A framework for modelling virus gene expression data

P Kellam, X Liu, N Martin, C Orengo… - Intelligent Data …, 2002 - content.iospress.com
Intelligent Data Analysis, 2002content.iospress.com
Abstract Short, high-dimensional, Multivariate Time Series (MTS) data are common in many
fields such as medicine, finance and science, and any advance in modelling this kind of data
would be beneficial. Nowhere is this truer than functional genomics where effective ways of
analysing gene expression data are urgently needed. Progress in this area could help
obtain a “global” view of biological processes, and ultimately lead to a great improvement in
the quality of human life. We present a computational framework for modelling this type of …
Abstract
Short, high-dimensional, Multivariate Time Series (MTS) data are common in many fields such as medicine, finance and science, and any advance in modelling this kind of data would be beneficial. Nowhere is this truer than functional genomics where effective ways of analysing gene expression data are urgently needed. Progress in this area could help obtain a “global” view of biological processes, and ultimately lead to a great improvement in the quality of human life. We present a computational framework for modelling this type of data, and report experimental results of applying this framework to the analysis of gene expression data in the virology domain. The framework contains a three-step modelling strategy: correlation search, variable grouping, and short MTS modelling. Novel research is involved in each step which has been individually tested on different real-world datasets in engineering and medicine. This is the first attempt to integrate all these components into a coherent computational framework, and test the framework on a very challenging application area, producing promising results.
content.iospress.com