Estimating mutual information

A Kraskov, H Stögbauer, P Grassberger - Physical Review E—Statistical …, 2004 - APS
A Kraskov, H Stögbauer, P Grassberger
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 2004APS
We present two classes of improved estimators for mutual information M (X, Y), from samples
of random points distributed according to some joint probability density μ (x, y). In contrast to
conventional estimators based on binnings, they are based on entropy estimates from k-
nearest neighbor distances. This means that they are data efficient (with k= 1 we resolve
structures down to the smallest possible scales), adaptive (the resolution is higher where
data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy …
We present two classes of improved estimators for mutual information , from samples of random points distributed according to some joint probability density . In contrast to conventional estimators based on binnings, they are based on entropy estimates from -nearest neighbor distances. This means that they are data efficient (with we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to nonuniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of for points. Numerically, we find that both families become exact for independent distributions, i.e. the estimator vanishes (up to statistical fluctuations) if . This holds for all tested marginal distributions and for all dimensions of and . In addition, we give estimators for redundancies between more than two random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.
American Physical Society