From swimming to walking with a salamander robot driven by a spinal cord model

AJ Ijspeert, A Crespi, D Ryczko, JM Cabelguen - science, 2007 - science.org
AJ Ijspeert, A Crespi, D Ryczko, JM Cabelguen
science, 2007science.org
The transition from aquatic to terrestrial locomotion was a key development in vertebrate
evolution. We present a spinal cord model and its implementation in an amphibious
salamander robot that demonstrates how a primitive neural circuit for swimming can be
extended by phylogenetically more recent limb oscillatory centers to explain the ability of
salamanders to switch between swimming and walking. The model suggests neural
mechanisms for modulation of velocity, direction, and type of gait that are relevant for all …
The transition from aquatic to terrestrial locomotion was a key development in vertebrate evolution. We present a spinal cord model and its implementation in an amphibious salamander robot that demonstrates how a primitive neural circuit for swimming can be extended by phylogenetically more recent limb oscillatory centers to explain the ability of salamanders to switch between swimming and walking. The model suggests neural mechanisms for modulation of velocity, direction, and type of gait that are relevant for all tetrapods. It predicts that limb oscillatory centers have lower intrinsic frequencies than body oscillatory centers, and we present biological data supporting this.
AAAS