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Abstract. The class imbalanced problem occurs in various disciplines when one 
of target classes has a tiny number of instances comparing to other classes. A 
typical classifier normally ignores or neglects to detect a minority class due to 
the small number of class instances. SMOTE is one of over-sampling 
techniques that remedies this situation. It generates minority instances within 
the overlapping regions. However, SMOTE randomly synthesizes the minority 
instances along a line joining a minority instance and its selected nearest 
neighbours, ignoring nearby majority instances. Our technique called Safe-
Level-SMOTE carefully samples minority instances along the same line with 
different weight degree, called safe level. The safe level computes by using 
nearest neighbour minority instances. By synthesizing the minority instances 
more around larger safe level, we achieve a better accuracy performance than 
SMOTE and Borderline-SMOTE. 
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1   Introduction 

A dataset is considered to be imbalanced if one of target classes has a tiny number of 
instances comparing to other classes. In this paper, we consider only two-class case 
[5], [17]. The title of a smaller class is a minority class, and that of a bigger class is a 
majority class. The minority class includes a few positive instances, and the majority 
class includes a lot of negative instances. 

In many real-world domains, analysts encounter many class imbalanced problems, 
such as the detection of unknown and known network intrusions [8], and the detection 
of oil spills in satellite radar images [13]. In these domains, standard classifiers need 
to accurately predict a minority class, which is important and rare, but the usual clas-
sifiers seldom predict this minority class. 

Strategies for dealing with the class imbalanced problem can be grouped into two 
categories. One is to re-sample an original dataset [11], [14], [15], either by over-
sampling a minority class or under-sampling a majority class until two classes are 
nearly balanced. The second is to use cost sensitive learning by assigning distinct 
costs to correctly classified instances or classifications errors [7], [9], [16]. 
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Table 1. A confusion matrix for a two-class imbalanced problem 

 Predicted Positive Predicted Negative 
Actual Positive TP FN 
Actual Negative FP TN 

 
The performance of classifiers is customarily evaluated by a confusion matrix as 

illustrated in Table 1. The rows of the table are the actual class label of an instance, 
and the columns of the table are the predicted class label of an instance. Typically, the 
class label of a minority class set as positive, and that of a majority class set as nega-
tive. TP, FN, FP, and TN are True Positive, False Negative, False Positive, and True 
Negative, respectively. From Table 1, the six performance measures on classification; 
accuracy, precision, recall, F-value, TP rate, and FP rate, are defined by formulae in 
(1)-(6). 

Accuracy = (TP + TN) / (TP + FN + FP + TN) . (1) 

Recall = TP / (TP + FN) . (2) 

Precision = TP / (TP + FP) . (3) 

F-value = ((1 + β)2⋅Recall⋅Precision) / (β2⋅Recall + Precision) . (4) 

TP Rate = TP / (TP + FN) . (5) 

FP Rate = FP / (TN + FP) . (6) 

The objective of a classifier needs to aim for high prediction performance on a mi-
nority class. Considering the definition of accuracy, if most instances in a minority 
class are misclassified and most instances in a majority class are correctly classified 
by a classifier, the accuracy is still high because the large number of negative in-
stances influences the whole classification result on accuracy. Note that precision and 
recall are effective for this problem because they evaluate the classification rates  
by concentrating in a minority class. In addition, F-value [3] integrating recall and 
precision, is used instead of recall and precision. Its value is large when both recall 
and precision are large. The β parameter corresponding to relative importance of 
precision and recall is usually set to 1. Furthermore, ROC curve, The Receiver  
Operating Characteristic curve, is a standard technique for summarizing classifier 
performance over a range of tradeoffs between TP rate, benefits, and FP rate, costs. 
Moreover, AUC [2], Area under ROC, can also be applied to evaluate the perform-
ance of a classifier. 

The content of this paper is organized as follows. Section 2 briefly describes re-
lated works for handling the class imbalanced problem. Section 3 describes the details 
of our over-sampling technique, Safe-Level-SMOTE. Section 4 shows the experimen-
tal results by comparing Safe-Level-SMOTE to SMOTE and Borderline-SMOTE. 
Section 5 summarizes the paper and points out our future works. 
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2   Related Works 

Re-sampling is a preprocessing technique which adjusting the distribution of an im-
balanced dataset until it is nearly balanced, before feeding it into any classifiers. The 
simplest re-sampling techniques are a random over-sampling technique [14] and a 
random under-sampling technique [14]. The former randomly duplicates positive 
instances into a minority class, while the latter randomly removes negative instances 
from a majority class. Both techniques are sampling the dataset until the classes are 
approximately equally represented. However, the random over-sampling technique 
may cause the overfitting problem [19] because the technique may create the decision 
regions smaller and more specific. The random under-sampling technique encounters 
the problem that diminishing some important information of a dataset. For handling 
these problems, improved re-sampling techniques were studied and are described as 
follows. 

Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W. (2002) designed the State of the 
Art over-sampling technique, namely SMOTE, Synthetic Minority Over-sampling 
TEchnique [4]. It over-samples a minority class by taking each positive instance and 
generating synthetic instances along a line segments joining their k nearest neighbours 
in the minority class. This causes the selection of a random instance along the line 
segment between two specific features. The synthetic instances cause a classifier to 
create larger and less specific decision regions, rather than smaller and more specific 
regions. More general regions are now learned for positive instances, rather than those 
being subsumed by negative instances around them. The effect is that decision trees 
generalize better. However, SMOTE encounters the overgeneralization problem. It 
blindly generalizes the region of a minority class without considering a majority class. 
This strategy is particularly problematic in the case of highly skewed class distribu-
tions since, in such cases, a minority class is very sparse with respect to a majority 
class, thus resulting in a greater chance of class mixture. 

Han, H., Wang, W., Mao, B. (2005) designed the improvement of SMOTE, namely 
Borderline-SMOTE [10]. The authors divided positive instances into three regions; 
noise, borderline, and safe, by considering the number of negative instances on k 
nearest neighbours. Let n be the number of negative instances among the k nearest 
neighbours. The three regions are defined by the definitions in Table 2. Borderline-
SMOTE uses the same over-sampling technique as SMOTE but it over-samples only 
the borderline instances of a minority class instead of over-sampling all instances of 
the class like SMOTE does. Unfortunately, considering two positive instances those n 
values are equal to k and k-1 for the first and second instances consecutively. These 
instances are not obviously difference but they are divided into the different regions; 
noise and borderline. The first instance is declined but the second instance is selected 
for over-sampling. 

Table 2. The definitions of noise, borderline, and safe regions in Borderline-SMOTE 

Region Definition 
Noise n = k 

Borderline ½k ≤ n < k 
Safe 0 ≤ n < ½k 
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3   Safe-Level-SMOTE 

Based on SMOTE, Safe-Level-SMOTE, Safe-Level-Synthetic Minority Over-
sampling TEchnique, assigns each positive instance its safe level before generating 
synthetic instances. Each synthetic instance is positioned closer to the largest safe 
level so all synthetic instances are generated only in safe regions. 

The safe level (sl) is defined as formula (7). If the safe level of an instance is close 
to 0, the instance is nearly noise. If it is close to k, the instance is considered safe. The 
safe level ratio is defined as formula (8). It is used for selecting the safe positions to 
generate synthetic instances. 

safe level (sl) = the number of a positive stances in k nearest neighbours . (7) 

safe level ratio = sl of a positive instance / sl of a nearest neighbours . (8) 

Safe-Level-SMOTE algorithm is showed in Fig. 1. All variables in this algorithm 
are described as follows. p is an instance in the set of all original positive instances D. 
n is a selected nearest neighbours of p. s included in the set of all synthetic positive 
instances D' is a synthetic instance. slp and sln are safe level of p and safe level of n 
respectively. sl_ratio is safe level ratio. numattrs is the number of attributes. dif is the 
difference between the values of n and p at the same attribute id. gap is a random 
fraction of dif. p[i], n[i], and s[i] are the numeric values of the instances at ith attribute. 
p, n, and s are vectors. slp, sln, sl_ratio, numattrs, dif, and gap are scalars. 

After assigning the safe level to p and the safe level to n, the algorithm calculates 
the safe level ratio. There are five cases corresponding to the value of safe level ratio 
showed in the lines 12 to 28 of Fig. 1. 

The first case showed in the lines 12 to 14 of Fig. 1. The safe level ratio is equal to 
∞ and the safe level of p is equal to 0. It means that both p and n are noises. If this 
case occurs, synthetic instance will not be generated because the algorithm does not 
want to emphasize the important of noise regions. 

The second case showed in the lines 17 to 19 of Fig. 1. The safe level ratio is equal 
to ∞ and the safe level of p is not equal to 0. It means that n is noise. If this case oc-
curs, a synthetic instance will be generated far from noise instance n by duplicating p 
because the algorithm want to avoid the noise instance n. 

The third case showed in the lines 20 to 22 of Fig. 1. The safe level ratio is equal to 
1. It means that the safe level of p and n are the same. If this case occurs, a synthetic 
instance will be generated along the line between p and n because p is as safe as n. 

The fourth case showed in the lines 23 to 25 of Fig. 1. The safe level ratio is 
greater than 1. It means that the safe level of p is greater than that of n. If this case 
occurs, a synthetic instance is positioned closer to p because p is safer than n. The 
synthetic instance will be generated in the range [0, 1 / safe level ratio]. 

The fifth case showed in the lines 26 to 28 of Fig. 1. The safe level ratio is less 
than 1. It means that the safe level of p is less than that of n. If this case occurs, a 
synthetic instance is positioned closer to n because n is safer than p. The synthetic 
instance will be generated in the range [1 - safe level ratio, 1]. 
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After each iteration of for loop in line 2 finishes, if the first case does not occurs, a 
synthetic instance s will be generated along the specific-ranged line between p and n, 
and then s will be added to D'.  

After the algorithm terminates, it returns a set of all synthetic instances D'. The al-
gorithm generates |D| - t synthetic instances where |D| is the number of all positive 
instances in D, and t is the number of instances that satisfy the first case. 

 
Algorithm: Safe-Level-SMOTE 
Input: a set of all original positive instances D 
Output: a set of all synthetic positive instances D' 
  1.  D' = ∅ 
  2.  for each positive instance p in D { 
  3.     compute k nearest neighbours for p in D and 
          randomly select one from the k nearest neighbours, call it n 
  4.     slp = the number of positive stances in k nearest neighbours for p in D 
  5.     sln = the number of positive stances in k nearest neighbours for n in D 
  6.     if (sln ≠ 0) {  ; sl is safe level. 
  7.        sl_ratio = slp / sln  ; sl_ratio is safe level ratio. 
  8.     } 
  9.     else { 
10.        sl_ratio = ∞ 
11.     } 
12.     if (sl_ratio = ∞ AND slp = 0) {  ; the 1st case 
13.        does not generate positive synthetic instance 
14.     } 
15.     else { 
16.        for (atti = 1 to numattrs) {  ; numattrs is the number of attributes. 
17.           if (sl_ratio = ∞ AND slp ≠ 0) {  ; the 2nd case 
18.              gap = 0 
19.           } 
20.           else if (sl_ratio = 1) {  ; the 3rd case 
21.              random a number between 0 and 1, call it gap 
22.           } 
23.           else if (sl_ratio > 1) {  ; the 4th case 
24.              random a number between 0 and 1/sl_ratio, call it gap 
25.           } 
26.            else if (sl_ratio < 1) {  ; the 5th case 
27.              random a number between 1-sl_ratio and 1, call it gap 
28.           } 
29.           dif = n[atti] - p[atti] 
30.           s[atti] = p[atti] + gap·dif 
31.        } 
32.        D' = D' ∪ {s} 
33.     } 
34.  } 
35.  return D' 

Fig. 1. Safe-Level-SMOTE algorithm 
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4   Experiments 

In our experiments, we use four performance measures; precision, recall, F-value, 
and AUC, for evaluating the performance of three over-sampling techniques; Safe-
Level-SMOTE, SMOTE, and Borderline-SMOTE. The value of β in F-value is set to 
1 and the value of k in all over-sampling techniques are set to 5. The performance 
measures are evaluated through 10-fold cross-validation. Three classifiers; decision 
trees C4.5 [18], Naïve Bayes [12], and support vector machines (SVMs) [6], are ap-
plied as classifiers in the experiments. We use two quantitative datasets from UCI 
Repository of Machine Learning Databases [1]; Satimage and Haberman, illustrated 
in Table 3. The first to last column of the table represents the dataset name, the num-
ber of instances, the number of attributes, the number of positive instances, the num-
ber of negative instances, and the percent of a minority class, respectively. 

The experimental results on the two datasets are illustrated in Fig. 2. The x-axis in 
these figures represents the over-sampling percent on a minority class.  The y-axis in 
these figures represents the four performance measures; precision, recall, F-value, 
and AUC, in order from Fig. 2 (a) to Fig. 2 (d). In these figures, ORG, SMOTE, 
BORD, and SAFE are the label of the original dataset, SMOTE, Borderline-SMOTE, 
and Safe-Level-SMOTE, respectively. 

For Satimage dataset, we select the class label 4 as the minority class and merge 
the remainder classes as the majority class because we only study the two-class im-
balanced problem. The results on F-value using decision trees C4.5 are illustrated in 
Fig. 2 (c). It is apparent that F-value is improved when over-sampling percent on the 
minority class is increased. Moreover, Safe-Level-SMOTE achieved higher F-value 
than SMOTE and Borderline-SMOTE. The results on recall using Naïve Bayes are 
illustrated in Fig. 2 (b). Analyzing the figure, Borderline-SMOTE gains the higher 
performance on recall, while Safe-Level-SMOTE comes second. 

For Haberman dataset, the minority class is about one quarter of the whole dataset. 
The results on precision using decision trees C4.5 are illustrated in Fig. 2 (a). The 
performance of Safe-Level-SMOTE is the best performance on precision. The results 
on AUC using SVMs are illustrated in Fig. 2 (d). Analyzing the figure, Safe-Level-
SMOTE and SMOTE show similar performance on AUC. In addition, Borderline-
SMOTE shows poor performance on higher percent. 

For all experimental results, Safe-Level-SMOTE obviously achieve higher per-
formance on precision and F-value than SMOTE and Borderline-SMOTE when deci-
sion trees C4.5 are applied as classifiers. Borderline-SMOTE only achieve a better 
performance on recall when Naive Bayes are applied as classifiers since the inde-
pendent assumption on the borderline region is valid. Moreover, the SVMs show no 
improvement in all over-sampling techniques. Theses causes by the convex regions of 
all over-sampling techniques are similar. Therefore, the results of hyperplanes in 
SVMs are indistinguishable. 

Table 3. The descriptions of UCI datasets in the experiments 

Name Instance Attribute Positive Negative % Minority 
Satimage 6,435 37 626 5,809 9.73 
Haberman 306 4 81 225 26.47 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 2. The experimental results; (a) Precision evaluated by applying C4.5 with Haberman, 
(b) Recall evaluated by applying Naïve Bayes with Satimage, (c) F-value evaluated by 
applying C4.5 with Satimage, (d) AUC evaluated by applying SVMs with Haberman 

5   Conclusion 

The class imbalanced problem has got more attentions among data miners. There are 
many techniques for handling such problem. However, traditional data mining tech-
niques are still unsatisfactory. We present an efficient technique called Safe-Level-
SMOTE to handle this class imbalanced problem. 

The experiments show that the performance of Safe-Level-SMOTE evaluated by 
precision and F-value are better than that of SMOTE and Borderline-SMOTE when 
decision trees C4.5 are applied as classifiers. This comes from the fact that Safe-
Level-SMOTE carefully over-samples a dataset. Each synthetic instance is generated 
in safe position by considering the safe level ratio of instances. In contrast, SMOTE 
and Borderline-SMOTE may generate synthetic instances in unsuitable locations, 
such as overlapping regions and noise regions. We can conclude that synthetic in-
stances generated in safe positions can improve prediction performance of classifiers 
on the minority class. 

Although the experimental results have provided evidence that Safe-Level-SMOTE 
can be successful classified numeric datasets in the class imbalanced problem, there are 
several future works left to be studied in this line of research. First, different definitions 
to assign safe level would be valuable. Second, additional methods to classify datasets 
which have nominal attributes are useful. Third, automatic determination of the amount 
of synthetic instances generated by Safe-Level-SMOTE should be addressed. 
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