This is the html version of the file https://cds.cern.ch/record/2270008.
Google automatically generates html versions of documents as we crawl the web.
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
  Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Page 1
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
ALICE-PUBLIC-2017-005
© 2017 CERN for the benefit of the ALICE Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
The ALICE definition of primary particles
ALICE Collaboration*
Abstract
In this public note, we specify what we mean by the term primary particle. The definition is moti-
vated by what is in principle measurable by ALICE and that event generators and other such theoret-
ical considerations must be able to reproduce the same requirements. To this end, we also provide a
Rivet projection to be used in ALICE Rivet analyses.
*See Appendix E for the list of collaboration members

Page 2
2
ALICE Collaboration
Contents
1 The definition
3
1.1 Variationsofthedefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Some explanatory comments
3
2.1 Lifetimeconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Decayradiusconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Decay product considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Algorithmic description
5
4 Definitions used in the past and by other collaborations
5
4.1 ALICEdefinitionpriorto2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 ALICEdefinitionpriorto2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 LPCC MB+UE working group’s definition of primary particles . . . . . . . . . . . . . . 7
4.4 CMSdefinitionofprimaryparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.5 ATLASdefinitionofprimaryparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Summary
8
A Table of lifetimes
11
B LATEX code of the definition
16
C Rivet projection
17
D Code
21
E ALICE Collaboration
23

Page 3
The ALICE definition of primary particles
3
1 The definition
The following sentence constitutes the ALICE definition what we consider a primary particle.
A primary particle is a particle with a mean proper lifetime τ larger than 1cm/c, which is
either a) produced directly in the interaction, or b) from decays of particles with τ smaller
than 1 cm/c, restricted to decay chains leading to the interaction.
In the sentence above and else where in this note, except if otherwise indicated, the word “interaction”
refers the interaction between the colliding partners.
All particles that do not meet the requirements are not primary particles and are therefore dubbed sec-
ondary particles.
1.1 Variations of the definition
Alternatively, if the analysis presented concerns only charged, primary particles, we will write
A primary, charged particle is a charged particle with a mean proper lifetime τ larger than
1cm/c, which is either a) produced directly in the interaction, or b) from decays of particles
with τ smaller than 1cm/c, restricted to decay chains leading to the interaction.
In some cases, we present measurements of identified particles that are not included in the above defini-
tion of a primary particle e.g., the π0. In such cases, the definition of what we mean by a primary particle
of type X can be replaced by
A primary X is an X, which is either a) produced directly in the interaction; or b) from
decays of particles with mean proper lifetime τ smaller than 1cm/c, restricted to decay
chains leading to the interaction.
Finally, in some manuscripts, the caveat “restricted to decay chains leading to the interaction” may be
cumbersome. In those cases, we may write
A primary particle is a particle with a mean proper lifetime τ larger than 1cm/c, which is
either a) produced directly in the interaction, or b) from decays of particles with τ smaller
than 1 cm/c, excluding particles produced in interactions with material.
It should be understood that the above sentence and the sentence given at the top of this Section are
entirely equivalent and does not include or exclude more or less particles. The choice of exact phrase
used in a given manuscript is a matter of preference.
2 Some explanatory comments
2.1 Lifetime considerations
The definition above requires that a particle is long-lived i.e., lives long enough that it may in principle
be detected by the ALICE detectors. By long-lived particle, we mean a particle that has a mean proper
lifetime larger than 1cm/c. The particle species that fulfill this requirement according to the Particle
Data Group [1], are given in Tab. 1. The particle species with the longest mean proper lifetime that falls
outside of this cut is the B+ with τ = 0.049cm/c (see also Appendix A for a full list).

Page 4
4
ALICE Collaboration
Width Γ
Mean proper lifetime τ
Specie
(GeV)
(ps)
(cm/c)
p+
0
γ
0
K0
0
e
0
n
7.478×10−28
8.861×10+14
2.656×10+13
µ
2.996×10−19
2.212×10+06
6.63×10+04
K0
L
1.287×10−17
5.148×10+04
1543
π+
2.528×10−17
2.621×10+04
785.7
K+
5.317×10−17
1.246×10+04
373.6
Ξ
0
2.27×10−15
291.9
8.751
Λ
2.501×10−15
264.9
7.943
Ξ
4.02×10−15
164.8
4.941
Σ
4.45×10−15
148.9
4.464
K0
S
7.351×10−15
90.14
2.702
8.071×10−15
82.1
2.461
Σ
+
8.209×10−15
80.72
2.42
Table 1: Width (Γ) and mean proper lifetime (τ) of long-lived particles, sorted by descending mean proper lifetime
[1]. Here, a zero width or “∞” mean proper lifetime signifies undetermined values and are presumed small or large,
respectively.
2.2 Decay radius considerations
The choice of the mean proper lifetime cut–off of 1cm/c is motivated by the capability of the ALICE
detectors. That is, a particle produced in a decay close to the interaction can not be distinguished from
particles produced directly in the interaction. As a rule-of-thumb a particle from decay can be unambigu-
ously be identified as a non-primary particle when the decay occurs on average more than 1 cm away from
the interaction. Furthermore, particles produced by inelastic collisions with the ALICE beam-pipe, with
a radius of 2.98 cm [2]1, sets a limit to how close to the interaction one can resolve decay vertices.
The mean proper lifetime of a given particle species defines the mean lifetime of particles of that species
in the rest frame of the particle. In the laboratory frame, the average decay length is given by2
λlab = τβγ = τ
p
m0
(1)
and as such depends on the momentum of the particle. Considering the longest lived particle species
with a τ < 1cm/c, the B+ with τ = 0.049cm/c and mo = 5.2793GeV, we find that a particle of this
type with a momentum of 10GeV/c may on average travel ≈ 1mm, but would require a momentum of
> 350GeV/c to live long enough to decay outside of the ALICE beam-pipe. For the less heavy D+ to
decay outside the ALICE beam-pipe it would need a momentum larger than 180GeV/c. For the shortest
lived particle with τ > 1cm/c, the Σ+, only a momentum of ≈ 2GeV/c would be needed.
2.3 Decay product considerations
The definition requires for a particle to be primary, that there are no long-lived particles in the decay
chain that leads to that particle. This is illustrated in Fig. 1. For the K0
S and Ξchains only the initial
1In Run 3 of the LHC, the beam-pipe will be replaced with a smaller radius between 1.72cm and 1.92 cm [3].
2The convention adopted by the ALICE collaboration is to set the speed of light c = 1 and hence leave it out of equations,
except in units of measure where c is explicitly given.

Page 5
The ALICE definition of primary particles
5
K0
S
π
π+
Ξ
π
Λ
π
p
B0
D
ρ+
K(892)
π
K+
π
π0
π+
γ
γ
Interaction
Figure 1: Various decays. Particles defined as primaries are marked in red. In both the Ξand K0
S decays, the
initial particles are considered primary, since these particles are long-lived, while all the decay products are not
considered primaries. In the B0 decay chain, the π’s, γ’s, and the K+ are all primary since they are the first
long-lived particle in the decay chain leading back to the interaction.
particles are primaries because τ > 1cm/c. In the B0 branch the charged π’s are primaries, since when
tracking back to the initial B0 we meet no long lived particles. Similar considerations applies to the 2
γ’s and the K+. That is, we must be able to track back to the interaction and not find any long lived
particles, but without considering branches of the decay tree that do not end up in the particle we are
considering. Also, we require that all production processes in the chain are decays — that is, we exclude
chains that contain inelastic interactions with material, hadronic interactions, and other such production
mechanisms.
3 Algorithmic description
Figure 2 illustrates the algorithm used to determine if a given particle p is primary or not. If p is neither
long-lived nor produced in a decay, nor directly in the collision, it is certainly not a primary. Next, we
check to see if p has a mother particle m. If no such mother particle exists, we have a primary. If we can
find an ancestor we step through each successive ancestor and check if the ancestor is either long-lived
or neither from a decay nor from the interaction, then the particle under consideration p is not a primary.
If we can continue this search back to the interaction i.e., we cannot find any more ancestors, then we do
have a primary.
The algorithm shown in Fig. 2 is implemented into the ALICE simulation framework and is consistently
used throughout all analysis that need to distinguish between primary and non-primary particles. The
code is reproduced in Appendix D.
4 Definitions used in the past and by other collaborations
4.1 ALICE definition prior to 2017
Primary [charged] particles are defined as prompt [charged] particles produced in the colli-
sion, including their decay products, but excluding products of weak decays of muons and
light flavour hadrons. Secondary [charged] particles are all other particles observed in the
experiment e.g., particles produced through interactions with material and products of weak
decays. [4]
Parenthesis added.
The primary charged particles are defined as prompt particles produced in the collision in-
cluding all decay products, except products from weak decays of light flavor hadrons and of
muons. [5]
The above two definitions of (charged) primary particles has formed the basis in many ALICE publi-
cations so far. The definition can be construed to mean that both prompt (i.e., produced directly in the

Page 6
6
ALICE Collaboration
Is p
long-lived?
For
particle p
Is p from
decay or
interaction?
Find mother
particle
m of p
Does m
exist?
Is m
long-lived
Is m from
decay or
interaction?
Find mother
m of m
Does m
exists
Let m = m
p is
primary
p is not
primary
no
yes
no
yes
no
No ancestors
yes
yes
no
no
yes
no
yes
loop
Figure 2: Flow chart of deciding if a given particle is primary or not.
interaction) particles and the decay products counts as primary particles, thus leading to a double count
of particles. For example, in this reading of the above definitions, the Ddecay in Fig. 1 would count
as 5 (rather than 3) primary particles. Clearly, this is not the intent of the definition, and operationally
no such double counting ever took place. The wording of the definition is the cause of the confusion.
The current definition remedies the misunderstanding by explicitly requiring where in the decay chain
primary particles may originate from.
The second part of the definition, which stipulates that decay products from weak decays of light flavour
hadrons and muons are not considered primaries is entirely equivalent to current definitions requirement
of mean proper lifetime larger than 1cm/c and that possible parent particles must have a mean proper
lifetime smaller than 1cm/c. The known light flavour hadron with the shortest mean proper lifetime is
the Σ+ with a τ = 2.42cm/c, and as such, under the current and previous definition none of its decay

Page 7
The ALICE definition of primary particles
7
products can never be primary.
The current definition, and the 3 quoted above are therefore entirely equivalent though the current defi-
nition clarifies the exact conditions and is therefore used by ALICE.
4.2 ALICE definition prior to 2013
Primary particles are defined as prompt particles produced in the collisions, including all
decay products, with the exception of those from weak decays of strange particles. [6]
We define primary particles as prompt particles produced in the collision, including decay
products, except those from weak decays of strange particles. [7]
Relative to the definitions presented in Section 4.1, these formulations would include decay products of
µ± and π±. This was an oversight on the part of the formulation, since the operational definition has
remained constant between 2013 and 2016. The reason for the oversight was that µ± and π± are so long
lived that they rarely decay within the ALICE acceptance, and was simply ignored by the definition.
Bearing that oversight in mind, this definition of primary particles is entirely consistent with the current
and those listed in Section 4.1.
4.3 LPCC MB+UE working group’s definition of primary particles
We reiterated the definition of “charged particle” used in the common plots: this includes
hadrons and leptons, with mean lifetime τ > 0.3×10−10 s, produced directly or from decays
of shorter-lifetime particles. No particle level correction (e.g. no correction to subtract
Dalitz decays) [is used]. [8]
Parenthesis added.
This definition adopted by the LHC Physics Center at CERN Minimum Bias and Underlying Event
working group is identical to the definition adopted by ALICE.
4.4 CMS definition of primary particles
Primary [charged] particles are defined as all [charged] particles produced in the interaction
with a proper lifetime τ of greater than 1cm, including the products of strong and elec-
tromagnetic decays, but excluding particles originating from secondary interactions. The
products of weak decays are only considered primary particles if they are the products of a
particle produced in the interaction with a τ of less than 1cm. [9]
Parenthesis added.
This definition can be construed to mean, that in the decay Λ → π+ p we would count 3 particles
(since all three species have a mean proper life time larger than 1cm/c. However, the last part of the
definition, which stipulates that mother particles in weak decays must have τ < 1cm/c for the decay
products to be considered primary, rules this out and the definition only counts 1 particle, albeit it may
not be immediately obvious to the reader.
The definition adopted by the ALICE collaboration explicitly rules out double counting. The above
definition from the CMS collaboration and the one adopted by the ALICE collaboration are otherwise
equivalent.

Page 8
8
ALICE Collaboration
4.5 ATLAS definition of primary particles
A primary [charged] particle is defined as a [charged] particle with a mean lifetime τ >
300ps[≈ 9cm/c], which is either directly produced in pp interactions or from decays of
directly produced particles with τ < 30ps[≈ 0.9cm/c]; particles produced from decays of
particles with τ > 30ps[≈ 0.9cm/c] are considered as secondary particles and are thus ex-
cluded. [10]
Parenthesis and τ in length units added.
In this definition, if a particle has a mean proper lifetime between 30 and 300ps (or 0.9 to 9cm/c), it
is not considered a primary particle, which excludes all hyperons and K0
S, nor are the decay products of
these particles. If the particle has a lifetime shorter than 30ps it is not a primary, but it decay products
may be e.g., a prompt D+ decaying to N+π is counted as a single primary particle. Similarly all charmed
baryons and mesons cannot be primary but their decay products may.
This definition obviously differs from the definition adopted by the ALICE collaboration, in particular
for hyperons and K0
S which are never considered primary unless produced in the decay of much shorter
lived particles. In the ALICE definition, prompt hyperons and K0
Sare considered primaries.
5 Summary
The definition presented in Section 1 provides a clear method to distinguish what ALICE means by
“primary”. Operationally the definition is equivalent to previous definitions used, but has the advantage
of clarity and reproducability.
Acknowledgements
The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable con-
tributions to the construction of the experiment and the CERN accelerator teams for the outstanding
performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and
support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration.
The ALICE Collaboration acknowledges the following funding agencies for their support in building and
running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute)
Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Arme-
nia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung,
Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azer-
baijan; Conselho Nacional de Desenvolvimento Cientıfico e Tecnológico (CNPq), Universidade Federal
do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundaç˜ao de Am-
paro `a Pesquisa do Estado de S˜ao Paulo (FAPESP), Brazil; Ministry of Science & Technology of China
(MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China
(MOEC) , China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia;
Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council
for Independent Research — Natural Sciences, the Carlsberg Foundation and Danish National Research
Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat `a l’Energie
Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and
Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wis-
senschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung
GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research
and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department
of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR),
New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica

Page 9
The ALICE definition of primary particles
9
e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute
for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST), Japan Society for
the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Sci-
ence and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnologıa, through
Fondo de Cooperación Internacional en Ciencia y Tecnologıa (FONCICYT) and Dirección General de
Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science
and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universi-
dad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre,
Poland; Korea Institute of Science and Technology Information and National Research Foundation of
Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic
Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint In-
stitute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and
National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and
Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa;
Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergıa, Cuba, Ministerio
de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas
(CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW),
Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology
Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Ed-
ucation Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK),
Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Coun-
cil (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and
United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.
References
[1] Particle Data Group Collaboration, C. Patrignani et al., “Review of Particle Physics,” Chin.
Phys. C40 no. 10, (2016) 100001.
[2] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC,” JINST 3
(2008) S08002.
[3] ALICE Collaboration, B. Abelev et al., “Technical Design Report for the Upgrade of the ALICE
Inner Tracking System,” J. Phys. G41 (2014) 087002.
[4] ALICE Collaboration, J. Adam et al., “Centrality evolution of the charged-particle pseudorapidity
density over a broad pseudorapidity range in Pb-Pb collisions at
sNN = 2.76 TeV,” Phys. Lett.
B754 (2016) 373–385, arXiv:1509.07299 [nucl-ex].
[5] ALICE Collaboration, J. Adam et al., “Centrality dependence of the charged-particle multiplicity
density at midrapidity in Pb-Pb collisions at
sNN = 5.02 TeV,” Phys. Rev. Lett. 116 no. 22,
(2016) 222302, arXiv:1512.06104 [nucl-ex].
[6] ALICE Collaboration, J. Adam et al., “Pseudorapidity and transverse-momentum distributions of
charged particles in protonproton collisions at
s = 13 TeV,” Phys. Lett. B753 (2016) 319–329,
arXiv:1509.08734 [nucl-ex].
[7] ALICE Collaboration, K. Aamodt et al., “Charged-particle multiplicity density at mid-rapidity in
central Pb-Pb collisions at
sNN = 2.76 TeV,” Phys. Rev. Lett. 105 (2010) 252301,
arXiv:1011.3916 [nucl-ex].

Page 10
10
ALICE Collaboration
[8] LPCC MB+UA Working Group, “Conveners’ meeting on the restart of activities for run 2,”
March, 2015. http://lpcc.web.cern.ch/LPCC/documents/mb_documents/
minutes-16-03-2015-final.pdf.
[9] CMS Collaboration, K. Krajczr, “Transverse momentum and pseudorapidity dependence of
charged particle production and nuclear modification factor in protonlead collisions at
sNN =5.02 TeV with CMS,” Nucl. Phys. A932 (2014) 174–178.
[10] ATLAS Collaboration, G. Aad et al., “Charged-particle distributions in pp interactions at
s = 8
TeV measured with the ATLAS detector,” Eur. Phys. J. C76 no. 7, (2016) 403,
arXiv:1603.02439 [hep-ex].
[11] A. Buckley, J. Butterworth, L. Lonnblad, D. Grellscheid, H. Hoeth, J. Monk, H. Schulz, and
F. Siegert, “Rivet user manual,” Comput. Phys. Commun. 184 (2013) 2803–2819,
arXiv:1003.0694 [hep-ph].

Page 11
The ALICE definition of primary particles
11
A Table of lifetimes
Width Γ
Mean proper lifetime τ
Specie
(GeV)
(ps)
(cm/c)
p+
≪ 10−29
≫ 10+15
≫ 10+14
γ
≪ 10−29
≫ 10+15
≫ 10+14
K0
≪ 10−29
≫ 10+15
≫ 10+14
e
≪ 10−29
≫ 10+15
≫ 10+14
n
7.478×10−28
8.861×10+14
2.656×10+13
µ
2.996×10−19
2.212×10+06
6.63×10+04
K0
L
1.287×10−17
5.148×10+04
1543
π+
2.528×10−17
2.621×10+04
785.7
K+
5.317×10−17
1.246×10+04
373.6
Ξ
0
2.27×10−15
291.9
8.751
Λ
2.501×10−15
264.9
7.943
Ξ
4.02×10−15
164.8
4.941
Σ
4.45×10−15
148.9
4.464
K0
S
7.351×10−15
90.14
2.702
8.071×10−15
82.1
2.461
Σ
+
8.209×10−15
80.72
2.42
B+
4.018×10−13
1.649
0.04944
b
4.2×10−13
1.578
0.0473
Ξ
b
4.22×10−13
1.57
0.04707
B0
4.33×10−13
1.53
0.04588
B0
s
4.359×10−13
1.52
0.04557
Λb
4.49×10−13
1.476
0.04424
Ξ
0
b
4.5×10−13
1.472
0.04414
D+
6.33×10−13
1.047
0.03138
B+
c
1.298×10−12
0.5105
0.0153
D+
s
1.317×10−12
0.5031
0.01508
Ξ
+
c
1.49×10−12
0.4447
0.01333
D0
1.605×10−12
0.4128
0.01238
τ
2.267×10−12
0.2923
0.008762
Λ
+
c
3.3×10−12
0.2008
0.00602
Ξ
0
c
5.9×10−12
0.1123
0.003367
0
c
9.6×10−12
0.06902
0.002069
π0
7.73×10−09
8.572×10−05
2.57×10−06
η
1.31×10−06
5.058×10−07
1.516×10−08
Σ
0
8.9×10−06
7.445×10−08
2.232×10−09
ϒ
(3S)
2.03×10−05
3.264×10−08
9.785×10−10
ϒ
(2S)
3.2×10−05
2.071×10−08
6.208×10−10
ϒ
(1S)
5.4×10−05
1.227×10−08
3.679×10−10
D∗+
(2010)
8.34×10−05
7.945×10−09
2.382×10−10
J/ψ0
(1S)
9.29×10−05
7.132×10−09
2.138×10−10
η
(958)
0.000197 3.363×10−09
1.008×10−10
ψ
(2S)
0.000296 2.239×10−09
6.711×10−11
hc
(1P)
0.0007 9.466×10−10
2.838×10−11
χ0
c1
(1P)
0.00084 7.888×10−10
2.365×10−11
D+
s1
(2536)
0.00092 7.202×10−10
2.159×10−11
Λ
+
c
(2625)
0.00097 6.831×10−10
2.048×10−11
B
s2
(5840)
0.00147 4.508×10−10
1.351×10−11
Σ
0
c
(2455)
0.00183 3.621×10−10
1.085×10−11
Σ
++
c
(2455)
0.00189 3.506×10−10
1.051×10−11
D∗+
s
0.0019 3.487×10−10
1.045×10−11
χ0
c2
(1P)
0.00193 3.433×10−10
1.029×10−11
Table A.1: Width (Γ), and mean proper lifetime (τ) of various particles,
sorted by descending lifetime

Page 12
12
ALICE Collaboration
Width Γ
Mean proper lifetime τ
Specie
(GeV)
(ps)
(cm/c)
D∗0
(2007)
0.0021 3.155×10−10
9.459×10−12
Λ
+
c
(2595)
0.0026 2.548×10−10
7.64×10−12
Ξ
+
c
(2645)
0.0026 2.548×10−10
7.64×10−12
Ξ
0
(1690)
0.003 2.209×10−10
6.621×10−12
Ξ
(1690)
0.003 2.209×10−10
6.621×10−12
D+
s1
(2460)
0.0035 1.893×10−10
5.676×10−12
Ξ
+
c
(2815)
0.0035 1.893×10−10
5.676×10−12
D
∗+
s0
(2317)
0.0038 1.744×10−10
5.227×10−12
ϕ
(1020)
0.004266 1.553×10−10
4.656×10−12
Σ
+
c
(2455)
0.0046
1.44×10−10
4.318×10−12
Σ
b
0.0049 1.352×10−10
4.054×10−12
Ξ
0
c
(2645)
0.0055 1.205×10−10
3.612×10−12
Λ
+
c
(2880)
0.0058 1.142×10−10
3.425×10−12
Ξ
0
c
(2815)
0.0065 1.019×10−10
3.056×10−12
Σ
∗−
b
0.0075 8.835×10−11
2.649×10−12
ω
(782)
0.00849 7.805×10−11
2.34×10−12
Ξ
0
(1530)
0.0091 7.281×10−11
2.183×10−12
Σ
+
b
0.0097 6.831×10−11
2.048×10−12
Ξ
(1530)
0.0099 6.693×10−11
2.007×10−12
χ0
c0
(1P)
0.0105 6.311×10−11
1.892×10−12
ηc
(2S)
0.0113 5.864×10−11
1.758×10−12
Σ
∗+
b
0.0115 5.762×10−11
1.727×10−12
Ξ
+
c
(2790)
0.012 5.522×10−11
1.655×10−12
Σ
++
c
(2520)
0.01478 4.483×10−11
1.344×10−12
Ξ
0
c
(2790)
0.015 4.417×10−11
1.324×10−12
Σ
0
c
(2520)
0.0153 4.331×10−11
1.298×10−12
Λ
(1520)
0.0156 4.247×10−11
1.273×10−12
D
∗+
s2
(2573)
0.0169 3.921×10−11
1.175×10−12
Σ
+
c
(2520)
0.017 3.898×10−11
1.168×10−12
Ξ
(2030)
0.02 3.313×10−11
9.932×10−13
Ξ
0
(2030)
0.02 3.313×10−11
9.932×10−13
ϒ
(4S)
0.0205 3.232×10−11
9.69×10−13
Ξ
0
(1820)
0.024 2.761×10−11
8.277×10−13
Ξ
(1820)
0.024 2.761×10−11
8.277×10−13
χ0
c2
(2P)
0.024 2.761×10−11
8.277×10−13
f1
(1285)
0.0241 2.749×10−11
8.243×10−13
B
2
(5747)
0.0242 2.738×10−11
8.208×10−13
B
∗+
2
(5747)
0.0242 2.738×10−11
8.208×10−13
ψ
(3770)
0.0272 2.436×10−11
7.303×10−13
D0
1
(2420)
0.0317
2.09×10−11
6.266×10−13
ηc
(1S)
0.0318 2.084×10−11
6.247×10−13
Λ
(1670)
0.035 1.893×10−11
5.676×10−13
Σ
+
(1385)
0.036 1.841×10−11
5.518×10−13
Σ
0
(1385)
0.036 1.841×10−11
5.518×10−13
Σ
(1385)
0.0394 1.682×10−11
5.042×10−13
D
∗+
2
(2460)
0.0467 1.419×10−11
4.254×10−13
K∗
(892)
0.0474 1.398×10−11
4.191×10−13
D
2
(2460)
0.0477 1.389×10−11
4.164×10−13
Λ
(1405)
0.0505 1.312×10−11
3.934×10−13
K∗+
(892)
0.0508 1.304×10−11
3.91×10−13
η
(1405)
0.051 1.299×10−11
3.895×10−13
ϒ
(10860)
0.054 1.227×10−11
3.679×10−13
f1
(1420)
0.0549 1.207×10−11
3.618×10−13
Table A.1: Width (Γ), and mean proper lifetime (τ) of various particles,
sorted by descending lifetime

Page 13
The ALICE definition of primary particles
13
Width Γ
Mean proper lifetime τ
Specie
(GeV)
(ps)
(cm/c)
η
(1295)
0.055 1.205×10−11
3.612×10−13
(2250)
0.055 1.205×10−11
3.612×10−13
Ξ
0
(1950)
0.06 1.104×10−11
3.311×10−13
f0
(980)
0.06 1.104×10−11
3.311×10−13
Λ
(1690)
0.06 1.104×10−11
3.311×10−13
Ξ
(1950)
0.06 1.104×10−11
3.311×10−13
Σ
0
(1670)
0.06 1.104×10−11
3.311×10−13
Σ
+
(1670)
0.06 1.104×10−11
3.311×10−13
Σ
(1670)
0.06 1.104×10−11
3.311×10−13
ϒ
(11020)
0.061 1.086×10−11
3.256×10−13
ψ
(4415)
0.062 1.069×10−11
3.204×10−13
ψ
(4160)
0.07 9.466×10−12
2.838×10−13
f2
(1525)
0.073 9.077×10−12
2.721×10−13
a0
(980)
0.075 8.835×10−12
2.649×10−13
a+
0
(980)
0.075 8.835×10−12
2.649×10−13
ψ
(4040)
0.08 8.283×10−12
2.483×10−13
Λ
(1820)
0.08 8.283×10−12
2.483×10−13
η
(1475)
0.085 7.795×10−12
2.337×10−13
ϕ3
(1850)
0.087 7.616×10−12
2.283×10−13
K+
1
(1270)
0.09 7.362×10−12
2.207×10−13
Σ
0
(1750)
0.09 7.362×10−12
2.207×10−13
Σ
+
(1750)
0.09 7.362×10−12
2.207×10−13
Σ
(1750)
0.09 7.362×10−12
2.207×10−13
K0
1
(1270)
0.09 7.362×10−12
2.207×10−13
Λ
(1830)
0.095 6.975×10−12
2.091×10−13
K
∗+
2
(1430)
0.0985 6.727×10−12
2.017×10−13
Σ
0
(1660)
0.1 6.626×10−12
1.986×10−13
Σ
(1660)
0.1 6.626×10−12
1.986×10−13
N+
(1710)
0.1 6.626×10−12
1.986×10−13
N
(1710)
0.1 6.626×10−12
1.986×10−13
Λ
(1890)
0.1 6.626×10−12
1.986×10−13
Σ
+
(1660)
0.1 6.626×10−12
1.986×10−13
a+
2
(1320)
0.107 6.193×10−12
1.856×10−13
a2
(1320)
0.107 6.193×10−12
1.856×10−13
K
2
(1430)
0.109 6.079×10−12
1.822×10−13
f0
(1500)
0.109 6.079×10−12
1.822×10−13
N+
(1520)
0.115 5.762×10−12
1.727×10−13
N
(1520)
0.115 5.762×10−12
1.727×10−13
++
(1232)
0.117 5.663×10−12
1.698×10−13
+
(1232)
0.117 5.663×10−12
1.698×10−13
0
(1232)
0.117 5.663×10−12
1.698×10−13
(1232)
0.117 5.663×10−12
1.698×10−13
Σ
0
(1915)
0.12 5.522×10−12
1.655×10−13
Σ
+
(1775)
0.12 5.522×10−12
1.655×10−13
Σ
0
(1775)
0.12 5.522×10−12
1.655×10−13
Σ
+
(1915)
0.12 5.522×10−12
1.655×10−13
Σ
(1775)
0.12 5.522×10−12
1.655×10−13
Σ
(1915)
0.12 5.522×10−12
1.655×10−13
N+
(1680)
0.13 5.097×10−12
1.528×10−13
N
(1680)
0.13 5.097×10−12
1.528×10−13
f0
(1710)
0.139 4.767×10−12
1.429×10−13
+
(1620)
0.14 4.733×10−12
1.419×10−13
++
(1620)
0.14 4.733×10−12
1.419×10−13
Table A.1: Width (Γ), and mean proper lifetime (τ) of various particles,
sorted by descending lifetime

Page 14
14
ALICE Collaboration
Width Γ
Mean proper lifetime τ
Specie
(GeV)
(ps)
(cm/c)
(1620)
0.14 4.733×10−12
1.419×10−13
0
(1620)
0.14 4.733×10−12
1.419×10−13
N+
(1650)
0.14 4.733×10−12
1.419×10−13
N
(1650)
0.14 4.733×10−12
1.419×10−13
b1
(1235)
0.142 4.666×10−12
1.399×10−13
b+
1
(1235)
0.142 4.666×10−12
1.399×10−13
ρ0
(770)
0.1491 4.444×10−12
1.332×10−13
ρ+
(770)
0.1491 4.444×10−12
1.332×10−13
Λ
(1600)
0.15 4.417×10−12
1.324×10−13
ϕ
(1680)
0.15 4.417×10−12
1.324×10−13
Λ
(1810)
0.15 4.417×10−12
1.324×10−13
N+
(1700)
0.15 4.417×10−12
1.324×10−13
N
(1700)
0.15 4.417×10−12
1.324×10−13
N+
(1675)
0.15 4.417×10−12
1.324×10−13
N
(1675)
0.15 4.417×10−12
1.324×10−13
N+
(1535)
0.15 4.417×10−12
1.324×10−13
N
(1535)
0.15 4.417×10−12
1.324×10−13
f2
(2300)
0.15 4.417×10−12
1.324×10−13
K
3
(1780)
0.159 4.167×10−12
1.249×10−13
K
∗+
3
(1780)
0.159 4.167×10−12
1.249×10−13
ρ+
3
(1690)
0.161 4.116×10−12
1.234×10−13
ρ0
3
(1690)
0.161 4.116×10−12
1.234×10−13
ω3
(1670)
0.168 3.944×10−12
1.182×10−13
K0
1
(1400)
0.174 3.808×10−12
1.142×10−13
K+
1
(1400)
0.174 3.808×10−12
1.142×10−13
Σ
(2030)
0.18 3.681×10−12
1.104×10−13
Σ
0
(2030)
0.18 3.681×10−12
1.104×10−13
Σ
+
(2030)
0.18 3.681×10−12
1.104×10−13
η2
(1645)
0.181 3.661×10−12
1.097×10−13
K+
2
(1770)
0.186 3.562×10−12
1.068×10−13
K0
2
(1770)
0.186 3.562×10−12
1.068×10−13
f2
(1270)
0.1867 3.549×10−12
1.064×10−13
K
∗+
4
(2045)
0.198 3.346×10−12
1.003×10−13
K
4
(2045)
0.198 3.346×10−12
1.003×10−13
Λ
(2100)
0.2 3.313×10−12
9.932×10−14
f2
(2010)
0.2 3.313×10−12
9.932×10−14
Λ
(2110)
0.2 3.313×10−12
9.932×10−14
π0
(1800)
0.208 3.186×10−12
9.55×10−14
π+
(1800)
0.208 3.186×10−12
9.55×10−14
ω
(1420)
0.215 3.082×10−12
9.239×10−14
Σ
+
(1940)
0.22 3.012×10−12
9.029×10−14
Σ
0
(1940)
0.22 3.012×10−12
9.029×10−14
Σ
(1940)
0.22 3.012×10−12
9.029×10−14
K∗
(1410)
0.232 2.856×10−12
8.562×10−14
K∗+
(1410)
0.232 2.856×10−12
8.562×10−14
f4
(2050)
0.237 2.796×10−12
8.382×10−14
π+
1
(1600)
0.24 2.761×10−12
8.277×10−14
π0
1
(1600)
0.24 2.761×10−12
8.277×10−14
ρ+
(1700)
0.25
2.65×10−12
7.946×10−14
ρ0
(1700)
0.25
2.65×10−12
7.946×10−14
N
(1720)
0.25
2.65×10−12
7.946×10−14
N+
(1720)
0.25
2.65×10−12
7.946×10−14
a+
4
(2040)
0.257 2.578×10−12
7.729×10−14
Table A.1: Width (Γ), and mean proper lifetime (τ) of various particles,
sorted by descending lifetime

Page 15
The ALICE definition of primary particles
15
Width Γ
Mean proper lifetime τ
Specie
(GeV)
(ps)
(cm/c)
a4
(2040)
0.257 2.578×10−12
7.729×10−14
π+
2
(1670)
0.26 2.548×10−12
7.64×10−14
0
(1920)
0.26 2.548×10−12
7.64×10−14
(1920)
0.26 2.548×10−12
7.64×10−14
π0
2
(1670)
0.26 2.548×10−12
7.64×10−14
++
(1920)
0.26 2.548×10−12
7.64×10−14
+
(1920)
0.26 2.548×10−12
7.64×10−14
a0
(1450)
0.265
2.5×10−12
7.496×10−14
a+
0
(1450)
0.265
2.5×10−12
7.496×10−14
D
0
(2400)
0.27 2.454×10−12
7.357×10−14
K
0
(1430)
0.27 2.454×10−12
7.357×10−14
K
∗+
0
(1430)
0.27 2.454×10−12
7.357×10−14
D
∗+
0
(2400)
0.27 2.454×10−12
7.357×10−14
K+
2
(1820)
0.276 2.401×10−12
7.197×10−14
K0
2
(1820)
0.276 2.401×10−12
7.197×10−14
+
(1950)
0.28 2.366×10−12
7.094×10−14
++
(1950)
0.28 2.366×10−12
7.094×10−14
(1910)
0.28 2.366×10−12
7.094×10−14
0
(1950)
0.28 2.366×10−12
7.094×10−14
++
(1910)
0.28 2.366×10−12
7.094×10−14
+
(1910)
0.28 2.366×10−12
7.094×10−14
(1950)
0.28 2.366×10−12
7.094×10−14
0
(1910)
0.28 2.366×10−12
7.094×10−14
++
(1700)
0.3 2.209×10−12
6.621×10−14
+
(1700)
0.3 2.209×10−12
6.621×10−14
0
(1700)
0.3 2.209×10−12
6.621×10−14
(1700)
0.3 2.209×10−12
6.621×10−14
Λ
(1800)
0.3 2.209×10−12
6.621×10−14
ω
(1650)
0.315 2.104×10−12
6.306×10−14
+
(1600)
0.32 2.071×10−12
6.208×10−14
K∗
(1680)
0.32 2.071×10−12
6.208×10−14
K∗+
(1680)
0.32 2.071×10−12
6.208×10−14
f2
(2340)
0.32 2.071×10−12
6.208×10−14
++
(1600)
0.32 2.071×10−12
6.208×10−14
(1600)
0.32 2.071×10−12
6.208×10−14
0
(1600)
0.32 2.071×10−12
6.208×10−14
(1905)
0.33 2.008×10−12
6.02×10−14
π0
1
(1400)
0.33 2.008×10−12
6.02×10−14
π+
1
(1400)
0.33 2.008×10−12
6.02×10−14
0
(1905)
0.33 2.008×10−12
6.02×10−14
+
(1905)
0.33 2.008×10−12
6.02×10−14
++
(1905)
0.33 2.008×10−12
6.02×10−14
f0
(1370)
0.35 1.893×10−12
5.676×10−14
N+
(1440)
0.35 1.893×10−12
5.676×10−14
N
(1440)
0.35 1.893×10−12
5.676×10−14
++
(1930)
0.36 1.841×10−12
5.518×10−14
+
(1930)
0.36 1.841×10−12
5.518×10−14
0
(1930)
0.36 1.841×10−12
5.518×10−14
(1930)
0.36 1.841×10−12
5.518×10−14
h1
(1170)
0.36 1.841×10−12
5.518×10−14
ρ+
(1450)
0.4 1.657×10−12
4.966×10−14
ρ0
(1450)
0.4 1.657×10−12
4.966×10−14
π+
(1300)
0.4 1.657×10−12
4.966×10−14
Table A.1: Width (Γ), and mean proper lifetime (τ) of various particles,
sorted by descending lifetime

Page 16
16
ALICE Collaboration
Width Γ
Mean proper lifetime τ
Specie
(GeV)
(ps)
(cm/c)
π0
(1300)
0.4 1.657×10−12
4.966×10−14
a+
1
(1260)
0.42 1.578×10−12
4.73×10−14
a1
(1260)
0.42 1.578×10−12
4.73×10−14
f2
(1950)
0.472 1.404×10−12
4.209×10−14
N+
(2190)
0.5 1.325×10−12
3.973×10−14
N
(2190)
0.5 1.325×10−12
3.973×10−14
f0
(500)
0.55 1.205×10−12
3.612×10−14
t
1.41 4.699×10−13
1.409×10−14
H
1.7 3.898×10−13
1.168×10−14
W+
2.085 3.178×10−13
9.527×10−15
Z0
2.495 2.656×10−13
7.961×10−15
Table A.1: Width (Γ), and mean proper lifetime (τ) of various particles,
sorted by descending lifetime
B LATEX code of the definition
The definition given in Sect. 1 can be typeset in LATEX using the code below
A primary particle is a particle with a mean proper lifetime $\tau$
larger than $1\,\ mathrm{cm\kern -.03em/\kern -.05em c}$, which is
either a) produced directly in the interaction, or b) from decays of
particles with $\tau$ smaller than
$1\,\ mathrm{cm\kern -.03em/\kern -.05em c}$, restricted to decay
chains leading to the interaction.
The additional “kerning” used is to make the unit more compact and appear as a single entity. The
spacing macro \, can be avoid if the units package is used.

Page 17
The ALICE definition of primary particles
17
C Rivet projection
The code below3 implements a Rivet [11] projection to project out primary particles according to the
definition.
#ifndef ALICEPRIMARY_CC
#define ALICEPRIMARY_CC
#include <Rivet/Particle.hh>
#include <Rivet/Event.hh>
#include <Rivet/Tools/ParticleIdUtils.hh>
#include <Rivet/Projections/ParticleFinder.hh>
#include <Rivet/ParticleName.hh>
#include <Rivet/Tools/Cuts.hh>
#include <HepMC/GenParticle.h>
#include <HepMC/GenVertex.h>
namespace Rivet
{
/**
* A Rivet projection that projects out primary particles - according
* to the ALICE definition - from an event.
The projection filters
* all charge states.
If one needs to have only charged particles
* one need to apply another projection on top of this one.
*
* This version is for Rivet version 2 and higher, which allows for
* the use of a Cut class and the base class ParticleFinder.
*/
class AlicePrimary : public ParticleFinder
{
public:
/**
* Consturctor
* @param cut If specified, use this cut when projecting
* @param pdg If specified, check for this PDG rather than long-lived
*/
AlicePrimary(const Cut& c=Cuts::open(),int pdg)
: ParticleFinder(c), _pdg(pdg)
{
setName("AlicePrimary");
}
/**
* Copy constructor
*
* @param o Object to copy from
*/
AlicePrimary(const AlicePrimary& o) : ParticleFinder(o),_pdg(o._pdg) {}
/**
* Destructor
*/
virtual ~AlicePrimary () {}
/**
* @{
* @name Projection interface
*/
/**
* Clone this projection object
*
* @return Copy of this projection object allocated on the heap
*/
3The code presented here is for Rivet version 2 or higher. For earlier version minor changes has to be done. Current
implementation can also be found at https://gitlab.cern.ch/cholm/alice-rivet.

Page 18
18
ALICE Collaboration
virtual std::unique_ptr<Projection > clone() const
{
return std::unique_ptr<Projection >(new AlicePrimary (*this));
}
/**
* Compare this projection to some other projection.
If the other
* projection is also a AlicePrimary projection, then return @c 0,
* otherwise @c -1.
*
* @param p Projection to compare to
*
* @return 0 if @a p is an AlicePrimary, @c -1 otherwise
*/
virtual int compare(const Projection& p) const
{
const AlicePrimary* o = dynamic_cast <const AlicePrimary *>(&p);
if (!o || o->_pdg != _pdg) return UNDEFINED;
return _cuts == o->_cuts ? EQUIVALENT : UNDEFINED;
}
/**
* Project out the primary particles of the passed event record @a
* e.
This is the interface that does the actual projection.
*
* @param e Event record.
*/
virtual void project(const Event& e)
{
_theParticles.clear(); // Clear cache
bool open = _cuts == Cuts::open();
for (auto p : Rivet::particles(e.genEvent())) {
if (isPrimary(p,_pdg) && (open || _cuts->accept(Particle(p))))
_theParticles.push_back(Particle(*p));
}
}
/* @} */
/**
* @{
* @name Internal functions used
*/
/**
* Check if a particle is a primary according to the ALICE
* definition.
*
* @param p Particle to test
*
* @return true if the particle is considered a primary, false
* otherwise.
*/
static bool isPrimary(const HepMC:: GenParticle* p)
{
if
(_pdg != 0 && p->pdg_id() != pdg) return false;
else if (!isLongLived(p)) return false;
if (!(isPrompt(p) || isDecay(p))) return false;
const HepMC:: GenParticle* m = p;
while ((m = ancestor(m))) {
if (m->status() == 4) return true; // found beam
if (isLongLived(m)) return false;
if (!(isDecay(m) || isDecau(m))) return false;
}
return true;
}

Page 19
The ALICE definition of primary particles
19
/**
* Check if a particle is of a long-lived (i.e., @f$ \tau>1cm@f$)
* species.
*
* @param p Particle to test
*
* @return true if the particle is of a long-lived species
*/
static bool isLongLived(const HepMC:: GenParticle* p)
{
int pdg = PID::abspid(p->pdg_id());
// Check for nuclus
if (pdg > 1000000000) return true;
switch (pdg) {
case Rivet::PID::MUON:
case Rivet::PID::ELECTRON:
case Rivet::PID::GAMMA:
case Rivet::PID::PIPLUS:
case Rivet::PID::KPLUS:
case Rivet::PID::K0S:
case Rivet::PID::K0L:
case Rivet::PID::PROTON:
case Rivet::PID::NEUTRON:
case Rivet::PID::LAMBDA:
case Rivet::PID::SIGMAMINUS:
case Rivet::PID::SIGMAPLUS:
case Rivet::PID::XIMINUS:
case Rivet::PID::XI0:
case Rivet::PID::OMEGAMINUS:
case Rivet::PID::NU_E:
case Rivet::PID::NU_MU:
case Rivet::PID::NU_TAU:
return true;
}
return false;
}
/**
* Check if this is prompt
*
* @param p Particle to test
*
* @return true if the particle has no ancestors, or from a
* quark or gluon. Some EGs (e.g., Pythia8) records the full
* event tree, so we check if this has indeed been hadronised.
*/
static bool isPrompt(const HepMC:: GenParticle* p)
{
// Get mother
const HepMC:: GenParticle* m = ancestor(p);
// If no mother, this is prompt
if (!m) return true;
// If mother is a quark or a gluon, consider daughter to be
// prompt, irrespective of the generation status code - Pythia8,
// for example, exports the full chain with "funny" status codes
int mpdg = PID::abspid(m->pdg_id());
switch (mpdg) {
case Rivet::PID::DQUARK:
case Rivet::PID::UQUARK:
case Rivet::PID::SQUARK:
case Rivet::PID::CQUARK:
case Rivet::PID::BQUARK:

Page 20
20
ALICE Collaboration
case Rivet::PID::TQUARK:
case Rivet::PID::GLUON:
return true;
}
return m->status() == 4; // Check mother is beam
}
/**
* Check if a particle is either produced in a decay (@c
* status=2)
*
* @param p Particle to test
*
* @return true if either produced in the interaction or through
* some decay
*/
static bool isDecay(const HepMC:: GenParticle* p)
{
// Get mother
const HepMC:: GenParticle* m = ancestor(p);
// No mother, so prompt
if (!m) return true;
int mstatus = m->status();
// true if mother decayed or mother is beam particle
return mstatus == 2;
}
/**
* Get the immediate ancestor of a particle
*
* @param p The particle to get the ancestor for
*
* @return Ancestor particle or null
*/
static const HepMC:: GenParticle* ancestor(const HepMC:: GenParticle* p)
{
const HepMC:: GenVertex* vtx = p->production_vertex();
if (!vtx) return 0;
HepMC:: GenVertex ::particles_in_const_iterator i =
vtx->particles_in_const_begin();
if (i == vtx->particles_in_const_end()) return 0;
return *i;
}
/* @} */
};
}
#endif
//
// EOF
//
Note, the projection AlicePrimary and FinalState are generally not equivalent.
To use this projection in an analysis, one should do
#include <Rivet/Projections/AlicePrimary.hh>
#include <Rivet/Analysis.hh>
namespace Rivet
{
class AliceAnalysis : public Analysis
{
public:
AliceAnalysis () {}

Page 21
The ALICE definition of primary particles
21
void init()
{
const AlicePrimary ap;
addProjection(ap, "AP");
}
void analyse(const Event& event)
{
const AlicePrimary& ap = applyProjection<AlicePrimary >(event,"AP");
// Loop over primaries - optionally pass a cut object to
// AlicePrimary::particles
for (auto p : ap.particles()) {
// Process particle p of type Rivet::Particle&
}
}
};
DECLARE_RIVET_PLUGIN(AliceAnalysis );
}
D Code
The code below checks if a particle is considered long-lived, i.e., has a proper lifetime τ > 1cm/c. If so,
it returns true, otherwise false.
Bool_t IsStable(const TParticle* p, Bool_t def=false) const
{
if (!p) return def;
Int_t pdg = TMath::Abs(p->GetPdgCode());
// Check for nuclus
if (pdg > 1000000000) return true;
Int_t stable[] = {
kGamma ,
// 22
Photon
kElectron ,
// 11
Electron
kMuonMinus ,
// 13
Muon
kPiPlus ,
// 211
Pion
kKPlus ,
// 321
Kaon
kK0Short ,
// 310
K0s
kK0Long ,
// 130
K0l
kProton ,
// 2212 Proton
kNeutron ,
// 2112 Neutron
kLambda0 ,
// 3122 Lambda_0
kSigmaMinus ,
// 3112 Sigma Minus
kSigmaPlus ,
// 3222 Sigma Plus
kXiMinus ,
// 3312 Xi Minus
3322,
//
Xi 0
kOmegaMinus ,
// 3334 Omega
kNuE ,
// 12
Electron Neutrino
kNuMu ,
// 14
Muon Neutrino
kNuTau ,
// 16
Tau Neutrino
-1
};
Int_t* ptr = stable;
while ((*ptr) >= 0) {
if (pdg == *ptr) return true;
ptr++;
}
return false;
}

Page 22
22
ALICE Collaboration
The following code checks if the particle production mechanism either corresponds to production in the
interaction or a decay. The ALICE simulation framework stores the production identifier in the field
accessed by GetUniqueID() of the TParticle objects.
Bool_t IsPrimaryProcess(TParticle* p) const
{
switch (p->GetUniqueID()) {
case kPDecay:
case kPNoProcess:
case kPNull:
case kPPrimary:
return true;
}
return false;
}
Finally, we have the code that checks if a given particle is a primary. The argument of type AliStack
gives access to the full particle history of an event in the ALICE simulation framework.
Bool_t IsFirstStable(AliStack* stack, Int_t iTr)
{
TParticle* p = stack->Particle(iTr);
// Check if this particle is stable
if (!IsStable(p)) return false;
if (!IsPrimaryProcess(p)) return false;
TParticle* m
= p;
Int_t
mi = 0;
while ((mi = m->GetFirstMother()) >= 0) {
m = stack->Particle(mi);
// If there’s no mother, break out
if (!m) break;
// If (grand)mother particle is stable, this is not primary
if (IsStable(m)) return false;
// If (grand)mother was produced neither in a decay nor directly
// in the interaction (e.g., material interaction), then this
// particle is not a primary.
if (!IsPrimaryProcess(m)) return false;
}
// If we get here, then no (grand)mother was long-lived, and was
// either produced in a decay or directly in the interaction
return true;
}
To facilitate faster look-up, one may code up the above flagging particles as we search through the decay
chains
TParticle
MarkPrimary(TParticle* p, Bool_t primary)
{
p->SetBit(kPrimarySet);
if (primary) p->SetBit(kPrimaryBit);
else
p->ClearBit(kPrimaryBit);
return p;
}
Bool_t IsFirstStable(AliStack* stack, Int_t iTr)
{
TParticle* p = stack->Particle(iTr);
if (p->Testbit(kPrimarySet)) return p->TestBit(kPrimaryBit);
// Check if this particle is stable
if (!IsStable(p) || !IsPrimaryProcess(p)) {
MarkPrimary(p, false);
return false;

Page 23
The ALICE definition of primary particles
23
}
TParticle* m
= p;
Int_t
mi = 0;
while ((mi = m->GetFirstMother()) >= 0) {
m = stack->Particle(mi);
// If there’s no mother, break out
if (!m) break;
// If (grand)mother was flagged as primary, then this is not
if ((m->Testbit(kPrimarySet) &&
m->TestBit(kPrimaryBit))) {
MarkPrimary(p, false);
return false;
}
// If (grand)mother is long-lived or her production mechanism is
// neither a decay nor the primary interaction (e.g., scattering
// in material), then this particle is not primary
if (IsStable(m) || !IsPrimaryProcess(m)) {
MarkPrimary(p, false);
return false;
}
// (Grand)mother is not a primary, mark it as such
MarkPrimary(m,false);
}
// If we get here, then all (grand)mothers was neither long-lived,
// nor produced in by any means but decays or in the primary
// interaction. Thus, we have a primary particle
MarkPrimary(m,true);
return true;
}
In this way, we do not need to fully traverse most of the decay chains.
E ALICE Collaboration
S. Acharya139, D. Adamová96, J. Adolfsson34, M.M. Aggarwal101, G. Aglieri Rinella35, M. Agnello31,
N. Agrawal48, Z. Ahammed139, N. Ahmad17, S.U. Ahn80, S. Aiola143, A. Akindinov65, S.N. Alam139,
J.L.B. Alba114, D.S.D. Albuquerque125, D. Aleksandrov92, B. Alessandro59, R. Alfaro Molina75, A. Alici12,27,54,
A. Alkin3, J. Alme22, T. Alt71, L. Altenkamper22, I. Altsybeev138, C. Alves Garcia Prado124, C. Andrei89,
D. Andreou35, H.A. Andrews113, A. Andronic109, V. Anguelov106, C. Anson99, T. Anticic110, F. Antinori57,
P. Antonioli54, R. Anwar127, L. Aphecetche117, H. Appelshäuser71, S. Arcelli27, R. Arnaldi59, O.W. Arnold36,107,
I.C. Arsene21, M. Arslandok106, B. Audurier117, A. Augustinus35, R. Averbeck109, M.D. Azmi17, A. Badal`a56,
Y.W. Baek61,79, S. Bagnasco59, R. Bailhache71, R. Bala103, A. Baldisseri76, M. Ball45, R.C. Baral68,
A.M. Barbano26, R. Barbera28, F. Barile33,53, L. Barioglio26, G.G. Barnaföldi142, L.S. Barnby95, V. Barret82,
P. Bartalini7, K. Barth35, E. Bartsch71, M. Basile27, N. Bastid82, S. Basu141, B. Bathen72, G. Batigne117,
B. Batyunya78, P.C. Batzing21, I.G. Bearden93, H. Beck106, C. Bedda64, N.K. Behera61, I. Belikov135,
F. Bellini27, H. Bello Martinez2, R. Bellwied127, L.G.E. Beltran123, V. Belyaev85, G. Bencedi142, S. Beole26,
A. Bercuci89, Y. Berdnikov98, D. Berenyi142, R.A. Bertens130, D. Berzano35, L. Betev35, A. Bhasin103,
I.R. Bhat103, A.K. Bhati101, B. Bhattacharjee44, J. Bhom121, L. Bianchi127, N. Bianchi51, C. Bianchin141,
J. Bielcık39, J. Bielcıková96, A. Bilandzic36,107, G. Biro142, R. Biswas4, S. Biswas4, J.T. Blair122, D. Blau92,
C. Blume71, G. Boca136, F. Bock35,84,106, A. Bogdanov85, L. Boldizsár142, M. Bombara40, G. Bonomi137,
M. Bonora35, J. Book71, H. Borel76, A. Borissov19, M. Borri129, E. Botta26, C. Bourjau93, L. Bratrud71,
P. Braun-Munzinger109, M. Bregant124, T.A. Broker71, M. Broz39, E.J. Brucken46, E. Bruna59, G.E. Bruno33,
D. Budnikov111, H. Buesching71, S. Bufalino31, P. Buhler116, P. Buncic35, O. Busch133, Z. Buthelezi77,
J.B. Butt15, J.T. Buxton18, J. Cabala119, D. Caffarri35,94, H. Caines143, A. Caliva64, E. Calvo Villar114,
P. Camerini25, A.A. Capon116, F. Carena35, W. Carena35, F. Carnesecchi12,27, J. Castillo Castellanos76,

Page 24
24
ALICE Collaboration
A.J. Castro130, E.A.R. Casula55, C. Ceballos Sanchez9, P. Cerello59, S. Chandra139, B. Chang128, S. Chapeland35,
M. Chartier129, J.L. Charvet76, S. Chattopadhyay139, S. Chattopadhyay112, A. Chauvin36,107, M. Cherney99,
C. Cheshkov134, B. Cheynis134, V. Chibante Barroso35, D.D. Chinellato125, S. Cho61, P. Chochula35,
K. Choi19, M. Chojnacki93, S. Choudhury139, T. Chowdhury82, P. Christakoglou94, C.H. Christensen93,
P. Christiansen34, T. Chujo133, S.U. Chung19, C. Cicalo55, L. Cifarelli12,27, F. Cindolo54, J. Cleymans102,
F. Colamaria33, D. Colella35,66, A. Collu84, M. Colocci27, M. ConcasII,59, G. Conesa Balbastre83, Z. Conesa
del Valle62, M.E. ConnorsIII,143, J.G. Contreras39, T.M. Cormier97, Y. Corrales Morales59, I. Cortés
Maldonado2, P. Cortese32, M.R. Cosentino126, F. Costa35, S. Costanza136, J. Crkovská62, P. Crochet82,
E. Cuautle73, L. Cunqueiro72, T. Dahms36,107, A. Dainese57, M.C. Danisch106, A. Danu69, D. Das112,
I. Das112, S. Das4, A. Dash90, S. Dash48, S. De49,124, A. De Caro30, G. de Cataldo53, C. de Conti124, J. de
Cuveland42, A. De Falco24, D. De Gruttola12,30, N. De Marco59, S. De Pasquale30, R.D. De Souza125,
H.F. Degenhardt124, A. Deisting106,109, A. Deloff88, C. Deplano94, P. Dhankher48, D. Di Bari33, A. Di
Mauro35, P. Di Nezza51, B. Di Ruzza57, M.A. Diaz Corchero10, T. Dietel102, P. Dillenseger71, R. Divi`a35,
Ø. Djuvsland22, A. Dobrin35, D. Domenicis Gimenez124, B. Dönigus71, O. Dordic21, L.V.V. Doremalen64,
A.K. Dubey139, A. Dubla109, L. Ducroux134, A.K. Duggal101, P. Dupieux82, R.J. Ehlers143, D. Elia53,
E. Endress114, H. Engel70, E. Epple143, B. Erazmus117, F. Erhardt100, B. Espagnon62, S. Esumi133,
G. Eulisse35, J. Eum19, D. Evans113, S. Evdokimov115, L. Fabbietti36,107, J. Faivre83, A. Fantoni51,
M. Fasel84,97, L. Feldkamp72, A. Feliciello59, G. Feofilov138, J. Ferencei96, A. Fernández Téllez2, E.G. Ferreiro16,
A. Ferretti26, A. Festanti29,35, V.J.G. Feuillard76,82, J. Figiel121, M.A.S. Figueredo124, S. Filchagin111,
D. Finogeev63, F.M. Fionda22,24, E.M. Fiore33, M. Floris35, S. Foertsch77, P. Foka109, S. Fokin92, E. Fragiacomo60,
A. Francescon35, A. Francisco117, U. Frankenfeld109, G.G. Fronze26, U. Fuchs35, C. Furget83, A. Furs63,
M. Fusco Girard30, J.J. Gaardhøje93, M. Gagliardi26, A.M. Gago114, K. Gajdosova93, M. Gallio26,
C.D. Galvan123, P. Ganoti87, C. Gao7, C. Garabatos109, E. Garcia-Solis13, K. Garg28, C. Gargiulo35,
P. Gasik36,107, E.F. Gauger122, M.B. Gay Ducati74, M. Germain117, J. Ghosh112, P. Ghosh139, S.K. Ghosh4,
P. Gianotti51, P. Giubellino35,59,109, P. Giubilato29, E. Gladysz-Dziadus121, P. Glässel106, D.M. Goméz
Coral75, A. Gomez Ramirez70, A.S. Gonzalez35, V. Gonzalez10, P. González-Zamora10, S. Gorbunov42,
L. G örlich121, S. Gotovac120, V. Grabski75, L.K. Graczykowski140, K.L. Graham113, L. Greiner84, A. Grelli64,
C. Grigoras35, V. Grigoriev85, A. Grigoryan1, S. Grigoryan78, N. Grion60, J.M. Gronefeld109, F. Grosa31,
J.F. Grosse-Oetringhaus35, R. Grosso109, L. Gruber116, F. Guber63, R. Guernane83, B. Guerzoni27, K. Gulbrandsen93,
T. Gunji132, A. Gupta103, R. Gupta103, I.B. Guzman2, R. Haake35, C. Hadjidakis62, H. Hamagaki86,132,
G. Hamar142, J.C. Hamon135, M.R. Haque64, J.W. Harris143, A. Harton13, H. Hassan83, D. Hatzifotiadou12,54,
S. Hayashi132, S.T. Heckel71, E. Hellbär71, H. Helstrup37, A. Herghelegiu89, G. Herrera Corral11, F. Herrmann72,
B.A. Hess105, K.F. Hetland37, H. Hillemanns35, C. Hills129, B. Hippolyte135, J. Hladky67, B. Hohlweger107,
D. Horak39, S. Hornung109, R. Hosokawa83,133, P. Hristov35, C. Hughes130, T.J. Humanic18, N. Hussain44,
T. Hussain17, D. Hutter42, D.S. Hwang20, S.A. Iga Buitron73, R. Ilkaev111, M. Inaba133, M. Ippolitov85,92,
M. Irfan17, V. Isakov63, M. Ivanov109, V. Ivanov98, V. Izucheev115, B. Jacak84, N. Jacazio27, P.M. Jacobs84,
M.B. Jadhav48, J. Jadlovsky119, S. Jaelani64, C. Jahnke36, M.J. Jakubowska140, M.A. Janik140, P.H.S.Y. Jayarathna127,
C. Jena90, S. Jena127, M. Jercic100, R.T. Jimenez Bustamante109, P.G. Jones113, A. Jusko113, P. Kalinak66,
A. Kalweit35, J.H. Kang144, V. Kaplin85, S. Kar139, A. Karasu Uysal81, O. Karavichev63, T. Karavicheva63,
L. Karayan106,109, P. Karczmarczyk35, E. Karpechev63, U. Kebschull70, R. Keidel145, D.L.D. Keijdener64,
M. Keil35, B. Ketzer45, Z. Khabanova94, P. Khan112, S.A. Khan139, A. Khanzadeev98, Y. Kharlov115,
A. Khatun17, A. Khuntia49, M.M. Kielbowicz121, B. Kileng37, B. Kim133, D. Kim144, D.W. Kim43,
D.J. Kim128, H. Kim144, J.S. Kim43, J. Kim106, M. Kim61, M. Kim144, S. Kim20, T. Kim144, S. Kirsch42,
I. Kisel42, S. Kiselev65, A. Kisiel140, G. Kiss142, J.L. Klay6, C. Klein71, J. Klein35, C. Klein-Bösing72,
S. Klewin106, A. Kluge35, M.L. Knichel106, A.G. Knospe127, C. Kobdaj118, M. Kofarago142, T. Kollegger109,
A. Kolojvari138, V. Kondratiev138, N. Kondratyeva85, E. Kondratyuk115, A. Konevskikh63, M. Konyushikhin141,
M. Kopcik119, M. Kour103, C. Kouzinopoulos35, O. Kovalenko88, V. Kovalenko138, M. Kowalski121,
G. Koyithatta Meethaleveedu48, I. Králik66, A. Kravcáková40, M. Krivda66,113, F. Krizek96, E. Kryshen98,
M. Krzewicki42, A.M. Kubera18, V. Kucera96, C. Kuhn135, P.G. Kuijer94, A. Kumar103, J. Kumar48,
L. Kumar101, S. Kumar48, S. Kundu90, P. Kurashvili88, A. Kurepin63, A.B. Kurepin63, A. Kuryakin111,

Page 25
The ALICE definition of primary particles
25
S. Kushpil96, M.J. Kweon61, Y. Kwon144, S.L. La Pointe42, P. La Rocca28, C. Lagana Fernandes124,
Y.S. Lai84, I. Lakomov35, R. Langoy41, K. Lapidus143, C. Lara70, A. Lardeux21,76, A. Lattuca26, E. Laudi35,
R. Lavicka39, L. Lazaridis35, R. Lea25, L. Leardini106, S. Lee144, F. Lehas94, S. Lehner116, J. Lehrbach42,
R.C. Lemmon95, V. Lenti53, E. Leogrande64, I. León Monzón123, P. Lévai142, S. Li7, X. Li14, J. Lien41,
R. Lietava113, B. Lim19, S. Lindal21, V. Lindenstruth42, S.W. Lindsay129, C. Lippmann109, M.A. Lisa18,
V. Litichevskyi46, H.M. Ljunggren34, W.J. Llope141, D.F. Lodato64, P.I. Loenne22, V. Loginov85, C. Loizides84,
P. Loncar120, X. Lopez82, E. López Torres9, A. Lowe142, P. Luettig71, M. Lunardon29, G. Luparello25,60,
M. Lupi35, T.H. Lutz143, A. Maevskaya63, M. Mager35, S. Mahajan103, S.M. Mahmood21, A. Maire135,
R.D. Majka143, M. Malaev98, L. MalininaIV,78, D. Mal’Kevich65, P. Malzacher109, A. Mamonov111,
V. Manko92, F. Manso82, V. Manzari53, Y. Mao7, M. Marchisone77,131, J. Mareš67, G.V. Margagliotti25,
A. Margotti54, J. Margutti64, A. Marın109, C. Markert122, M. Marquard71, N.A. Martin109, P. Martinengo35,
J.A.L. Martinez70, M.I. Martınez2, G. Martınez Garcıa117, M. Martinez Pedreira35, A. Mas124, S. Masciocchi109,
M. Masera26, A. Masoni55, E. Masson117, A. Mastroserio53, A.M. Mathis36,107, A. Matyja121,130, C. Mayer121,
J. Mazer130, M. Mazzilli33, M.A. Mazzoni58, F. Meddi23, Y. Melikyan85, A. Menchaca-Rocha75, E. Meninno30,
J. Mercado Pérez106, M. Meres38, S. Mhlanga102, Y. Miake133, M.M. Mieskolainen46, D. Mihaylov107,
D.L. Mihaylov107, K. Mikhaylov65,78, L. Milano84, J. Milosevic21, A. Mischke64, A.N. Mishra49, D. Miskowiec109,
J. Mitra139, C.M. Mitu69, N. Mohammadi64, B. Mohanty90, M. Mohisin KhanV,17, E. Montes10, D.A. Mor-
eira De Godoy72, L.A.P. Moreno2, S. Moretto29, A. Morreale117, A. Morsch35, V. Muccifora51, E. Mudnic120,
D. Mühlheim72, S. Muhuri139, M. Mukherjee4, J.D. Mulligan143, M.G. Munhoz124, K. Münning45,
R.H. Munzer71, H. Murakami132, S. Murray77, L. Musa35, J. Musinsky66, C.J. Myers127, J.W. Myrcha140,
B. Naik48, R. Nair88, B.K. Nandi48, R. Nania12,54, E. Nappi53, A. Narayan48, M.U. Naru15, H. Na-
tal da Luz124, C. Nattrass130, S.R. Navarro2, K. Nayak90, R. Nayak48, T.K. Nayak139, S. Nazarenko111,
A. Nedosekin65, R.A. Negrao De Oliveira35, L. Nellen73, S.V. Nesbo37, F. Ng127, M. Nicassio109, M. Niculescu69,
J. Niedziela35,140, B.S. Nielsen93, S. Nikolaev92, S. Nikulin92, V. Nikulin98, A. Nobuhiro47, F. Noferini12,54,
P. Nomokonov78, G. Nooren64, J.C.C. Noris2, J. Norman129, A. Nyanin92, J. Nystrand22, H. OeschlerI,106,
S. Oh143, A. Ohlson35,106, T. Okubo47, L. Olah142, J. Oleniacz140, A.C. Oliveira Da Silva124, M.H. Oliver143,
J. Onderwaater109, C. Oppedisano59, R. Orava46, M. Oravec119, A. Ortiz Velasquez73, A. Oskarsson34,
J. Otwinowski121, K. Oyama86, Y. Pachmayer106, V. Pacik93, D. Pagano137, P. Pagano30, G. Paic73,
P. Palni7, J. Pan141, A.K. Pandey48, S. Panebianco76, V. Papikyan1, G.S. Pappalardo56, P. Pareek49,
J. Park61, S. Parmar101, A. Passfeld72, S.P. Pathak127, V. Paticchio53, R.N. Patra139, B. Paul59, H. Pei7,
T. Peitzmann64, X. Peng7, L.G. Pereira74, H. Pereira Da Costa76, D. Peresunko85,92, E. Perez Lezama71,
V. Peskov71, Y. Pestov5, V. Petrácek39, V. Petrov115, M. Petrovici89, C. Petta28, R.P. Pezzi74, S. Piano60,
M. Pikna38, P. Pillot117, L.O.D.L. Pimentel93, O. Pinazza35,54, L. Pinsky127, D.B. Piyarathna127, M. Płoskon84,
M. Planinic100, F. Pliquett71, J. Pluta140, S. Pochybova142, P.L.M. Podesta-Lerma123, M.G. Poghosyan97,
B. Polichtchouk115, N. Poljak100, W. Poonsawat118, A. Pop89, H. Poppenborg72, S. Porteboeuf-Houssais82,
J. Porter84, V. Pozdniakov78, S.K. Prasad4, R. Preghenella54, F. Prino59, C.A. Pruneau141, I. Pshenichnov63,
M. Puccio26, G. Puddu24, P. Pujahari141, V. Punin111, J. Putschke141, A. Rachevski60, S. Raha4, S. Rajput103,
J. Rak128, A. Rakotozafindrabe76, L. Ramello32, F. Rami135, D.B. Rana127, R. Raniwala104, S. Raniwala104,
S.S. Räsänen46, B.T. Rascanu71, D. Rathee101, V. Ratza45, I. Ravasenga31, K.F. Read97,130, K. RedlichVI,88,
A. Rehman22, P. Reichelt71, F. Reidt35, X. Ren7, R. Renfordt71, A.R. Reolon51, A. Reshetin63, K. Reygers106,
V. Riabov98, R.A. Ricci52, T. Richert64, M. Richter21, P. Riedler35, W. Riegler35, F. Riggi28, C. Ristea69,
M. Rodrıguez Cahuantzi2, K. Røed21, E. Rogochaya78, D. Rohr35,42, D. Röhrich22, P.S. Rokita140,
F. Ronchetti51, E.D. Rosas73, P. Rosnet82, A. Rossi29,57, A. Rotondi136, F. Roukoutakis87, A. Roy49,
C. Roy135, P. Roy112, A.J. Rubio Montero10, O.V. Rueda73, R. Rui25, B. Rumyantsev78, A. Rustamov91,
E. Ryabinkin92, Y. Ryabov98, A. Rybicki121, S. Saarinen46, S. Sadhu139, S. Sadovsky115, K. Šafarık35,
S.K. Saha139, B. Sahlmuller71, B. Sahoo48, P. Sahoo49, R. Sahoo49, S. Sahoo68, P.K. Sahu68, J. Saini139,
S. Sakai51,133, M.A. Saleh141, J. Salzwedel18, S. Sambyal103, V. Samsonov85,98, A. Sandoval75, D. Sarkar139,
N. Sarkar139, P. Sarma44, M.H.P. Sas64, E. Scapparone54, F. Scarlassara29, R.P. Scharenberg108, H.S. Scheid71,
C. Schiaua89, R. Schicker106, C. Schmidt109, H.R. Schmidt105, M.O. Schmidt106, M. Schmidt105, N.V. Schmidt71,
S. Schuchmann106, J. Schukraft35, Y. Schutz35,117,135, K. Schwarz109, K. Schweda109, G. Scioli27, E. Scomparin59,

Page 26
26
ALICE Collaboration
R. Scott130, M. Šefcık40, J.E. Seger99, Y. Sekiguchi132, D. Sekihata47, I. Selyuzhenkov85,109, K. Senosi77,
S. Senyukov3,35,135, E. Serradilla10,75, P. Sett48, A. Sevcenco69, A. Shabanov63, A. Shabetai117, R. Shahoyan35,
W. Shaikh112, A. Shangaraev115, A. Sharma101, A. Sharma103, M. Sharma103, M. Sharma103, N. Sharma101,130,
A.I. Sheikh139, K. Shigaki47, Q. Shou7, K. Shtejer9,26, Y. Sibiriak92, S. Siddhanta55, K.M. Sielewicz35,
T. Siemiarczuk88, D. Silvermyr34, C. Silvestre83, G. Simatovic100, G. Simonetti35, R. Singaraju139,
R. Singh90, V. Singhal139, T. Sinha112, B. Sitar38, M. Sitta32, T.B. Skaali21, M. Slupecki128, N. Smirnov143,
R.J.M. Snellings64, T.W. Snellman128, J. Song19, M. Song144, F. Soramel29, S. Sorensen130, F. Sozzi109,
E. Spiriti51, I. Sputowska121, B.K. Srivastava108, J. Stachel106, I. Stan69, P. Stankus97, E. Stenlund34,
D. Stocco117, M.M. Storetvedt37, P. Strmen38, A.A.P. Suaide124, T. Sugitate47, C. Suire62, M. Suleymanov15,
M. Suljic25, R. Sultanov65, M. Šumbera96, S. Sumowidagdo50, K. Suzuki116, S. Swain68, A. Szabo38,
I. Szarka38, U. Tabassam15, J. Takahashi125, G.J. Tambave22, N. Tanaka133, M. Tarhini62, M. Tariq17,
M.G. Tarzila89, A. Tauro35, G. Tejeda Mu˜noz2, A. Telesca35, K. Terasaki132, C. Terrevoli29, B. Teyssier134,
D. Thakur49, S. Thakur139, D. Thomas122, F. Thoresen93, R. Tieulent134, A. Tikhonov63, A.R. Timmins127,
A. Toia71, S. Tripathy49, S. Trogolo26, G. Trombetta33, L. Tropp40, V. Trubnikov3, W.H. Trzaska128,
B.A. Trzeciak64, T. Tsuji132, A. Tumkin111, R. Turrisi57, T.S. Tveter21, K. Ullaland22, E.N. Umaka127,
A. Uras134, G.L. Usai24, A. Utrobicic100, M. Vala66,119, J. Van Der Maarel64, J.W. Van Hoorne35,
M. van Leeuwen64, T. Vanat96, P. Vande Vyvre35, D. Varga142, A. Vargas2, M. Vargyas128, R. Varma48,
M. Vasileiou87, A. Vasiliev92, A. Vauthier83, O. Vázquez Doce36,107, V. Vechernin138, A.M. Veen64,
A. Velure22, E. Vercellin26, S. Vergara Limón2, R. Vernet8, R. Vértesi142, L. Vickovic120, S. Vigolo64,
J. Viinikainen128, Z. Vilakazi131, O. Villalobos Baillie113, A. Villatoro Tello2, A. Vinogradov92, L. Vinogradov138,
T. Virgili30, V. Vislavicius34, A. Vodopyanov78, M.A. Völkl105,106, K. Voloshin65, S.A. Voloshin141,
G. Volpe33, B. von Haller35, I. Vorobyev36,107, D. Voscek119, D. Vranic35,109, J. Vrláková40, B. Wagner22,
H. Wang64, M. Wang7, D. Watanabe133, Y. Watanabe132, M. Weber116, S.G. Weber109, D.F. Weiser106,
S.C. Wenzel35, J.P. Wessels72, U. Westerhoff72, A.M. Whitehead102, J. Wiechula71, J. Wikne21, G. Wilk88,
J. Wilkinson54,106, G.A. Willems72, M.C.S. Williams54, E. Willsher113, B. Windelband106, W.E. Witt130,
S. Yalcin81, K. Yamakawa47, P. Yang7, S. Yano47, Z. Yin7, H. Yokoyama83,133, I.-K. Yoo19,35, J.H. Yoon61,
V. Yurchenko3, V. Zaccolo59,93, A. Zaman15, C. Zampolli35, H.J.C. Zanoli124, N. Zardoshti113, A. Zarochentsev138,
P. Závada67, N. Zaviyalov111, H. Zbroszczyk140, M. Zhalov98, H. Zhang7,22, X. Zhang7, Y. Zhang7,
C. Zhang64, Z. Zhang7,82, C. Zhao21, N. Zhigareva65, D. Zhou7, Y. Zhou93, Z. Zhou22, H. Zhu22, J. Zhu7,
X. Zhu7, A. Zichichi12,27, A. Zimmermann106, M.B. Zimmermann35,72, G. Zinovjev3, J. Zmeskal116,
S. Zou7
Affiliation Notes
I Deceased
II Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
III Also at: Georgia State University, Atlanta, Georgia, United States
IV Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics,
Moscow, Russia
V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
VI Also at: Institute of Theoretical Physics, University of Wroclaw, Poland
Collaboration Institutes
1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Arme-
nia

Page 27
The ALICE definition of primary particles
27
2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS),
Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi’, Rome, Italy
13 Chicago State University, Chicago, Illinois, United States
14 China Institute of Atomic Energy, Beijing, China
15 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
16 Departamento de Fısica de Partıculas and IGFAE, Universidad de Santiago de Compostela, Santiago
de Compostela, Spain
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Ohio State University, Columbus, Ohio, United States
19 Department of Physics, Pusan National University, Pusan, Republic of Korea
20 Department of Physics, Sejong University, Seoul, Republic of Korea
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
23 Dipartimento di Fisica dell’Universit`a ’La Sapienza’ and Sezione INFN, Rome, Italy
24 Dipartimento di Fisica dell’Universit`a and Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Universit`a and Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Universit`a and Sezione INFN, Turin, Italy
27 Dipartimento di Fisica e Astronomia dell’Universit`a and Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Universit`a and Sezione INFN, Catania, Italy
29 Dipartimento di Fisica e Astronomia dell’Universit`a and Sezione INFN, Padova, Italy
30 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Universit`a and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Universit`a del Piemonte Orientale and INFN
Sezione di Torino, Alessandria, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Excellence Cluster Universe, Technische Universität München, Munich, Germany
37 Faculty of Engineering, Bergen University College, Bergen, Norway
38 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
39 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague,
Czech Republic
40 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
41 Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
42 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt,
Germany
43 Gangneung-Wonju National University, Gangneung, Republic of Korea
44 Gauhati University, Department of Physics, Guwahati, India
45 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn,
Bonn, Germany

Page 28
28
ALICE Collaboration
46 Helsinki Institute of Physics (HIP), Helsinki, Finland
47 Hiroshima University, Hiroshima, Japan
48 Indian Institute of Technology Bombay (IIT), Mumbai, India
49 Indian Institute of Technology Indore, Indore, India
50 Indonesian Institute of Sciences, Jakarta, Indonesia
51 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
52 INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
53 INFN, Sezione di Bari, Bari, Italy
54 INFN, Sezione di Bologna, Bologna, Italy
55 INFN, Sezione di Cagliari, Cagliari, Italy
56 INFN, Sezione di Catania, Catania, Italy
57 INFN, Sezione di Padova, Padova, Italy
58 INFN, Sezione di Roma, Rome, Italy
59 INFN, Sezione di Torino, Turin, Italy
60 INFN, Sezione di Trieste, Trieste, Italy
61 Inha University, Incheon, Republic of Korea
62 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
63 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
64 Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
65 Institute for Theoretical and Experimental Physics, Moscow, Russia
66 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
67 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
68 Institute of Physics, Bhubaneswar, India
69 Institute of Space Science (ISS), Bucharest, Romania
70 Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
71 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
72 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
73 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
74 Instituto de Fısica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
75 Instituto de Fısica, Universidad Nacional Autónoma de México, Mexico City, Mexico
76 IRFU, CEA, Université Paris-Saclay, Saclay, France
77 iThemba LABS, National Research Foundation, Somerset West, South Africa
78 Joint Institute for Nuclear Research (JINR), Dubna, Russia
79 Konkuk University, Seoul, Republic of Korea
80 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
81 KTO Karatay University, Konya, Turkey
82 Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS–
IN2P3, Clermont-Ferrand, France
83 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3,
Grenoble, France
84 Lawrence Berkeley National Laboratory, Berkeley, California, United States
85 Moscow Engineering Physics Institute, Moscow, Russia
86 Nagasaki Institute of Applied Science, Nagasaki, Japan
87 National and Kapodistrian University of Athens, Physics Department, Athens, Greece
88 National Centre for Nuclear Studies, Warsaw, Poland
89 National Institute for Physics and Nuclear Engineering, Bucharest, Romania
90 National Institute of Science Education and Research, HBNI, Jatni, India
91 National Nuclear Research Center, Baku, Azerbaijan
92 National Research Centre Kurchatov Institute, Moscow, Russia
93 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Page 29
The ALICE definition of primary particles
29
94 Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
95 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
96 Nuclear Physics Institute, Academy of Sciences of the Czech Republic, ˇRez u Prahy, Czech Republic
97 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
98 Petersburg Nuclear Physics Institute, Gatchina, Russia
99 Physics Department, Creighton University, Omaha, Nebraska, United States
100 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
101 Physics Department, Panjab University, Chandigarh, India
102 Physics Department, University of Cape Town, Cape Town, South Africa
103 Physics Department, University of Jammu, Jammu, India
104 Physics Department, University of Rajasthan, Jaipur, India
105 Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
106 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
107 Physik Department, Technische Universität München, Munich, Germany
108 Purdue University, West Lafayette, Indiana, United States
109 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionen-
forschung GmbH, Darmstadt, Germany
110 Rudjer Boškovic Institute, Zagreb, Croatia
111 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
112 Saha Institute of Nuclear Physics, Kolkata, India
113 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
114 Sección Fısica, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
115 SSC IHEP of NRC Kurchatov institute, Protvino, Russia
116 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
117 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
118 Suranaree University of Technology, Nakhon Ratchasima, Thailand
119 Technical University of Košice, Košice, Slovakia
120 Technical University of Split FESB, Split, Croatia
121 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow,
Poland
122 The University of Texas at Austin, Physics Department, Austin, Texas, United States
123 Universidad Autónoma de Sinaloa, Culiacán, Mexico
124 Universidade de S˜ao Paulo (USP), S˜ao Paulo, Brazil
125 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
126 Universidade Federal do ABC, Santo Andre, Brazil
127 University of Houston, Houston, Texas, United States
128 University of Jyväskylä, Jyväskylä, Finland
129 University of Liverpool, Liverpool, United Kingdom
130 University of Tennessee, Knoxville, Tennessee, United States
131 University of the Witwatersrand, Johannesburg, South Africa
132 University of Tokyo, Tokyo, Japan
133 University of Tsukuba, Tsukuba, Japan
134 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
135 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
136 Universit`a degli Studi di Pavia and Sezione INFN, Pavia, Italy
137 Universit`a di Brescia and Sezione INFN, Brescia, Italy
138 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
139 Variable Energy Cyclotron Centre, Kolkata, India
140 Warsaw University of Technology, Warsaw, Poland
141 Wayne State University, Detroit, Michigan, United States

Page 30
30
ALICE Collaboration
142 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
143 Yale University, New Haven, Connecticut, United States
144 Yonsei University, Seoul, Republic of Korea
145 Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms,
Germany