Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients

F Ebrahimi, M Mikaeili, E Estrada… - 2008 30th Annual …, 2008 - ieeexplore.ieee.org
2008 30th Annual International Conference of the IEEE Engineering …, 2008ieeexplore.ieee.org
Currently in the world there is an alarming number of people who suffer from sleep
disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in
sleep labs among others for diagnosis and treatment of sleep related disorders. The usual
method for sleep stage classification is visual inspection by a sleep specialist. This is a very
time consuming and laborious exercise. Automatic sleep stage classification can facilitate
this process. The definition of sleep stages and the sleep literature show that EEG signals …
Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 ± 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 ± 4.0%.
ieeexplore.ieee.org