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Abstract

Background: The construction of complex spatial simulation models such as those used in
network epidemiology, is a daunting task due to the large amount of data involved in their
parameterization. Such data, which frequently resides on large geo-referenced databases, has to be
processed and assigned to the various components of the model. All this just to construct the
model, then it still has to be simulated and analyzed under different epidemiological scenarios. This
workflow can only be achieved efficiently by computational tools that can automate most, if not all,
these time-consuming tasks. In this paper, we present a simulation software, Epigrass, aimed to help
designing and simulating network-epidemic models with any kind of node behavior.

Results: A Network epidemiological model representing the spread of a directly transmitted
disease through a bus-transportation network connecting mid-size cities in Brazil. Results show
that the topological context of the starting point of the epidemic is of great importance from both
control and preventive perspectives.

Conclusion: Epigrass is shown to facilitate greatly the construction, simulation and analysis of
complex network models. The output of model results in standard GIS file formats facilitate the
post-processing and analysis of results by means of sophisticated GIS software.

Background

Epidemic models describe the spread of infectious dis-
eases in populations. More and more, these models are
being used for predicting, understanding and developing
control strategies. To be used in specific contexts, mode-
ling approaches have shifted from "strategic models"
(where a caricature of real processes is modeled in order
to emphasize first principles) to "tactical models"
(detailed representations of real situations). Tactical mod-
els are useful for cost-benefit and scenario analyses. Good
examples are the foot-and-mouth epidemic models for
UK, triggered by the need of a response to the 2001 epi-
demic [1,2] and the simulation of pandemic flu in differ-

ent scenarios helping authorities to choose among
alternative intervention strategies [3,4].

In realistic epidemic models, a key issue to consider is the
representation of the contact process through which a dis-
ease is spread, and network models have arisen as good
candidates [5]. This has led to the development of "net-
work epidemic models". Network is a flexible concept
that can be used to describe, for example, a collection of
individuals linked by sexual partnerships [6], a collection
of families linked by sharing workplaces/schools [7], a
collection of cities linked by air routes [8]. Any of these
scales may be relevant to the study and control of disease
spread [9].
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Networks are made of nodes and their connections. One
may classify network epidemic models according to node
behavior. One example would be a classification based on
the states assumed by the nodes: networks with discrete-
state nodes have nodes characterized by a discrete variable
representing its epidemiological status (for example, sus-
ceptible, infected, recovered). The state of a node changes
in response to the state of neighbor nodes, as defined by
the network topology and a set of transmission rules. Net-
works with continuous-state nodes, on the other hand,
have node' state described by a quantitative variable
(number of susceptibles, density of infected individuals,
for example), modelled as a function of the history of the
node and its neighbors. The importance of the concept of
neighborhood on any kind of network epidemic model
stems from its large overlap with the concept of transmis-
sion. In network epidemic models, transmission either
defines or is defined/constrained by the neighborhood
structure. In the latter case, a neighborhood structure is
given a priori which will influence transmissibility
between nodes.

The construction of complex simulation models such as
those used in network epidemic models, is a daunting task
due to the large amount of data involved in their parame-
terization. Such data frequently resides on large geo-refer-
enced databases. This data has to be processed and
assigned to the various components of the model. All this
just to construct the model, then it still has to be simu-
lated, analyzed under different epidemiological scenarios.
This workflow can only be achieved efficiently by compu-
tational tools that can automate most if not all of these
time-consuming tasks.

In this paper, we present a simulation software, Epigrass,
aimed to help designing and simulating network-epi-
demic models with any kind of node behavior. Without
such a tool, implementing network epidemic models is
not a simple task, requiring a reasonably good knowledge
of programming. We expect that this software will stimu-
late the use and development of networks models for epi-
demiological purposes. The paper is organized as
following: first we describe the software and how it is
organized with a brief overview of its functionality. Then
we demonstrate its use with an example. The example
simulates the spread of a directly transmitted infectious
disease in Brazil through its transportation network. The
velocity of spread of new diseases in a network of suscep-
tible populations depends on their spatial distribution,
size, susceptibility and patterns of contact. In a spatial
scale, climate and environment may also impact the
dynamics of geographical spread as it introduces temporal
and spatial heterogeneity. Understanding and predicting
the direction and velocity of an invasion wave is key for
emergency preparedness.

http://www.scfbm.org/content/3/1/3

Epigrass

Epigrass is a platform for network epidemiological simu-
lation and analysis. It enables researchers to perform com-
prehensive spatio-temporal simulations incorporating
epidemiological data and models for disease transmission
and control in order to create complex scenario analyses.
Epigrass is designed towards facilitating the construction
and simulation of large scale metapopulational models.
Each component population of such a metapopulational
model is assumed to be connected through a contact net-
work which determines migration flows between popula-
tions. This connectivity model can be easily adapted to
represent any type of adjacency structure.

Epigrass is entirely written in the Python language, which
contributes greatly to the flexibility of the whole system
due to the dynamical nature of the language. The geo-ref-
erenced networks over which epidemiological processes
take place can be very straightforwardly represented in a
object-oriented framework. Consequently, the nodes and
edges of the geographical networks are objects with their
own attributes and methods (figure 1).

Once the archetypal node and edge objects are defined
with appropriate attributes and methods, then a code rep-
resentation of the real system can be constructed, where
nodes (representing people or localities) and contact
routes are instances of node and edge objects, respectively.
The whole network is also an object with its own set of
attributes and methods. In fact, Epigrass also allows for
multiple edge sets in order to represent multiple contact
networks in a single model.

Populational
model
Edges
May consist of multiple edge
sets

Figure |

Architecture of an Epigrass simulation model. A simu-
lation object contains the whole model and all other objects
representing the graph, sites and edges. Site object contaim
model objects, which can be one of the built-in epidemiologi-
cal models or a custom model written by the user.
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These features leads to a compact and hierarchical compu-
tational model consisting of a network object containing a
variable number of node and edge objects. It also does not
pose limitations to encapsulation, potentially allowing for
networks within networks, if desirable. This representation
can also be easily distributed over a computational grid or
cluster, if the dependency structure of the whole model
does not prevent it (this feature is currently being imple-
mented and will be available on a future release of Epi-
grass). For the end-user, this hierarchical, object-oriented
representation is not an obstacle since it reflects the natural
structure of the real system. Even after the model is con-
verted into a code object, all of its component objects
remain accessible to one another, facilitating the exchange
of information between all levels of the model, a feature the
user can easily include in his/her custom models.

Nodes and edges are dynamical objects in the sense that
they can be modified at runtime altering their behavior in
response to user defined events. In Epigrass it is very easy
to simulate any dynamical system embedded in a net-
work. However, it was designed with epidemiological
models in mind. This goal led to the inclusion of a collec-
tion of built-in epidemic models which can be readily
used for the intra-node dynamics (SIR model family). Epi-
grass users are not limited to basing their simulations on
the built-in models. User-defined models can be devel-
oped in just a few lines of Python code. All simulations in
Epigrass are done in discrete-time. However, custom mod-
els may implement finer dynamics within each time step,
by implementing ODE models at the nodes, for instance.

The Epigrass system is driven by a graphical user inter-
face(GUI), which handles several input files required for
model definition and manages the simulation and output
generation (figure 2).

At the core of the system lies the simulator. It parses the
model specification files, contained in a text file (.epg
file), and builds the network from site and edge descrip-
tion files (comma separated values text files, CSV). The
simulator then builds a code representation of the entire
model, simulates it, and stores the results in the database
orin a couple of CSV files. This output will contain the full
time series of the variables in the model. Additionally, a
map layer (in shapefile and KML format) is also generated
with summary statitics for the model (figure 3).

The results of an Epigrass simulation can be visualized in
different ways. A map with an animation of the resulting
timeseries is available directly through the GUI (figure 4).
Other types of static visualizations can be generated
through GIS software from the shapefiles generated. The
KML file can also be viewed in Google Earth™ or Google
Maps™ (figure 5).

http://www.scfbm.org/content/3/1/3

pigrass Control Pane [_[o]x]
Run Options | Settings ‘Utilities |Visua1ization
Model Specification

Script Name:

grass/Epigrass-devel/rio.epg Choose | \ Edit |

Database type: -
saLite -

Proaress:

Figure 2
Epigrass graphical user interface.

[Run || Exit
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Figure 3

Workflow for a typical Epigrass simulation. This dia-
gram shows all inputs and outputs typical of an Epigrass simu-
lation session.

Epigrass also includes a report generator module which is
controlled through a parameter in the ".epg" file.

Epigrass is capable of generating PDF reports with sum-
mary statistics from the simulation. This module requires
a LATEX installation to work. Reports are most useful for
general verification of expected model behavior and net-
work structure. However, the LATEX source files generated
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Epigrass animation output. Sites are color coded (from
red to blue) according to infection times. Bright red is the
seed site (on the NE).

by the module may serve as templates that the user can
edit to generate a more complete document.

Building a model in Epigrass is very simple, especially if
the user chooses to use one of the built-in models. Epi-
grass includes 20 different epidemic models ready to be
used (See manual for built-in models description).

To run a network epidemic model in Epigrass, the user is
required to provide three separate text files (Optionally,
also a shapefile with the map layer):

1. Node-specification file: This file can be edited on a
spreadsheet and saved as a csv file. Each row is a node and
the columns are variables describing the node.

2. Edge-specification file: This is also a spreadsheet-like
file with an edge per row. Columns contain flow variables.

3. Model-specification file: Also referred to as the ".epg"
file. This file specifies the epidemiological model to be
run at the nodes, its parameters, flow model for the edges,
and general parameters of the simulation.

The ".epg" file is normally modified from templates
included with Epigrass. Nodes and edges files on the other
hand, have to be built from scratch for every new network.
Details of how to construct these files, as well as examples,

http://www.scfbm.org/content/3/1/3
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Epigrass output visualized on Google-Earth.

can be found in the documentation accompanying the
software, which is available at at the project's website [10]

Methods

Example model

In the example application, the spread of a respiratory dis-
ease through a network of cities connected by bus trans-
portation routes is analyzed.

The epidemiological scenario is one of the invasion of a
new influenza-like virus. One may want to simulate the
spread of this disease through the country by the transpor-
tation network to evaluate alternative intervention strate-
gies (e.g. different vaccination strategies). In this problem,
a network can be defined as a set of nodes and links where
nodes represent cities and links represents transportation
routes. Some examples of this kind of model are available
in the literature [8,11].

One possible objective of this model is to understand how
the spread of such a disease may be affected by the point-
of-entry of the disease in the network. To that end, we may
look at variables such as the speed of the epidemic,
number of cases after a fixed amount of time, the distribu-
tion of cases in time and the path taken by the spread.

The example network was built from 76 of largest cities of
Brazil (>= 100 k habs). The bus routes between those cit-
ies formed the connections between the nodes of the net-
works. The number of edges in the network, derived from
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Table I: Parameters used in the models and their meaning.
Parameter n and @ have their values derived stochatically during
the simularion, therefore their values are not given here.

Symbo Meaning. Value
|
Y] contact rate (t') [1.4,2.27]'
1 number of infectious visitors
a mixing parameter |
n number of visitors
N population (S + E + [ + R) city population
r fraction of | recovering from 0.2
infection (day"')
e fraction of E becoming 0.2

infectious (day-')

the bus routes, is 850. These bus routes are registered with
the National Agency of Terrestrial Transportation (ANTT)
which provided the data used to parameterize the edges of
the network.

The model

The epidemiological model used consisted of a metapop-
ulation system with a discrete-time SEIR model (Eq. 1).
For each city, S, is the number of susceptibles in the city at
time t, E, is the number of infected but not yet infectious
individuals, I, is the number of infectious individuals res-
ident in the locality, N is the population residing in the
locality (assumed constant throughout the simulation),
and n, is the number of individuals visiting the locality, ©,
is the number of visitors who are infectious. The parame-
ters used were taken from Lipsitch et al. (2003) [12] to
represent a disease like SARS with an estimated basic
reproduction number (R,) of 2.2 to 3.6 (Table 1).

1,+0)%
Si1 =50 = /S, ([\tlt+n)t
(It+6¢) (1)
E..,=(1-¢e)E, + /S
t+1 ( ) t t Nt+nt

Iy =eE +(1-1),
Ry =Ny = (S + 1 + E)

To simulate the spread of infection between cities, we
used the concept of a "forest fire" model [13]. An infected
individual, traveling to another city, acts as a spark that
may trigger an epidemic in the new locality. This approach
is based on the assumption that individuals commute
between localities and contribute temporarily to the
number of infected in the new locality, but not to its
demography. Implications of this approach are discussed
in Grenfell et al (2001) [13].

http://www.scfbm.org/content/3/1/3

The number of individuals arriving in a city (n,) is based
on annual total number of passengers arriving trough all
bus routes leading to that city as provided by the ANTT
(Brazilian National Agency for Terrestrial Transportation).
The annual number of passengers is used to derive an
average daily number of passengers simply by dividing it
by 365.

Stochasticity is introduced in the model at two points: the
number of new cases is draw from a Poisson distribution

and the number of infected indi-

22
with intensity %Lt)

g

viduals visiting i is modelled as binomial process:

0, = z 6, for all k neighbors
k

I, ¢ —
Oy~ Binomial( n, LA ]
, Ny

where n is the total number of passengers arriving from a
given neighboring city; I, ,and N, are the current number
of infectious individuals and the total population size of
city k, respectively. J'is the delay associated with the dura-
tion of each bus trip. The delay & was calculated as the
number of days (rounded down) that a bus, traveling at
an average speed of 60 km/h, would take to complete a
given trip. The lengths in kilometers of all bus routes were
also obtained from the ANTT.

Vaccination campaigns in specific (or all) cities can be eas-
ily attained in Epigrass, with individual coverages for each
campaign on each city. We use this feature to explore Vac-
cination scenarios in this model (figures 6 and 7).

The files with this model's definition(the sites, edges and
".epg" files) are available as part of the Additional files 1,
2 and 3 for this article.

Analysis

To determine the importance of the point of entry in the
outcome of the epidemic, the model was run 500 times,
randomizing the point of entry of the virus. The seeding
site was chosen with a probability proportional to the
log,, of their population size. These replicates were run
using Epigrass' built-in support for repeated runs with the
option of randomizing seeding site. For every simulation,
statistics about each site such as the time it got infected
and time series of incidence were saved.

The time required for the epidemic to infect 50% of the
cities was chosen as a global index to network susceptibil-
ity to invasion. To compare the relative exposure of cities
to disease invasion, we also calculated the inverse of time
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Figure 6
Cost in vaccines applied vs. benefit in cases avoided, for a simulated epidemic starting at the highest degree
city (Sdo Paulo).

elapsed from the beginning of the epidemic until the city
registered its first indigenous case as a local measure of

Point of entry: S&o Paulo exposure.
B . TR T T T B—

] | \ \ AT \ i . . . .
L R R SR - e R } Except for population size, all other epidemiological
3 ‘ ‘ P ‘ ‘ parameters were the same for all cities, that is, disease
3T i 7774‘*7**7( 77777 R : transmissibility and recovery rate. Some positiogal .fez.l—
& . J L ! | tures of each n.ode were also derived: Centrallty, wl.nch is is
=" \ e \ | | a measure derived from the average distance of a given site
§m5; 7777777 } p 41 77777 } 777777 } 777777 } to every other site in the network; Betweeness, which is the

] 4 } i | } number of times a node figures in the the shortest path

e - 1 1 o 1 o 1 between any other pair of nodes; and Degree, which is the

’ agerte Cost (vaccine doses) et Bt number of edges connected to a node.

Figure 7 In order to analyze the path of the epidemic spread, we

Cost in vaccines applied vs. benefit in cases avoided, also recorded which cities provided the infectious cases
for a simulated epidemic starting at a relatively low which were responsible for the infection of each other
degree city(Salvador). city. If more than one source of infection exists, Epigrass
selects the city which contributed with the largest number
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Spread of the epidemic starting at the city of Salva-
dor, a city with relatively small degree (that is, small
number of neighbors). The number next to the boxes
indicated the day when each city developed its first indige-
nous case.
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Figure 9
Effect of degree(a) and betweeness(b) of entry node
to the speed of the epidemic.

of infectious individuals at that time-step, as the most
likely infector. At the end of the simulation Epigrass gen-
erates a file with the dispersion tree in graphML format,
which can be read by a variety of graph plotting programs
to generate the graphic seen on figure 8.

Results and discussion

Scalability of epigrass

The computational cost of running a single time step in an
epigrass model, is mainly determined by the cost of calcu-
lating the epidemiological models on each site(node).
Therefore, time required to run models based on larger

http://www.scfbm.org/content/3/1/3

i TGraphViewer S

Figure 10
Effect of betweeness of entry node on the speed of
the epidemic.

networks should scale linearly with the size of the net-
work (order of the graph), for simulations of the same
duration. The model presented here, took 2.6 seconds for
a 100 days run, on a 2.1 GHz cpu. A somewhat larger
model with 343 sites and 8735 edges took 28 seconds for
a 100 days simulation. Very large networks may be limited
by the ammount of RAM available. The authors are work-
ing on adapting Epigrass to distribute processing among
multiple cpus(in SMP systems), or multiple computers in
a cluster system. The memory demands can also be
addressed by keeping the simulation objects on an object-
oriented database during the simulation. Steps in this
direction are also being taken by the development team.

Epidemiological analyses

The model presented here served maily the purpose of
illustrating the capabilities of Epigrass for simulating and
analyzing reasonably complex epidemic scenarios. It
should not be taken as a careful and complete analysis of
a real epidemic. Despite that, some features of the simu-
lated epidemic are worth discussing. For example: The
spread speed of the epidemic, measured as the time taken
to infect 50% of the cities, was found to be influenced by
the centrality and degree of the entry node (figures 9 and
10). The dispersion tree corresponding to the epidemic, is
greatly influenced by the degree of the point of entry of
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the disease in the network. Figure 8 shows the tree for the
dispersion from the city of Salvador.

Vaccination strategies must take into consideration net-
work topology. Figures 6 and 7 show cost benefit plots for
three vaccination strategies investigated: Uniform vaccina-
tion, top-3 degree sites only and top-10 degree sites only. Vac-
cination of higher order sites offer cost/benefit advantages
only in scenarios where the disease enter the network
through one of these sites.

Conclusion

Epigrass facilitates greatly the simulation and analysis of
complex network models. The output of model results in
standard GIS file formats facilitates the post-processing
and analysis of results by means of sophisticated GIS soft-
ware. The non-trivial task of specifying the network over
which the model will be run, is left to the user. But epi-
grass allows this structure to be provided as a simple list
of sites and edges on text files, which can easily be
contructed by the user using a spreadsheet, with no need
for special software tools.

Besides invasion, network epidemiological models can
also be used to understand patterns of geographical
spread of endemic diseases [14-17]. Many infectious dis-
eases can only be maintained in a endemic state in cities
with population size above a threshold, or under appro-
priate environmental conditions(climate, availability of a
reservoir, vectors, etc). The variables and the magnitudes
associated with endemicity threshold depends on the nat-
ural history of the disease [18]. Theses magnitudes may
vary from place to place as it depends on the contact struc-
ture of the individuals. Predicting which cities are sources
for the endemicity and understanding the path of recur-
rent traveling waves may help us to design optimal sur-
veillance and control strategies.
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