the liquidation
mechanism and the implications of protocol and market vari-
ables. We rigorously evaluated the economic security of the
protocol by using agent-based modeling and simulation to
perform stress tests. Our results showed that the Compound
protocol is able to scale to a large market size while having a
low probability of default under volatile market conditions.
Results also revealed that the current protocol parameters
for specifying the minimum collateral requirements and liq-
uidation incentives are sufficient for liquid collateral assets.

Keywords
Decentralized finance, agent-based simulation, smart con-
tracts

1. INTRODUCTION
Compound allows participants to trustlessly supply and

borrow Ethereum assets, providing appealing interest rates
for borrowers and passive income for suppliers. By using
collateral and amortizing risk across individual suppliers in
a liquidity pool, Compound’s Ethereum smart contract has
been a profitable place to supply crypto since its inception
in 2018. The protocol implemented in Compound’s smart
contract is detailed in the Compound whitepaper.[1]

However, despite the fact that Compound has grown well
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past nine figures (of USD value) without any suppliers losing
money, it is still technically possible, under extreme condi-
tions, for borrowers to default on their borrowed assets and
suppliers to lose their principal. Understanding when this
failure condition can happen boils down to understanding
various types of risks associated with the protocol, includ-
ing protocol security risk,1 governance risk,2 and market
risk. This paper focuses on evaluating market risk — the
risk of a user experiencing losses due to market fluctuations
external to the smart contract itself.

We use a rigorous definition of market risks to construct
simulation-based stress tests that evaluate the economic se-
curity of the Compound protocol as it scales to underwriting
billions of dollars of borrowed assets. These stress tests are
trained on historical data and put through a battery of sce-
narios that represent the expected and worst case economic
outcomes for the protocol. Our stress tests are constructed
analogously to how transaction-level backtesting is done in
high-frequency and algorithmic trading. These techniques
are used to estimate the market risk of a systematic trading
strategy before it is deployed to the market. As there are
over $1 trillion US dollars of assets managed by funds that
use these techniques to provide daily actuarial analyses to
risk managers, we believe that these are the best methodolo-
gies for evaluating market risk.[2, 3, 4] By modifying these
techniques to handle the idiosyncrasies of cryptocurrencies,
we are able to provide similar statistical power in these ac-
tuarial analyses.

The first portion of this paper will define the set of mar-
ket risks that users of the Compound protocol face, break-
ing them down into their principal quantitative components.
Subsequently, we will describe the incentives behind the
mechanism that the Compound protocol uses to ensure that
it is solvent — liquidations. Finally, we will conclude by de-
tailing how liquidators are similar to trading strategies and
detail the market impact models that are used to analyze
their incentives and expected returns.

The second portion will focus on methodology and results
from agent-based simulations of the Compound smart con-
tract. Our methodology utilizes careful simulation to closely
replicate the live environment that users interact with in
the Compound protocol. This approach and some of our
novel technologies, such as a custom Ethereum virtual ma-
chine, ensure that our results replicate reality with high fi-

1Examined by independent smart contract auditors: Cer-
tora, OpenZeppelin, and Trail of Bits
2More broadly, this refers to things like administrator mis-
management, voter participation, etc.

https://compound.finance/documents/Certora.pdf
https://compound.finance/documents/Certora.pdf
https://blog.openzeppelin.com/compound-audit/
https://github.com/trailofbits/publications/blob/master/reviews/compound-3.pdf


delity. We conclude by detailing the results of these sim-
ulations, providing actuarial assurances for the conditions
under which the Compound protocol is insolvent.

Our conclusions show that the Compound protocol
can scale to a larger size and handle high volatility
scenarios for a variety of collateral types. In particu-
lar, we find statistically significant evidence that even when
Ether (ETH) realizes it’s maximum historical volatility, the
Compound system is able to grow total borrowed value by
more than 10x while having a sub-1% chance of default.3

Note that in this paper we will refer to the protocol be-
ing in ‘default’ as equivalent to being under-collateralized.
Moreover, we find that the system stays significantly over-
collateralized in extreme scenarios and that current liquida-
tion incentives are sufficient for more liquid collateral types,
such as ETH. Finally, a glossary of terms utilized throughout
this paper can be found in Appendix 9.1.

2. MARKET RISKS
The decentralized nature of the Compound protocol ren-

ders risk assessment both more complex and crucial than
similar assessments in traditional markets. The main causes
for this increase in complexity are the multitude of partici-
pant behaviors in the Compound protocol as well as their in-
teractions with exogenous markets, such as centralized cryp-
tocurrency trading venues. Unlike formal verification and
smart contract auditing, which focus on endogenous risks
within a smart contract, economic analysis of protocols fo-
cuses on how exogenous shocks affect participant behavior.
As the Compound protocol uses a deterministic function of
liquidity supply and borrowing demand to determine the in-
terest rates that suppliers and borrowers receive, one need
only consider market prices, supplier supply behavior, and
borrowing demand to accurately model exogenous risk (see
Appendix 9.2). More specifically, the primary sources of
exogenous risk stem from the following components:

1. Shocks to market prices of collateral that cause
the contract to become insolvent due to under-
collateralization

2. Loss of liquidity in an external market place, leading
to a liquidator being disincentivized to liquidate de-
faulted collateral

3. Cascades of liquidations impacting external market
prices which in turn lead to further liquidations (i.e. a
deflationary spiral)

In order to quantify the effects of these risk components, we
first need to delve into the notions of assets and liabilities
within the Compound protocol.

2.1 Assets and Liabilities
In the Compound protocol, the main assets are the collat-

eral tokens that suppliers have committed to liquidity pools,
whereas the main liabilities are the outstanding borrowed
assets. Token holders contribute their ERC-20 assets to a
liquidity pool, and are in turn paid a yield on their sup-
plied tokens. Borrowers borrow an asset by first commit-
ting collateral before withdrawing up to a certain amount

3This 10x is relative to the size of the Ether market. In the
case where that grows a commensurate amount, as it easily
could, then Compound could grow even larger.

from the liquidity pool. This amount is controlled by the
collateral factor, which is the ratio of the maximum out-
standing debt to collateral. The system forces borrowers to
over-collateralize their borrowed assets (e.g. a fully-secured
credit facility), thus enforcing the invariant that assets must
always be greater than liabilities. For instance, one can de-
posit $100 of ETH4 into the contract and withdraw $75 if
the contract has a collateral factor of 75%.

The net liabilities of Compound are defined as the as-
set values less liabilities, so that the system is deemed sol-
vent when the net liabilities are positive. As a decentralized
protocol, Compound utilizes a series of economic incentives
to ensure that net liabilities are always positive. The bor-
rower’s collateral requirement is the value of outstanding
debt divided by the collateral factor. When the market value
of the collateral backing a lien falls below the collateral re-
quirement, the collateral position becomes liquidatable and
the protocol sells the collateral at a discount to a liquidator.
This discount, termed the liquidation incentive, provides a
liquidator with financial incentive to buy the collateral from
the protocol, effectively repaying the borrowed asset on be-
half of the borrower. With liquidation, the protocol acts
much like a bank selling a defaulted asset at a foreclosure
auction to increase their net liabilities. In particular, the
liquidator acts analogously to the foreclosure auction win-
ner, who is usually able to claim the defaulted asset at a
discount.

As an oversimplified example, suppose that the Com-
pound protocol has an borrow position that is in default,
with the current collateral amount equal to $100. If the
liquidation incentive is 105% (5% extra bonus), then the
liquidator would pay the Compound Smart Contract $95
for the ETH collateral. Moreover, if the liquidator has low
time preference, then they will sell the collateral as soon
as possible. In practice, the Compound protocol only lets
liquidators liquidate a portion of the borrow amount, and
they receive collateral equal to 105% of the borrow value
repaid. This has the benefit of increasing the collateraliza-
tion ratio on the remaining portion of the borrowed asset,
while avoiding complicated mechanics of completely closing
borrow positions.5 In this sense, liquidation in Compound
resembles an algorithmic trading strategy, as there is a race
to be the first liquidator to claim portions of the collateral
and sell it on the market with minimal transaction and slip-
page costs.

2.1.1 Synthetic Assets: cTokens
There is a slight nuance in how assets and liabilities are

treated — technically, the assets that suppliers and borrow-
ers interact with are cTokens. These tokens, which wrap
standard ERC-20 assets, serve as contingent claims on as-
sets and earned interest. Suppliers supply assets as ERC-20
tokens and are returned cTokens, whereas borrowers supply

4In this stylized example, we use US Dollars as a numéraire,
whereas in reality, one would have to execute this transac-
tion in the Compound protocol against a USD stablecoin.
Stablecoins are digital representations of US dollars, with
some backed by bank deposits (USDC, TUSD) and others
backed by digital collateral (DAI).
5Contrast this with the model MakerDAO uses, where there
are auctions to liquidate the entire borrowed asset. This can
create a delay which adds to market risk as well as unneces-
sarily closes borrow positions which could be merely reduced
to a safe level.



collateral, which is converted to a cToken and used to make
outstanding interest payments. Unlike traditional assets,
cTokens immediately realize earned interest as payments are
paid pro rata to holders on every block update.

Technically, there is a security risk that a cToken cannot
be converted back to the underlying asset if the contract has
many outstanding borrowed assets that are not being repaid
as collateral is redeemed. This would mean that the contract
is illiquid, but not necessarily insolvent. This paper focuses
on solvency, and liquidity will be considered more deeply in
future analysis.

2.2 Risk Sensitive Parameters of the Protocol
The main levers protocol designers can wield in Com-

pound to reduce risk are the collateral factor and liquidation
incentive. However, these two levers impact the incentives
of the protocol in different ways. The collateral factor con-
trols the riskiness of borrowers — the closer it is to 100%,
the more likely risky borrowers will default by borrowing
USD stablecoin against collateral that is rapidly decaying
in value. On the other hand, the liquidation incentive con-
trols how likely liquidators are to take liabilities off of the
smart contract’s balance sheet. The higher the liquidation
incentive, the less time a defaulted borrowed asset will be a
liability on the Compound protocol. If we dissect how the
three risk components of §2 connect to these two parameters,
we find the following:

• The risk inherent in the collateral factor is connected
to the nature of shocks to the market price of the col-
lateral

• The risks that liquidators with low time preference face
is connected to the loss of liquidity in an external mar-
ket place

• Cascading liquidations affect both the collateral fac-
tor and the liquidation incentive because they create
a feedback loop between price shocks and a loss of liq-
uidity

This implies that under normal market conditions, when
liquidations are independently distributed (e.g. uncorre-
lated), the collateral factor and liquidation incentive con-
trol borrower risk and supplier’s ability to recoup losses, re-
spectively. However, in situations when liquidations have a
‘knock-on’ effect and are correlated, these parameters affect
both borrower and supplier behavior. Therefore, to study
the true market risk of the system, we need to sample a vari-
ety of market and liquidity conditions in order to stress test
these scenarios.

3. LIQUIDATION
Akin to foreclosure sale participants in traditional finance,

liquidators can repay the outstanding debt with discounts in
exchange for the borrower’s cToken collateral. In both fore-
closure sales and in Compound liquidations, discounts are
used to incentivize purchases of defaulted collateral. The
Compound protocol provides a discount by giving liquida-
tors additional collateral as the liquidation incentive to per-
form liquidation. However, unlike the all-or-nothing trans-
actions of foreclosure sales, an individual liquidator can only
repay a portion of the debt. The close factor is the proto-
col parameter that specifies the proportion eligible to be

liquidated by any individual liquidator. When a liquidator
finds a profitable trade, she repays a portion of the out-
standing debt (determined by the close factor) in return for
the borrower’s collateral. Depending on a liquidator’s risk
preference, she may sell the collateral immediately to pro-
tect against price-fluctuation risk or just hold the received
collateral.

Liquidation incentives create an arbitrage opportunity or
a price discount for the liquidator in exchange for the re-
duction of Compound’s risk exposure. The higher the liq-
uidation incentive is, the more liquidators will participate
in the liquidation process as they get steeper discounts rela-
tive to market prices. In other words, tuning the liquidation
incentive is one of the most effective ways to adjust the pro-
tocol’s safety boundary. The liquidation incentive also has
an influence on a borrower’s decision to borrow asset within
the protocol. When a borrower’s lien is liquidated, the liq-
uidation incentive can be viewed as a bonus amount of a
borrower’s collateral that is given to the liquidator to com-
pensate for the risk they engender while taking a liability off
of the protocol’s balance sheet. If the liquidation incentive is
too high, a borrower may be unwilling to borrow assets from
Compound in the first place, or she may open a borrowing
position and maintain a high collateral factor. In general,
one expects that increased liquidation incentives negatively
impact borrowing demand.

The collateral factor defines a maximum borrowing ca-
pacity for each asset enabled within the protocol. Borrow-
ers must manage their own debt and keep their liens over-
collateralized to ensure a certain margin of safety with re-
spect to the maximum borrowing capacity. This margin
of safety fluctuates with market conditions and depends on
the borrowers’ own risk profile. When the market volatil-
ity is high, risk-averse borrowers maintain a high margin
of safety to avoid their collateral being liquidated. In con-
trast, risk-seeking borrowers maintain a low margin of safety
and actively refinance their debt to optimize their usage of
borrowed capital. Understanding the interaction between
collateral factor and the safety margin requires studying the
influence of psychology on the participant’s behavior. Ran-
domized controlled trials and other experimental methods
are designed to understand this type of causal relationship.

Rational liquidators with short time preference are de-
fined to be participants who purchase collateral from the
Compound smart contract and immediately sell it on a cen-
tralized venue (e.g. have low risk tolerance). For brevity,
we will refer to rational liquidators with short time pref-
erence as greedy liquidators. To simplify the analysis and
simulate the worst-case scenario for Compound, we assume
that all liquidators are greedy and sell the collateral imme-
diately to a market, instead of having liquidators that repay
the outstanding debt and hold the collateral. This focus
on greedy liquidators emulates the worst-case protocol be-
havior as adverse market and liquidity conditions can cause
cascading defaults. Greedy liquidators tend to inflame cas-
cading defaults as they create sell pressure and can cause a
deleveraging spiral. [5] The main source of loss for greedy
liquidators is the loss due to price impact, or slippage, that
is caused by selling a large quantity of an asset. Given that
greedy liquidators immediately sell, they must optimize the
quantity that they are willing to liquidate based on market
prices and expectations of slippage.



4. SLIPPAGE
Slippage refers to the expected change in a tradeable as-

set’s price p due to a matched order of size q and is math-
ematically denoted ∆p(q). Formally, ∆p(q) is defined to
be the difference between the market midpoint price and
the actual average execution price when a market partici-
pant executes a trade. Slippage inevitably happens on every
trade, and this effect tends to be magnified in thin or high
volatility markets. For a liquidation opportunity, slippage is
the only cost that can be partially controlled by the liquida-
tor, whereas trading fees and smart contract transaction fees
are usually external restrictions. Therefore, slippage is one
of the major factors that influence a liquidator’s decision-
making.

Market impact, which is a synonym for slippage, has been
studied extensively in traditional finance.[6, 7] Many mar-
ket impact models have been proposed and tested for solv-
ing optimal order execution problems. In traditional mar-
kets, the marginal increase in price impact is usually ob-
served to decrease as a function of trade quantity, which for-
mally corresponds to ∆p(q) being a concave function.[8, 9]
However, this appears to not be true for cryptocurrency
markets, where empirical data suggests that ∆p(q) is lin-
ear or even convex (e.g. the marginal cost increases with
quantity).[10, 11] Despite each type of model having differ-
ent underlying assumptions and functional forms, a majority
of the models comprise trade volume-to-market size, volatil-
ity and time variables. Analyzing trade size, volatility and
how these variables interact with liquidation is the primary
focus of this analysis. The analysis in this paper only con-
siders greedy liquidators that sell repossessed collateral on
centralized exchanges with order books, such as Coinbase
and Binance. As decentralized exchanges and automated
market makers, such as Uniswap,[12] provide an alternative
source of liquidity, one might ask why this assumption was
enforced. The reasons for this choice are two-fold:

• Order book depth on centralized exchanges is order
of magnitudes greater than that of decentralized ex-
changes for most assets6

• Slippage in automated market makers is usually de-
signed to be small for small trades and expensive for
large quantities, so greedy liquidators would likely end
up going to a centralized exchange during the most
volatile times to stay profitable

We will break up the dominant features of slippage into mar-
ket variables that are exogenous to the Compound smart
contract state.

4.1 Key Market Variables

4.1.1 Outstanding Debt
The total traded quantity that the protocol will need liq-

uidated in times of net negative liabilities will be a function
of the total outstanding debt in the system. Since this quan-
tity is the input to the slippage function ∆p(q), it is clear
that the choice of slippage model needs to be cognizant of

6We do note that this is not true for assets such as MKR
and SNX, as their primary market is Uniswap. However,
for the larger assets that are listed on Compound such as
ETH, DAI, and REP, there is far more centralized exchange
liquidity.

the amount of outstanding debt. We will define the amount
of outstanding debt in this analysis to be the sum of all the
borrowers’ total outstanding debt value normalized by the
average daily trading volume of underlying collateral. This
metric captures the size of debt relative to the underlying
liquidity, and gives readers a good intuition around how big
Compound’s market can grow safely relative to the trading
markets. Since the trading volume of different assets varies,
using unitless metrics (such as the amount of outstanding
debt) provides a more intuitive comparison between differ-
ent assets. The simulation in this paper assumes borrowers
borrowing USD stablecoin backed by ETH, as this is the
most common use case in the Compound protocol. As an
example, suppose that the ETH daily trading volume is 100
million USD, 0.5 total outstanding debt is equivalent to 50
million USD of total outstanding debt value.

Estimating the average daily trading volume of cryptocur-
rencies is difficult, as wash trading and other market ma-
nipulation practices are known issues in the cryptocurrency
market.[13] Numerous studies have concluded that the re-
ported volume from various cryptocurrency exchanges may
be unrepresentative of the assets’ underlying liquidity. For
this reason, we aggregated the average daily trading vol-
ume from the top 10 exchanges with well-functioning mar-
kets identified by Bitwise Investments.[14, 15] This index-
ing methodology has been adopted as the de facto industry
standard, with major brokers and the Securities and Ex-
change Commission utilizing the Bitwise index for volume
estimation.[16]

4.1.2 Asset Volatility
Volatility measures the degree of variation of asset price

changes over a given time interval. Historically, it is tra-
ditionally defined as the standard deviation of logarithmic
returns and is usually denoted σ.[17] Research studies show
that volatility is typically a linear coefficient in a market im-
pact model.7 Given that asset volatility changes over time
and is affected by market microstructure, it’s equally impor-
tant to understand how liquidator behavior changes when
the market volatility changes. We assess this by sweeping
through a variety of different volatility levels to ensure that
we emulate how greedy liquidators interact with a plethora
of market environments. Note that we normalize our volatil-
ity calculation in a manner akin to what is used by exchanges
such as BitMEX.[19]

5. SIMULATED STRESS TESTS

5.1 Agent-Based Simulation
The main tool that we use to perform simulation-based

stress tests on Compound’s Ethereum smart contracts is
agent-based simulation (ABS). ABS has been used in a vari-
ety of stress test contexts, including to estimate censorship
in cryptocurrency protocols,[20] detect fraudulent trading
activity in CFTC exchanges,[21] and in stress testing frame-
works from the European Central Bank[22, 23] and the Fed-

7Mathematically, this means that there exists a function
f : [0,∞) → such that ∆p(q) = σf(q) + o(1); see [17, 18]
for theoretical and empirical evidence of this. In particular,
note that this appears to hold for many markets in terms of
permanent impact cost, whereas instantanous impact cost
tends to depend much more on an asset’s microstructure
details.



eral Reserve.[24, 25] These simulations, while powerful, can
be difficult to make both useful and accurate as model com-
plexity can make it hard to match experimental results.[26]
Careful design, tuning, and infrastructure architecture can
help avoid these pitfalls and has made ABS invaluable in
industries such as algorithmic trading and self-driving car
deployment.

In such industries, one takes care to ensure that the simu-
lation environment replicates the live environment as closely
as possible. This is enforced by having the agent models in-
teract with the same code that is deployed in a live environ-
ment in order to minimize errors due to mistranslations or
missing minutae. While the infrastructure overhead of simu-
lating users interacting with a piece of complex software can
be heavy, it ensures that errors are limited to those in mod-
els of agents as opposed to errors in the models of system
dynamics.

As an example, the Compound interest rate curve (Ap-
pendix 9.2) is described via a simple mathematical for-
mula. One can simulate agents directly interacting with
this formula, without needing to host the Ethereum envi-
ronment and having the agents generate transactions. How-
ever, Ethereum’s 256-bit numerical system and precision dif-
ferences between different ERC-20 contracts can often lead
to disastrous losses due to numerical errors. These can-
not be probed without running simulations directly against
the Ethereum smart contract and generating the exact same
transactions that an agent would if they were a liquidator
interacting with the live contract.

5.2 Gauntlet Simulation Environment
The Gauntlet platform, which was used for all simulations

and results in this paper, provides a modular, generic ABS
interface for running simulations directly against Ethereum
smart contracts. In this system, the agent models are spec-
ified via a Python domain-specific language (DSL), akin to
Facebook’s PyTorch,[27] and interact with a custom-built
Ethereum virtual machine that is written in C++. Agents
can also interact with non-blockchain modules, such as his-
torical or synthetic market data and/or other off-chain sys-
tems. Gauntlet has made significant performance optimiza-
tions for interacting with the EVM in Python, resulting in
performance gains of 50-100x over the stock tooling. The
DSL hides the blockchain-level details from the analyst, al-
lowing the end-user to develop strategies that can migrate
from one smart contract to another, should they have sim-
ilar interfaces. Most of the platform’s design is inspired
by similar platforms in algorithmic trading that allow for
quantitative researchers to develop strategies that execute
over multiple exchanges (with varying order books, wire
protocols, slippage models, etc.) without having to know
these low-level details. Moreover, the non-blockchain por-
tions of the simulation are analogous to trading back-testing
environments,[28] so that agents are interacting with realis-
tic order books and financial data. It should be noted that
the strategies emit valid EVM transactions and can be de-
ployed to Ethereum mainnet using the same code path.

5.3 Compound Simulation Overview
For the simulations in this paper, we deployed the Com-

pound Solidity contracts within the Gauntlet platform. The
simulation environment tracks all the gas used by the trans-
actions, as if users paying transaction fees for submitting

transactions to the Ethereum blockchain. In particular, we
use constant gas costs throughout all simulations detailed in
this paper to calculate the transaction fees. We use a stan-
dard Geometric Brownian motion to simulate price trajec-
tories. This stochastic process St obeys the Îto stochastic
differential equation, dSt = µStdt + σStdWt, where Wt is
the standard Wiener process and µ is the percentage drift.
To understand the sensitivity of the protocol safety to the
volatility of the underlying price shock, we ran a set of sim-
ulations by varying the volatility σ, as discussed in Section
4.1.2.

We implemented liquidator strategies in our DSL, which
allowed for a variety of liquidators with different risk and
time preferences to interact directly with the Compound
contracts and with simulated order books. These strategies
also include optimization components so that liquidators can
optimize the amount of collateral purchased based on their
slippage estimates. Our simulation uses a linear slippage
model: ∆p(q) = Iσq, where the intensity I is a model pa-
rameter estimated by fitting the Coinbase Pro order book
data. We also wrote strategies for borrowers in the Com-
pound protocol using the DSL and fit their risk preferences
based on Compound’s historical on-chain data, specifically
the collateralization ratio and collateral value.

The simulation assumes that borrowers use ETH as collat-
eral and are borrowing the stablecoin DAI from the Com-
pound protocol. We calculated the initial collateral value
and the size of borrowing based on the total outstanding
debt, as explained in Section 4.1.1, and the historical col-
lateralization ratio data. Since the price shocks are affect-
ing the collateral value, each liquidator continuously evalu-
ates all borrower’s collateralization ratio and repays DAI on
the borrower’s behalf when an arbitrage opportunity exists.
Once a liquidator receives the borrower’s collateral, she im-
mediately sells it on a centralized exchange to arbitrage. The
arbitrage opportunity exists when the liquidation incentive
is greater than the sum of total costs, including slippage,
transaction fee, and centralized exchange trading fee. We
stress tested a wide range of plausible shocks, as well as
market sizes, and analyzed the simulation outcomes.

6. KEY QUESTIONS
From a liquidity supplier’s perspective, the protocol is safe

only if the supplied assets can be safely withdrawn. A func-
tioning liquidation mechanism is critical to the safe opera-
tion of the Compound market. When an asset price drops
and no liquidators have an incentive to repay the borrower’s
outstanding debt, the system fails and some suppliers can-
not withdraw their assets. Recall that a rational liquida-
tor’s goal is to make a profit in each liquidation opportu-
nity, which depends on the liquidation incentive and slip-
page (this is dependent on the trade size and volatility). In
light of this, the main questions that we focus on answering
are the following:

• Is the protocol safe when the total outstanding debt is
high?

• Is the protocol safe under volatile market conditions?

We will first define some metrics that will help us an-
swer these questions in a quantitative manner. An under-
collateralized run is a simulation run that ends with >1%
of the value of the market’s total outstanding debt that is



(a) 3% daily volatility

(b) 50% daily volatility

Figure 1: Mean cumulative liquidator profit and costs over 30 simulation runs. Note that the y-axis on the
left-hand side is using a linear scale (in dollars), whereas the right-hand side is using a logarithmic scale. The
simulation assumes $100MM USD of ETH daily trading volume and the sum of the total outstanding debt value
is $50MM USD.

under-collateralized. Let the under-collateralized run per-
centage be defined as the percentage of simulation runs that
are under-collateralized runs. This metric is used to quan-
tify the safety of the system, as the system will be at risk
if borrowers with a large amount of outstanding debt are
under-collateralized. As we want to ensure that the system
is never under-collateralized, we use a strict 1% debt thresh-
old to define the failure criteria.

7. RESULTS
As was discussed in section 4.1, the collateral asset’s quan-

tity to be traded and the asset’s volatility are two major
market variables causing slippage, and slippage is one of the
main factors influencing a liquidator’s behavior. This sug-
gests that the protocol’s safety heavily depends on the total
outstanding debt and the collateral asset’s volatility.

In our simulation, the total outstanding debt is defined
as the asset pool’s total outstanding stablecoin debt value
normalized by the collateral asset’s daily trading volume.
Considering that different collateral assets have different or-
ders of magnitude of trading volume, normalizing the total
outstanding debt enables us to intuitively compare the debt

(relative to the collateral asset’s liquidity) between differ-
ent collateral assets. The simulation time duration is a day,
hence we use daily volatility instead of commonly used an-
nualized volatility to make it straightforward to understand.

There is no strong agreement on the daily trading volume
of most crypto tokens. Centralized exchanges are susceptible
to wash trading, and decentralized exchanges are dwarfed by
their centralized counterparts. As the ability to sell collat-
eral quickly is one of the driving factors of safety, this creates
an uncertainty that is addressed via simulation. By varying
the ratio of outstanding debt to market size widely in our
simulations, we cover a broad swath of scenarios that you
might see in the practice. If you have very conservative as-
sumptions on the total market depth of the collateral order
book, you can assume a higher ratio of debt. Our assump-
tions on ETH market size are fairly conservative ($100mm),
falling on the lower end of Messari’s daily trading volumes
for the beginning of 2020.

In Figure 1, we see liquidator profit and loss charts bro-
ken up into transaction fee, trading fee, slippage, and profit.
There are more arbitrage opportunities when the asset’s
volatility is high (Figure 1b), and subsequently the liquida-

https://messari.io/asset/ethereum/historical


tor’s total revenue (the sum of profit and costs) is higher
than the revenue in the low volatility regime (Figure 1a).
The chart demonstrates that price slippage is the major cost
of arbitrage. In the high volatility scenario, slippage repre-
sents more than 30% of the liquidator’s revenue. Even in the
low volatility scenario, the liquidator still has to pay more
than 10% of the revenue for slippage. In both scenarios, the
trading fee takes a fixed percentage of revenue and the on-
chain transaction fee is insignificant at this level of the total
outstanding debt.

Figure 2: Total liquidated debt amounts over 24 hour pe-
riod. The simulation assumes $100MM USD of ETH daily
trading volume. A 75% total outstanding debt is equivalent
to $75MM USD worth of the total outstanding debt value.
To explain an example cell here: $20mm in liquidations cor-
responds to 20% of the Total Outstanding Debt in the 100%
case, which is intuitively a worrying number liquidations.
However, this does match intuition, because you only see
this happen when ETH has a worrying level volatility (close
to 50%)

Figure 2 shows the total liquidated debt amount with
different initial total outstanding debt and ETH volatility.
The results match our intuition: the total liquidated debt
amount is proportional to both total outstanding debt and
volatility. In the high volatility scenario, a borrower’s col-
lateral value has a high chance to fall below the collateral
requirement and, as a consequence, the collateral will get
liquidated. Though liquidations are a necessary part of the
Compound protocol, they can also serve as a leading indi-
cator of under-collateralization.

Figure 3 demonstrates the liquidatable and under-
collateralized run percentages heatmap. Recall that an ac-
count becomes liquidatable if the collateral value falls below
the collateral requirement and the collateral is available to
be liquidated. When the price of the collateral asset drops
further and the collateral value is below the outstanding debt
value, an account becomes under-collateralized. Here we set
a strict 1% debt threshold to define the failure criteria, i.e.,
the simulation run fails when over 1% of the outstanding
debt is liquidatable/under-collateralized. For each cell in
the heatmap, we aggregate the results from 30 simulation
runs with the same market variables and calculate the per-
centage of the runs that fail. The lighter the data point is,
the fewer simulation runs fail. If the data point is white, the

(a) Percentages of simulation runs that end with > 1% of liquidatable
debt

(b) Percentages of simulation runs that end with > 1% of under-
collateralized debt

Figure 3: The Compound contracts are deployed with the
default parameters (75% ETH collateral factor and 1.05 liq-
uidation incentive). According to BitMEX weekly historical
ETH volatility index, the current daily volatility is around
3% and the highest historical daily volatility is around 20%.
The simulation assumes $100MM USD of ETH daily trad-
ing volume. Compound’s current total outstanding stable-
coin debt value is around $25MM USD. The current total
outstanding debt is around 25%, which is the total out-
standing debt value normalized by the daily trading volume
of the collateral asset.

protocol is safe and none of the simulation runs have more
than 1% of the under-collateralized debt. We use this metric
to quantify the safety of the protocol.

The heatmaps demonstrate how large the protocol can
scale under a reasonable volatility assumption. The Bit-
MEX weekly historical ETH volatility index reports that
the highest ETH weekly volatility in history happened in
August 2017 and peaked at around 20% daily volatility8.
[19] Assuming that the ETH market capitalization will grow
over time and the volatility will decrease, we consider daily
volatility < 20% as reasonable. Figure 3a shows that when
the daily volatility is 20% and the total outstanding debt
is greater than or equal to $100 MM USD, a few risky bor-

8The daily volatility is converted from the realized weekly
volatility.



rowing positions will not be fully liquidated at the end of
the simulation runs. However, with the same 20% daily
volatility assumption, none of the borrowers are under-
collateralized, and the protocol can scale to at least 10x the
current borrow size, as shown in Figure 3b.

Figure 3b highlights the safe operating space of the pro-
tocol. The protocol is safe when the volatility is below 35%
and the liquidity pool’s total outstanding debt value is below
ETH’s daily trading volume. As the volatility reaches 45%,
some suppliers may be unable to withdraw their supplied
assets.

8. CONCLUSIONS
In this paper we conducted a market-risk assessment of the

Compound protocol via agent-based simulations run against
the Compound contracts. We stress-tested the liquidation
mechanism under a wide range of market volatility and siz-
ing scenarios to ensure that the protocol can prevent bor-
rowers from becoming under-collateralized in most of these
cases. We also used historical market data from centralized
cryptocurrency exchanges to ensure that assumptions about
volatility and slippage are representative of real-world con-
ditions.

We found that the protocol, as currently parameterized,
should be robust enough to scale to at least 10x the current
borrow size as long as ETH price volatility does not exceed
historical highs. Our methodology can also be applied to
other collateral types on Compound with significantly dif-
ferent liquidity profiles, such as REP. This work informs the
Compound community on how to evaluate market risk for
new assets as they are added to the protocol.

9. APPENDIX

9.1 Glossary
• Debt: Amount of asset borrowed from an asset pool.

• Under-collateralized: An account is under-
collateralized if the value of an account’s debt
exceeds the value of the collateral.

• Collateral factor: Maximum debt-to-collateral ratio
of an asset a user may borrow. When the debt-to-
collateral ratio exceeds the collateral factor, the col-
lateral is available to be liquidated.

• Collateralization ratio: The ratio of collateral-to-debt,
usually reported in percentage points. For instance, a
collateralization ratio of 200% means that one needs
two times as much collateral deposited into the con-
tract as the maximum borrow quantity. Concretely,
this would mean that one must deposit $200 worth of
ETH in order to borrow $100 of a stablecoin.

• Borrowing capacity: Current value of collateral de-
posited into the contract multiplied by the collateral
factor.

• Collateral requirement: Value of debt divided by the
collateral factor.

• Liquidatable: An account is liquidatable if the ac-
count’s value of debt exceeds its borrowing capacity. In
other words, an account is liquidatable if the account’s
collateral value falls below the collateral requirement.

• Slippage: The amount of price impact that a liquida-
tor engenders when trying to sell collateral. Slippage is
denoted ∆p(q) and is formally defined as the difference
between the midpoint price at time t, pmid(t) and the
execution price, pexec(q, t) for a traded quantity q at
time t, ∆p(q, t) = pmid(t) − pexec(q, t). This quantity
is usually a function of other variables, such as im-
plied and realized volatilities. Slippage is also known
as market impact within academic literature.

9.2 Interest Rate Curves
Within the cryptocurrency space, bonding curves are de-

terministic functions of smart contract state that determine
bid and ask spreads. Bonding curves are known as pric-
ing rules within the algorithmic game theory literature and
were first introduced by Hansen[29] in the study of auto-
mated market makers.[30] These were first introduced to
Ethereum smart contracts by de la Rouviere[31] as a way to
create tokenized markets whose buy and sell prices were de-
termined algorithmically. Instead of using a bonding curve
to provide bids and offers, the Compound protocol utilizes
a bonding curve to compute the spread between the supply
and borrowing interest rates. One that think of this as an
analogue of the traditional yield curve from finance, albeit
computed in a different manner.

The contract also uses the bonding curve to enforce the
no-arbitrage condition that the supply interest rate must
be strictly lower than the borrowing interest rate. If this
were not true, then an arbitrageur could break the system
by borrowing cTokens from the contract and adding liened
tokens to the liquidity supply, leading to net negative liabil-
ities. Moreover the contract also enforces softer constraints
that control the difference between the supply and borrow-
ing interest rates. The main idea behind the curve used
in Compound is that if there is more liquidity supply than
borrowing demand, then the interest rate to supply liquid-
ity should be significantly lower than the interest rate to
borrow.

Formally, the Compound V2 smart contract[1] constructs
the bonding curve as a function of the utilization rate at
block height t, Ut ∈ [0, 1]. If we denote the borrowing de-
mand at height t (in tokens) as Bt and the liquidity supply
at height t as Lt, then the utilization rate is defined as

Ut =
Bt

Lt +Bt

We compute the borrowing interest rate, βt and the sup-
ply interest rate, `t, using the following formulas, where
β0, β1 ∈ (0, 1) are interest-rate parameters and γ0 ∈ (0, 1) is
a measure of the spread between supply and borrowing (i.e.
1− γ0 is the relative spread).

βt = Ut(β0 + β1Ut) (1)

`t = (1− γ0)βt (2)

For reference, the Compound V2 contract uses the values
β0 = 5% and β1 = 45%. The choice of quadratic bonding
curve has a variety of benefits that have been profiled in a
number of articles and papers.[32, 33]
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