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1 Introduction

1.1 Background

Ontologies provide means for explicating concepts of the world and relationships
between them. This is done by conceptualizing knowledge about the world into
an abstract, simplified view that we wish to use for some purpose. Formally an
ontology is an explicit specification of a conceptualization [Gru93|: it thus specifies
explicitly a representation of a piece of conceptualized knowledge. In order to do
this, ontologies employ notions of class hierarchy and inheritance of properties along
a class hierarchy. The subclasses of a superclass inherit properties defined for the

superclass. In addition, subclasses may have additional properties.

However, ontologies evolve over time. Ontologies are altered to correct errors, to
accommodate new information, or to adjust the representation of the domain as the
world changes [HH00]. Hence there is a strong need to revise ontologies. As changes
in the ontology are inevitable there must be a strategy for managing a complete
ontology version history. There are occasions where differences in the ontology
versions disable the ability of an application to work properly. For instance, if the
old version of the ontology is used for annotating resources until some time ¢; and
a new revised ontology is used after ¢; it is impossible to retrieve all the resources if

the new version is not backward-compatible or aligned with the earlier one.

According to research on industrial strength ontology management [DWMO01], no
current ontology tools support versioning. The tools in the research were Ontolin-
gua/Chimaera [FFR97, MFR"00|, Protégé/PROMPT [GEF™99, NM99] and We-
bOnto/Tadzebao [Dom98|. A strategy, methods, and a systematic implementation

of versioning tools are needed to support ontology evolution.

1.2 A Motivating Example

We introduce a motivating example by describing an ontology where changes occur
as a function of time. Assume a location ontology that defines different locations and
places and their relationships. This ontology describes the state of a simple world
during a particular period of time, drawn as a graph. Vertices in the graph describe
places and the edges describe a part of relation. For example Finland is a part of
Europe. Furthermore, also Sweden and Norway are parts of Furope. Figure 1 depicts

some of these relationships in an intuitive way; for example a certain part of Russia



'Finland | Sweden | Norway

Petsamo Laplan

Figure 1: Outline of the “world” before The World War II.

Finland

Russia

| Lapland | | Pechenga

Figure 2: Outline of the modified “world” after The World War II.

is part Furope and an other part is part of Asia. In the new version in Figure 2
Petsamo has the new name Pechenga and it is part of Russia as a result of the World
War II. The question is what should be done with the concept of Petsamo that had
a part of -relation with the concept of Finland in the previous revision. There might
be some entities that are annotated using the previous ontology. Assume for example
that there is a record in a museum collection about a hat — for example about a
“Kolkkahattu” — that has been annotated using the concept Petsamo because it has
been manufactured in Petsamo during the year 1929. If the concept Petsamo is
deleted, the new ontology cannot be used anymore for querying the old data. The
concept of Russta is also problematic as its geographical area has been part of Soviet

Union during a long period of time in the 20th Century.



1.3 The Research Problem

The research problem in this thesis is how to enable reasoning about a complete
ontology version history in a web-based context — i.e. what support would be
needed for the reasoning to be possible. Recalling that no current ontology editor
supports ontology versioning, even a basic set of tools as a framework will help

developers and users of an ontology. The main problem is stated as follows:

How to keep track of changes over time of an evolving ontology in order to

enable reasoning based on a complete ontology version history?

The research problem is thus a layered, yet a narrow cross-section of ontology ver-
sioning, consisting of tightly interrelated areas. Enabling reasoning over ontology

version history raises the following subproblem:

How should and can different ontology versions and

their evolved elements be represented?

Furthermore, provided that ontology versions and their elements have a unique

identifier, another subproblem is:

How can temporal knowledge about concepts be used in inference?

1.4 The Method Chosen

In this thesis the method to solve ontology versioning problems is a combination of
different steps. Firstly, ontology versioning is studied by describing and discussing
major requirements and the current research results. Furthermore, in order to build
a basic framework, the nature of ontology changes are discussed and the conse-
quences of a change are examined and formalized. Finally, an ontology versioning
framework is presented and implemented as a set of ontologies and programs that
can be used to automate and enable ontology versioning and reasoning using the

complete versioning history.

1.5 Organization of This Thesis

In this thesis the problem of ontology versioning is identified, formalized and pre-
sented through theory, motivating examples and by exploring previous research find-

ings. Chapter 2 presents ontology development and ontology evolution and discusses
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identification, change operations and the role of time: in short how and what should
be versioned. To enable ontology versioning, an ontology versioning framework is
presented in Chapter 3 and implemented as a set of ontologies and programs pre-
sented in Chapter 4.



2 Evolving Ontologies

2.1 Ontology Development and Change

Every single class addition, modification, hierarchy alteration, even the smallest
change operation changes the ontology and a new revision of the ontology is formed
— and in addition, there can be multiple changes between two revisions. This is
of course acceptable since as the picture of what the model of the domain should
look like gets clarified, it is natural to try and express it in the ontology as well. An
ontology is an explicit specification of a conceptualization [Gru93] and hence if the
conceptualization changes, the ontology must also change to match the conceptual-

ized domain.

There are many ways [Kle02] in which the ontology can change. Firstly, the ontology
can change silently; the previous version is replaced by the new version without any
formal notification and only the new version can be accessed. Secondly, the ontology
can change visibly. Then only the new version is accessible; the previous version is
replaced by the new version. Moreover, the ontology can again be visibly changed,
but now both the new version and the previous version are accessible. Finally, when
the ontology is visibly changed, both the new version and the previous version may
be in use and are accessible, and there is an explicit specification of the level of

compatibility between concepts of the new version and the previous version.

There are several consequences of a change of an ontology O,:

1. Some data conforms to a version Ov; of the ontology O,. When the ontology
changes and a new version takes place, the data may be interpreted differently

or may use unknown terminology.

2. If there are ontologies O1,...,0, ; that use the changed ontology O,,, then
there are dependencies between the ontologies [Kor04], and a change may

invalidate the dependent ontologies.
3. Applications using the ontology O, might not work with the changed ontology.

4. Reasoning rules possibly do not work properly with the new version of the

ontology O,, anymore.

In order to solve the above problems, multiple variants — i.e. revisions — of an
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ontology must be supported. Creating new revisions is called ontology versioning

and it is defined the following way:

Ontology Versioning A method to keep the relation between new revisions of
ontologies, the existing revisions of ontologies, and the data that conforms to
them consistent [Kle01].

To understand how an ontology evolves, the development process of an ontology
must first be examined. It is also necessary to identify different types of ontologies,
how likely they are to change, and what forms the changes may take. Developing

an ontology includes the following steps [NMO01]:

1. defining classes in the ontology,
2. arranging the classes in a taxonomic, usually subclass-superclass hierarchy,
3. defining properties and describing allowed values for these properties,

4. filling in the values for properties for instances.

This approach sees the ontology development merely as a waterfall and not as a
spiral process. It is likely that an ontology developer, after having made the initial
version of the ontology, will at a later phase modify the class hierarchy, fill more
values, delete some unsuitable classes, split some classes into separate classes or do
some other editing operations he wishes to. A more realistic approach would thus be
to see the ontology development process as a continuous work, as ontology evolution.
Spiral nature of ontology development cycle and versioning can be combined into

the notion of ontology evolution:

Ontology Evolution The ability to manage ontology changes and their effects by

creating and maintaining different variants of the ontology [NK03].

This ability to version an ontology consists of methods to distinguish and recog-
nize ontology versions, specifications of relationships between versions, update and
change procedures for ontologies, and access mechanisms that combine different
versions of an ontology and the corresponding data [NK03]. However, it is not self-
evident how ontologies should be versioned, different versions recognized or how the
relationships between revisions of ontologies should be specified. Different aspects

of version relation between ontologies [KFKOO02] include for example:
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1. The difference between version relations and conceptual relations inside an

ontology.

2. Possible discrepancy between changes in the specification and changes in the

conceptualization.

3. Packaging of changes, i.e., the way in which updates are applied to an ontology.

Another approach is to examine differences between relations inside the ontology
and relations between versions of the ontology [Kle02]. Ontologies consist of a set of
classes c1, a set of properties p; and a set of instances 4;, that is, definitions of them
and axioms about them. The classes, properties, instances and axioms are related
to each other and together they form a model of a world [Kle02|, that is, e.g. a
version Qv; of the model. A change creates a new version Qu, of an ontology O. In
addition, a change also creates a version relation between the definitions of classes,
properties and instances in the original version Ov; of the ontology and those in the

new version Ov, [Kle02].

The relations between concepts inside an ontology O, e.g. between a class A and a
class B, are identified [K1e02] to be fundamentally different from the version relations
between two versions of a concept, e.g. between a class Ov;.A and a class Ovy. A
defined in ontology versions Ov; and Ov,. Relations inside an ontology O are purely
conceptual relations in the modeled domain. However, relations between classes
defined in two ontology versions Ov; and Owvy describe meta-information about the
change of the concept. Nevertheless, the two versions (e.g. Ov;.A and Owvs.A) of a
concept have a conceptual relation also after a change. This means that although
the update relation itself is not a conceptual relation, the participating versions of
a concept do have a particular conceptual, that is, a logical relation to each other
[K1e02]. It is vital to identify these logical relations between the concepts in order

to enable reasoning about an ontology version history.

Moreover, different ontology revisions can have a different status like working draft,
final, published and so on. They can also be unofficial versions for testing purposes,
that can cause problems. Unless it is possible to explicate whether a revision is
official, any agents or query systems that come across the revision will assume that
they can use it in place of the old one, and unintended inferences may result [HHL99|.

Three methods are suggested [HHOO] to prevent this:

1. Agents will only use the revision as a substitute if it only adds categories or
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relations. Since such revisions will result in equivalent perspectives for existing

data sources, it does not matter if it is an official revision [HHO00|.

2. A revision must be located on the same server and on the same path as the
ontology it revises. This guarantees that the owner has made the revision,
but makes it difficult to move the location of an ontology once it has been
used [HHO00]. Following this approach, e.g. a revision “v1” is found on a server
at location http://ontologies.org/musicalontology/v1l and “v2” on the same
server http://ontologies.org/musicalontology/v2. Another, slightly different
approach is taken by W3C [SWMO04]. W3C uses an approach where a name-
space includes the time stamp in the front of the ontology name, embedded in
the directory structure. Our example would then be
http:/ /ontologies.org/2004 /03 /musicalontology.

3. The original ontology must authorize the revision. This could be accomplished
by a revised-by-tag that points to the location of the revision. To use this
method, upon discovering a purported revision, a system should reload the

original ontology and see if it authorizes the revision [HHO0O].

Furthermore, a possibility to undo a change is needed in many cases [SMMS02]. For
example, if an ontology engineer fails to understand the consequences of the change
that forms a new version Ovs, an undo-operation restores the original version Owv;.
Undo is also useful when an ontology is changed for experimental purposes and
different possible directions of the development are tried. Moreover, when working
on an ontology in a distributed environment, ontology engineers may have different
ideas about how the ontology should be changed [SMMS02]. An undo-operation
enables the reversion to the previous version of the ontology in the case where the

new direction is not satisfying the other members of the group.

2.2 How and What to Version

Ontologies are evolving but since there are many domains and different approaches
to what the ontology should look like, there must be differences also in the way a
change occurs. First of all, changes can be either 1) conceptual changes, where the
way a domain is conceptualized changes, or 2) explication changes, where the spec-

ification of the conceptualization changes without changing the conceptualization
itself [VIBCS97].
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Changes also occur differently in different types of ontologies. They are all likely
to be revised but not in the same way or with the same frequency. The effect
is also different, depending on the type of the ontology. In order to analyze the
requirements for a versioning scheme, an analysis on different types of ontologies,

including a discussion about the change within them, is provided next.

Domain ontologies capture the knowledge valid for a particular type of domain
(e.g. electronic, medical, mechanic, digital domain) [Fen00]. For indexing
cultural content there are, for instance, Functional Requirements for Bibli-
ographic Records (FRBR) [Sau98|, Categories for the Description of Works
of Art (CDWA) [For00], Definition of the CIDOC object-oriented Concep-
tual Reference Model [Doe03| and IconClass [vdB95]. Domain ontologies can
change frequently: the computer industry, for instance, produces new types of
computer parts and new combinations of them all the time. If the evolution
of the domain is not captured as new revisions of the ontology occur and if
the relation to previous versions is not clear, then the maintenance of domain

knowledge becomes very hard if not impossible.

Metadata ontologies like the Dublin Core provide a vocabulary for describing the
content of on-line information sources [Fen00]. If metadata is widely accepted,
describing, for example, terms like author, date, organization, education, and
so on, metadata might not change that often. But since these simple metadata
ontologies are in some cases also widely used — like Dublin Core is — the change
in them has to be given more attention. Furthermore, also changes in the
Uniform Resource Identifier (URI) [BLFM98| can cause troubles. For example,
the RDF Schema specification [BG00| recommends that “a new namespace
URI should be declared whenever an RDF schema is changed”. Following this
recommendation, the Dublin Core working group changed the URI of their
metadata term definition as they published a new version, causing a lot of
problems. Later the Dublin Core steering committee has decided to use one
URI for all the versions of the Dublin Core metadata set [KFO01].

Generic or common sense ontologies aim at capturing general knowledge about
the world, providing basic notions and concepts for things like time, space,
state, event, process etc. As a consequence, they are valid across several
domains. For example, an ontology about mereology (part-of relations) is ap-
plicable in many technical domains [Fen00]. Common sense ontologies have

the possibility to be used on a really large scale since they provide concepts
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for different domains. This means that changes in them can break up mas-
sive amounts of applications and other ontologies that are using these generic

ontologies.

Representational ontologies do not commit themselves to any particular domain
of interest. Such ontologies provide representational entities without stating
what should be represented. A well-known representational ontology is the
Frame Ontology, which defines concepts such as frames, relations (e.g. one-to-
many-relation), properties, and property constraints allowing the expression
of knowledge in an object-oriented way [Fen00]. Change in representational
ontologies is hard to express. What has really changed if for example a class
“slot” is renamed “property”? Changes in representational ontologies can mis-
lead the user for some time and can make it impossible to express certain

issues in the new version that were expressible before.

Task and method ontologies provide terms specific for particular tasks (e.g. hy-
pothesis belongs to the diagnosis task ontology) or terms specific to particular
methods. Task and method ontologies provide a reasoning point of view on

domain knowledge [Fen00|.

The above discussion of types of ontologies and analysis of changes serve as a basis for
a discussion on the General Thesaurus in Finnish, (Yleinen Asiasanasto, YSA) and
its future ontological version, the Finnish General Ontology (Yleinen Suomalainen
Ontologia, YSO). According to an interview [YSAO3] that was made as a part of this
thesis, YSA is a combination of different categories: it aims to cover all domains. It
is a generic vocabulary maintained by Helsinki University Library in Finland. YSA
contains approximately 14,000 indexing terms (or descriptors) and approximately
3000 non-descriptors. Non-descriptors are synonyms for indexing terms but they
are not suggested for use — instead there is a reference from a non-descriptor to the
corresponding indexing term. In addition there are currently about 1700 suggestions

for new terms to be authorized.

According to the interview, there are currently around 30 new concepts — or in this
case words — added each year to the thesaurus but normally no deletions. Modifica-
tions of concepts include cases where the form of a descriptor changes, or example,
from singular to plural or from plural to singular. Moreover, a literal representation
can change, for example, when a fixed phrase is changed to a compound. Further-

more, a non-descriptor can become a descriptor and vice versa. Identified problems
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in developing YSA include balancing between different domains and handling of spe-
cific terms, short-term phenomena, entrenchment of the form of a term, historical

terms and those situations where none of the reference books list the term.

One of the major problems in YSA is the change: how to represent those terms that
have been in use for a certain period of time, but that are not used anymore? For
example, a fixed-phrase “elektroniset asiakirjat” has been in use until the beginning
of year 2004 and it is now deprecated. The term “sdhkoiset asiakirjat” is a more
modern version of this term. Another example is “kuntayhtymét” that has replaced
the prior term “kuntainliitot” since year 1993. Currently this temporal information
is only given in notes as a free text, which makes machine-based reasoning about

temporality of these concepts very hard if not impossible.

Discussions of ontology evolution, version relations and different ontology types usu-
ally only concern versioning on the ontology level. Furthermore, versioning implicitly
also includes classes, properties, relations and instances described in ontologies. It
is important to be able to track movements and changes of concepts and changes

between versions and distinguish properties of version relations like the following
[K1e02]:

1. Ewolution relation is the relation that specifies what ontological definition (e.g.
a class Ov;.A) in one version is changed into what ontological definition (e.g.

a class Ovy.A) in another version.

2. Transformation is the actual change as a specification of what has actually
changed in an ontological definition, specified by a set of change operations,

e.g. change of a restriction on a property, addition of a class, removal of a
property.

3. Conceptual relation is the relation between constructs in the two versions Ov;
and Owvs of an ontology O. The relations can be specified e.g. by equivalence

relations, subsumption relations, or logical rules.

4. Descriptive metadata like date, author, and intention of the update describes

the when, who and why of the change.

5. Scope is a description of the context in which the update is valid. In its
simplest form, this can consist of the date when the change occurs in the real

world. The date in the descriptive metadata can e.g. be called the transaction
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date. More extensive descriptions of the scope, in various degrees of formality,

are also possible, like a validity period of a concept.

Due to the nature of ontologies and the wide variety of change types, ontology ver-
sioning can be seen as a collection of requirements generated by different viewpoints
to the area. This leads to a need to specify the requirements of a versioning and
evolution scheme in a more detailed way. The major requirements are identified

below.

Identification for every use of a concept or a relation, a versioning framework
should provide an unambiguous reference to the intended definition [Kle01]. In
other words, ontology metadata is required for providing identifying knowledge
about each ontology, such as author, publication date or title. The Dublin Core

Metadata Element Set, for example, can be used for the purpose [OWLO03|.

Change tracking a versioning framework should make the relation of one version

of a concept or relation to the other versions of that construct explicit [Kle01].

Transparent translating a versioning framework should — as far as possible —
automatically perform conversions from one version to another, to enable

transparent access [Kle01].

However, ontologies evolve over time and the temporal nature of concepts need to
be taken into account. As a result, the list of requirements for ontology versioning

should be extended by the following requirement:

Life cycle creation a versioning framework should keep track and help creation of
the concept life cycles, that is, temporal intervals expressing validity periods
of concepts or relations. This concept life cycle is sometimes called also valid
context [KDFOO02|.

These requirements are discussed in Chapter 3, where an ontology versioning frame-
work is outlined.
2.3 Identification of a Revision

Revisions need to be distinguished and identified in order to provide the identifica-

tion for every use of an entity. These entities include classes, relations, properties



13

Version Ov; Version Ov,
Europe Europe
[Finland] [Sweden] [Norway| [Russial [Finland] [Sweden | [Norway| [Russial
[Petsamo | Lapland Lapland ‘ ‘ Pechenga

Figure 3: Ontology versions Ov; (before the World War IT) and Owv, (after the World
War II).

and instances. For the identification to be clear, a unique reference to the intended
definition of the concept is needed [Kle0O1]. In other words, a reference to a concept
in a certain version of the ontology has to be provided with a description about what
it is and what version of the ontology is in question, who has altered it and so on.

This description can be provided as a set of metadata elements that provide means
for tracking down a certain revision of the ontology. In this thesis this metadata is
called revision metadata. Since description of a resource is a vital question, many
different metadata approaches have been suggested. One of the most widely used
approach is Dublin Core (DC), which can be used as a basis also when creating
the metadata element set for evolving ontologies. Furthermore, OWL (Web Ontol-
ogy Language) [BvHH"04] provides a few elements for the purpose. Table 1 lists
the revision metadata elements selected and developed as a part of this thesis and
provides a description for each of them. The source — DC or OWL - is given in
parenthesis. The revision metadata elements together form a basis for a Revision

Ontology, experimented later in Chapter 4.1.

Metadata can be described either outside the resource or provided as a part of the
resource. When discussing ontologies and the requirement of identification the latter
seems to be the right choice since when an ontology is published in some distributed
network like the World Wide Web (WWW), the identification cannot rely on a
centralized metadata server approach. In order to make the ontology be machine-
processable, it has to be defined using some formal way. Expressing the metadata

by an ontology is discussed in Chapter 4.1.

Another aspect to identification is whether the identification of the ontology also

identifies the concepts defined in it. This seems to be a natural way of thinking.
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Metadata element

Description

filename

status

author
backwardCompatibleWith
creator

date

dependsOn
description

format

identifier
incompatibleWith
language
priorVersion
publisher

rights

type
relation

contributor
coverage
source
subject
title

versionInfo

versionTag

Filename of the ontology

Status of the ontology: draft, final or published
Author of the ontology (DC)

Backward compatible with another version (OWL)
Creator of the ontology (DC)

Last modification date of the ontology (DC)
Ontology or ontologies that this ontology depends on
Free description of the ontology (DC)

Format of the ontology, for example “text/xml” (DC)
Identifier of the ontology (DC)

Incompatible with another version

Language of the ontology (DC)

Prior version of the ontology (OWL)

Publisher of the ontology (DC)

Information about rights held in and over the ontol-
ogy (DC)

Type of the ontology (DC)

A reference to a related ontology (DC)

An entity responsible for making contributions to the
content of the ontology (DC)

The extent or scope of the content of the ontology
(DC)

A Reference to a resource from which the present on-
tology is derived (DC)

Subject of the ontology (DC)

Title of the ontology (DC)

Revision number of the ontology (OWL)

Version tag of the ontology

Table 1: The Revision Ontology with a description of each element.
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If a concept (class, property, relation or instance) is included in the ontology, the
identification of the concept can be derived from the ontology identification. Part
of the process of identification of a concept is resolving the identity of a concept. If
something changes within a concept then the question is how do we decide whether
the concept still has the same identity. For example, is “X” the same as “Y”, where
“X” represents something at one time, and "Y" represents something at a later time?
This can be called the problem of change, or the problem of identity over time. The
well known Leibniz principle states that

Definition X is the same as Y iff all the properties and relations of X and Y are
equal [ME93|.

Thus, whatever is true of X is also true of Y, and vice versa. In any imaginable
context, an object can be replaced by another, equal, one. The Leibniz principle is
strict and disables all possibilities for concepts X and Y to be the same but those
defined by the principle. But as a matter of fact, concepts also have another dimen-
sionality in identification. According to research made about ontological changes
[NHO7], in nearly 98% of the cases the concept that had the same name in different
ontology revisions also meant the same thing. If things look similar they probably
are such. This means that the whole concept life cycle, running through the different
revisions, can be used in the concept identification and in reasoning about concepts.
Consequences of this approach are discussed later in Chapter 2.5. Uniform Resource
Identifier (URI) has been suggested as the identifier of concepts on the WWW. A
URI is a short string of characters, which indicates a name or address that can be
used to refer to an abstract or physical resource. According to the original defini-
tion [BLFMO98], “a resource can be anything that has identity.” A URI thus uniquely
identifies a resource: if X and Y have the same URI, they are considered to be the

same.

2.4 Ontology Changes as Operations

Ontologies evolve when different types of changes occur, and a new revision is cre-
ated. When a concept in an ontology changes, it always changes in some particular
way. Changes occur, for example, when concepts — classes, properties or instances
— are added.

These change types can be seen as change operations. A change operation generates

some effect as a consequence. For instance, "add a class" inserts a class to the
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ontology, "remove an instance" deletes an instance and so on. As operations these
are atomic ones and hence not very useful in change-tracking i.e. in making the
relation of one version of a concept or relation to other versions of that entity explicit.
Thus these operations can be combined to form more covering change-operations
such as "merge concepts" or "split concepts". Different change operations can be

divided into three categories:

1. Information-preserving changes where no instance data is lost. These changes
include, for example, creations of classes and properties, attaching properties
to classes and adding a subclass-superclass links [NK03]. In other words, if a
revision only adds classes, relations, or rules, then it is backward compatible
with the original [HFLWO02, HH00).

2. Translatable changes where no instance data is lost if a part of the data is
translated into a new form. Translatable changes include changes like deletions
of classes or properties, moving a class up the class hierarchy and re-classifying
a class as an instance [NKO03].

3. Information-loss changes where it cannot be guaranteed that no instance data
is lost. In this group changes include, for example, merging classes, splitting

classes or encapsulating a set of properties into a new class [NKO03].

Translatable changes and information-loss changes are not backward compatible if
they remove any components like classes, relations or rules [HHOO0| and if there are
no other means like mappings available that define the situation after the change
has occurred and that way enable reasoning about concepts over multiple ontology
versions. Different changes have to be detected in order to enable the required
change-tracking. There are two main problems with the detection of changes in
ontologies [Kle02:

1. The abstraction level at which changes should be detected. Abstraction is
necessary to distinguish between changes in the representation that affect the
meaning, and those that do not influence the meaning. It is likely that the
same ontological definition is represented in different ways. Thus tracking the

changes in the representation alone is not sufficient.

2. Even when the correct level of abstraction is found for change detection, the
conceptual implication of such a change is not yet clear. Because of the differ-

ence between conceptual changes and explication changes, it is not possible to
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derive the conceptual consequence of a change completely on the basis of the
visible change only (i.e. the changes in the definitions of concepts and prop-
erties). Heuristics can be used to suggest conceptual consequences, but the
intention of the ontology designer determines the actual conceptual relation

between versions of concepts.

2.5 Change as a Function of Time

Ontologies change over time, meaning that time has to be given a significant role
when discussing an ontology evolution. For instance, knowing that Petsamo used to
belong to Finland, the sentence “Petsamo became part of Soviet Union September
19, 1944” implies that “Petsamo” was a part of “Finland” September 18, 1944 and
that “Petsamo” was a part of “Soviet Union(SU)” September 19, 1944. Formally this

can be expressed as follows:

PartOfFinland(“Petsamo”,1944/09/18) A — PartOfFinland (“Petsamo”,1944/09/19)
A = PartOfSU(“Petsamo”,1944/09/18) A PartOfSU(“Petsamo”,1944/09/19)

There are different theories about what time really is. One of the widely used
theories in the area of artificial intelligence says that history is linear and the future
is branching [Woo000|. But since ontology versioning is here considered as a problem
of handling past changes, only the notion of the linear history is needed. Thus
no predictions of future changes are made. Furthermore, linear history assumes
that ontology versioning has happened as a series of changes that always change
the previous version of the ontology O and thus no branching occurs in the version

history.

In order for this linear time to be machine-processable, it has to be modeled as
temporal entities to enable reasoning about time-enriched ontologies. As one solu-
tion, the XML Schema provides [BM01] built-in primitive datatypes that relate to
time. They are dateTime, duration, time, date, gMonth, gMonthDay, gDay, gYear
and gYearMonth. XML Schema datatype duration is a standard for expressing the

duration of an interval, and it is defined [BMO1] as follows:

Duration represents a duration of time. The value space of duration is a six-
dimensional space where the coordinates designate the Gregorian year, month,

day, hour, minute, and second components defined in § 5.5.3.2 of [ISO8E],
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respectively. These components are ordered in their significance by their order

of appearance i.e. as year, month, day, hour, minute, and second.

Moreover, The Suggested Upper Merged Ountology (SUMO) [NP03] suggests the

following concepts of time that includes more entities than XML Schema:

Classes April, August, day, December, February, friday, hour, January, July, June,
leap year, March, May, minute, monday, month, November, October, saturday,

second, September, sunday, thursday, tuesday, wednesday, week, year
Instances negative infinity, positive infinity

Relations before, before or equal, cooccur, date, duration, during, earlier, finishes,
frequency, meets temporally, overlaps temporally, starts, temporal part, tem-

porally between, temporally between or equal

Functions begin, day, end, future, hour, immediate future, immediate past, minute,
month, past, recurrent time interval, second, temporal composition, time in-

terval, when, year

The relations suggested by SUMO have many concepts that are equal to the ones
proposed in the Allen Algebra [All83]. In the Allen Algebra an initial structure is
aRb where R denotes the set of the 13 primitive interval relations that exclusively
correspond to every possible simple qualitative relationship that may exist between
a pair of intervals (see Figure 4).

Allen Algebra enables one way to reason about a complete version history, for exam-
ple, by examining the truth value of (ValidityPeriod(class A) before ValidityPer-
iod(class B)), where ValidityPeriod() returns a temporal interval assigned to a class.
In the example, defining a location ontology in Figure 5 we would get, for example
the following facts. Notice that many of these facts can be inferred from the other

facts too.

(ValidityPeriod(Petsamo) before ValidityPeriod(Pechenga)) = true
(ValidityPeriod(Pechenga) after ValidityPeriod(Petsamo)) = true
(ValidityPeriod(Petsamo) equals ValidityPeriod(Pechenga)) = false
(ValidityPeriod(Petsamo) meets ValidityPeriod(Pechenga)) = true
(ValidityPeriod(Pechenga) met-by ValidityPeriod(Petsamo)) = true
(ValidityPeriod(Petsamo) overlaps ValidityPeriod(Pechenga)) = false
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A before B F——

B after A F——
A meets B —
B met-by A F———

A overlaps B | I
B overlapped-by A I I

A starts B F————
B started-by A | I

A during B F——

B contains A | {

A finishes B I
B finished-by A |

A equals B F———
o

Figure 4: Time interval relations in the Allen Algebra [All183].

1809 1944 2004

Pechenga

Petsamo

Figure 5: A class Petsamo is valid before an other class Pechenga.
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Classes of SUMO seem to cover the basic concepts of time well, like months, week-
days and other notions of periods. However, in ontology versioning we are interested
in concept life cycles, that is, periods of time during which a concept has been valid,
its valid context. We need to know exactly when the concept has been added into
the ontology and if it has at some time point been taken away or modified using
some ontology change operation. Another choice is that we at a later phase want to
give a concept a certain validity period when modeling historical facts. Moreover, it
would be useful to be able to provide names for the periods in order to form more
descriptive events. One example of such an event is the period of time consisting
of when the fact "Finland part0f Russia" was valid. The life cycle of this part0f
relation between “Finland” and “Russia” holds from 1809 until 1917.

This life cycle can be given a status of an event and named for example as "Finland
part0f Russia". All this suggests a time ontology that can be used to express dif-
ferent temporal entities. A recent suggestion [PH04| provides this kind of ontology,
defining basic temporal concepts like Instant, Interval, Instant Event, and Interval
Event, depicted in Figure 6 as most specialized classes of a subclass hierarchy of
temporal concepts. Instants are time points and intervals are things with extent,
that is, they have a start time and an end time. Here instant events are events that
are instantaneous, such as Finland joining the European Union or arrival of a letter.
Furthermore, interval events are events that span some time interval, and that have
also a description like "Finland part0f Russia". There are also five other more
general temporal concepts or classes: Temporal Thing, Temporal Entity, Instant
Thing, Interval Thing, and Event that form the upper part of the class hierarchy.
Time information can be used in ontology versioning. For example, concepts in
two versions Ov; and Ov, of a location ontology can be given validity periods, like
depicted in Figure 7. Here a relation between the concepts Petsamo and Pechenga

is not yet expressed; this will be discussed later in Chapter 3.1.

Concepts of an ontology have to be bound with time. There are at least three choices

of how to add temporal knowledge to concepts:

1. Add relations between classes and their temporal intervals — life cycles or
validity periods — by hand. This is needed especially in modeling historical

facts.

2. Use some automation method to automatically generate temporal relations,
based e.g. in version history information given by the version control system

used.
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Temporal Thing

Temporal Entity | Event

|Instant Thing| |Interval Thing|

|Instant| |Interval | | Instant Event | |Intef§ral Event |

Figure 6: Subclass hierarchy of temporal concepts [PH04|.

[Finland | [Sweden | ‘ Norway ‘ [Russia|

[Petsamo | Lapland ‘ ‘ Pechenga ‘

1809-1944 1944-2004

Figure 7: Combination of ontology versions Ov; and Quvy where validity periods of

Petsamo and Pechenga are expressed using time intervals.
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3. A combination of 1 and 2. Here the automation method 2 suggests validity

periods for concepts; they can be adjusted later by hand.

2.6 Automatic Evolution Tracking

In order to fulfill the need for reasoning about a complete ontology version history,
a versioning framework must use maximal automation to perform conversions from
one version of the ontology to another version in order to enable transparent ac-
cess. Recall that ontology-change operations were presented and discussed before in
Chapter 2.4. An approach to translatability is taken by examining what possibili-
ties we have to track down the changes. The different approaches are called traced

evolution and untraced evolution [NKO03] and they are defined as follows:

Traced evolution Evolution is treated as a series of changes in the ontology. After
each operation that changes the ontology (e.g. add or delete a class, attach
a property to a class, change restrictions on properties, etc.), we consider the
effects on the instance data and related ontologies, depending on the dimension
of compatibility we use. The resulting effect is determined by the combination
of change operations. Traced evolution produces logs that can be examined to
get a picture of what has changed [NKO03|. In other words, traced evolution
is successful change tracking, in the sense that it provides explicit relations
between one version of a concept (or relation) to the other versions of that
construct. This has been identified as one of the main requirements [Kle01] of

an ontology versioning framework.

Untraced evolution All we have are two versions of an ontology and no knowledge
of the steps that led from one version to another. We will need to find the
differences between the two versions in an automated or semi-automated way

[NKO3] in order to track what has changed in the ontology.

The problem of comparing ontology versions Ov; and Ovs is more simple if there
are change logs available, like in traced evolution [NM03]. However, if the ontology
development is distributed like, for example, in the planned General Finnish On-
tology (YSO) development, the traced evolution with logging capabilities is not a
realistic approach [NMO03|. Furthermore, ontology-development tools do not always

support logging.
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If logs cannot be used in many cases there have to be other means to help in
translating between ontology versions. One solution is to ensure that the new version
is backward-compatible with the old version. Backward compatibility of an ontology

O can be formalized in the following way [Hef01]:

Definition An ontology Ows is backwards compatible with an ontology Ow; iff
every intended model of Ov, is an intended model of Ovy and V; C V,, where
Ov; and Ow, are two revisions of the ontology O and V; and V, are their

vocabularies, accordingly.

This simply means that if every logical consequence of the original is also express-
ible in and a consequence of the revision, then the revision is backward compatible
[KF01]. The semantics of an ontology are changed in backward compatible versions
in such a way that the interpretation of data via the new version Owv, is the same
as when using the previous version Ouv; of the ontology. Backward compatibility
is also transitive: if ontology version Qv, is backward compatible with version Ow;
then also the latest version Ovs is backward compatible with version Ov; [KFO01].
Analyzes have shown that if a revision only adds categories, relations, or rules, then
it is backward compatible with the original, whereas if it removes any of these com-
ponents, then it is not backward compatible [HFLW02, HH00|]. Other dimensions
that we must consider when determining whether a new version of an ontology is
compatible with the old one are [NKO03]:

1. Instance-data preservation — no data is lost in transformations from the old

version to the new one.

2. Consequence preservation — if an ontology is treated as a set of axioms, all
the facts that could be inferred from the old version can still be inferred from

the new version.

3. Ontology preservation — a query result obtained using the new version is a
superset of the result of the same query obtained using the old version. Seg-
regating consequence and ontology preservation is artificial though, because
answering to a query is a special case of the inference defined in the conse-

quence preservation.
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Ov Owva

A A

N\ 7~

1949 1990 2004

Germany

East Germany

West Germany

Figure 8: Classes West Germany, East Germany and Germany from ontology ver-

sions Ov; and Ows,.

3 A Framework for Ontology Evolution

3.1 Bridging the Gap between Ontology Revisions

The ontology change operations presented in Chapter 2.4 are only half-way towards
the requirement of actual change-tracking, not to mention the requirement of trans-
lating between revisions of the ontology. Assume that when the ontology changes,
the old material is still using the old ontology Owv; to describe the content, and the
new material is using the new ontology Ovs. This means that different versions
of the same ontology may be incompatible after the change has been implemented
and the new version taken into use. The application has to be told explicitly which
version of the ontology it is accessing and how it has changed from one version to

another so that it can perform accordingly [DWMO1].

Recall the definition of backward compatibility presented in Chapter 2.6. Let us
assume two versions Ov; and Qu, of a location ontology defining concepts Germany,
East Germany and West Germany, depicted in Figure 8. The new version Ov, of
the ontology is not backward-compatible with the previous version Qv since classes

"East Germany" and "West Germany” are no longer part of the ontology.

Moreover, the old version Owv; is not forward-compatible either, since class "Ger-
many" is not present. However, it would be essential to use multiple versions of the
ontology in reasoning about the resources, independently of the ontology changes
and independently of the formal backward-compatibility. In our example, the user
might for example be interested in those resources — say for example German wines

— that were before annotated with either the class "East Germany" or "West Ger-
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many" and are nowadays annotated with the class "Germany". Since there are a lot
of different revising needs for an ontology — like correcting errors, accommodating
new information and adjusting the representation of a particular domain [HHOO]
—, it is not likely that the requirement for backward-compatibility is easy or even
possible to always meet. Thus other means, such as ontology mapping, are needed

to enable reasoning about an evolved ontology.

Mappings between ontologies have previously been discussed [MWKO00|, but map-
pings between ontology versions need a different approach. These revision mappings
have to be identified and used to create bridges between those classes (or properties
or instances) from ontology revisions Ov; and Ovs that the change has touched. Let

us call this mapping a change bridge and define it the following way:

Change Bridge is a mapping between (i) a set of classes c;, a set of properties
p1 and a set of instances ¢; from ontology Ov; and (ii) a set of classes cg, a
set of properties p, and a set of instances i3 from an ontology Ovs such that
it defines an one-to-one, an one-to-many or a many-to-one relation between
the entities that a change concerns such that the change bridge describes the

relation between entities after the change has occurred.

In other words, one bridge can help multiple entities from ontology versions to meet
each other again, but it does not have to express all the changes at once. If there
are many changes between two versions of an ontology, multiple change bridges can
be used to express all of them. In an ontology evolution of a location ontology, for
instance, semantic gap between different versions Ov; and Ovs can be bridged like
depicted in Figure 9, where two ontology versions Ov; and Ov, are combined and

the change is expressed as an instance of a change bridge called usedToBe.

In order to help identifying possible bridges and how they should be used, the

following set of relevant questions are to be answered:

1. How can different ontology versions be identified?
2. What has changed (in the old version Ov;)?
3. What has it changed into (in the new version Ovy)?

4. How can the change be explicitly expressed, stored and maintained as a set
Scp of change bridges C'B between the classes of versions Ov; and Ovs of the

ontology?
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[Finland | [Sweden | ‘ Norway ‘ [Russia]
[Petsamo | [Lapland] [Pechenga|
[usedToBe|
1809-1944 1944-2004

Figure 9: Combination of ontology versions Ov; and Qvs where the relation between

Petsamo and Pechenga is expressed using a Change Bridge.

5. How can the whole ontology version history be used to reason about the re-
lations between concepts (i.e. how the resources can be found when different

versions have been used)?

Change bridges can be expressed as a change-bridging ontology — discussed in the
next Chapter 3.2 — that provides a set of classes for expressing the situation after
the change has occurred. This expression is in simple cases a mapping between one
or more classes found in version Ov; and one or more classes of version Qvy of the
ontology. In a more complex situation, the counterparts can also be instances of the

classes or properties of the classes.

3.2 Expressing Change Bridges

There are basically two choices how change bridges could be expressed in evolved

ontologies. They are:

1. Change-Bridging Ontology which mediates and expresses the changes between
versions Qv; and Quy of the ontology. This is similar to the previous approach
[MWKO00] for mappings between source ontologies where ontologies remain as
separate entities and certain articulation rules provide the mapping between

ontologies.

2. Direct mappings between versions Ov; and Ov, of the ontology.

The difference between these two approaches is depicted in Figures 10 and 11. Where

the mediating ontology does not touch the versions Ov; and Ovs of the ontology at
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Version Ov; Bridge Version Ovs

Myanmar | Same As

Figure 10: Example of a Same As -relation between two ontology versions Ov; and
0’02.

Version Ov, Direct Mapping Version Ov,

Nyammar}+———— Same As——————{Burma

Figure 11: Example of a direct mapping between ontologies.

all but instead points to the entities in them, the direct mapping approach requires
additional properties to at least one of the versions Ov; or Ov,. In direct mapping,
the “Same As’-relation is expressed as a directed edge between classes “Myanmar”
and “Burma” from two ontology versions Ov; and Ovs. This means that “Same As”
is a property of class “Burma”. This is a problematic approach since altering the

original ontology revisions is in many cases impossible.

To solve this, in a mediating, change-bridging ontology approach, the “Same As’-
relation is expressed outside the original ontologies. If the original versions are kept
as untouched as possible then the first choice has to be selected, the mediating

ontology approach.

A simple example illustrates the difference between these approaches: assume still
that "East Germany" and "West Germany" have been classes of the ontology ver-
sion Ov; and that they have both been deleted from the ontology to form Ow, of the
ontology where also a new class "Germany" is added at the same time. Whereas

a change operation only describes that an operation (e.g. deletion or addition op-
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Version Ovy Bridge Version Ovs

Figure 12: Usage of merged-relation from the Change-Bridging Ontology.

Version Ovq Bridge Version Ovs

'| Czech Republic |

| Czechoslovakia [< Split

~| Slovak Republic|

Figure 13: Usage of split-relation from the Change-Bridging Ontology.

eration) has occurred a bridging class describes the relation between the set S; of
deleted classes ("East Germany" and "West Germany") and the set S» of added

classes (consisting here of only one class, namely "Germany").

In this case the mapping relation would be "merged" as classes "East Germany"
and "West Germany" have been merged to one single class "Germany" in the new
version. In another words, in version Quv; of the ontology Fast Germany and West
Germany are separate concepts and in version Qu, they are merged to form Ger-
many. Figure 12 depicts the classes and a newly created relation, namely the merged
relation. Notable here is the direction of the arrows: the ontology versions Ov; and
Ows do not have to be touched since the directed edges are formed from the bridging

class (and not the other way round).

To give another illustration, Figure 13 presents another usage example of a bridging
class, a Split-relation. Here class "Czechoslovakia" has been split into two distinct
classes "Czech Republic" and "Slovak Republic" in the revised ontology. Again the

bridge — this time a Split-relation — describes the newly formed relation.
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The classes of the Change-Bridging Ontology are presented in Table 2. This Change-
Bridging Ontology and the classes that are found in it are a formalization and an
application of different change operation types presented in Chapter 2.4. Contrary
to the change operations, the Change-Bridging Ontology does not try to express
change operations — such as deletion of a class, addition of a class, and so on —
themselves, but rather the relations between the revised classes of versions Ov; and
Owv, of the ontology.

In other words, a clear separation between the change operations and the explicit
relations between the classes has to be made for the mapping to be effective and
most expressive. Different bridge classes form a simple subclass-hierarchy depicting
the different roles and types of bridges they have and inherit. In short, the upper

level classes are defined as follows:

classChange is a bridge intended to be used when something has happened in the
class level between classes of versions Ov; and QOuy of the ontology. Typical
bridges of this kind are merged, split and sameAs. To form these bridges we
have to know which classes are present in versions Ov; and Ovy or merely the

differences between classes in Ov; and those in Ovs.

hierarchyChange combines different bridges defining the manipulation of the class
hierarchy. In other words, in this case versions Ov; and Ovs of the ontology
have a difference in their hierarchies but they can still have exactly the same
classes in them. Typically, hierarchy alteration occurs when classes or prop-
erties are moved down or up in the hierarchy or subclass-superclass relations

are modified.

propertyChange describes the situation where some properties of classes of Ov;
have been altered to form a new version Ovs of the ontology. A typical example
of a property change is the samePropertyAs-relation defining the similarity of

two distinct properties.

typeChange is a crucial bridge, defining a mapping between those classes and
instances of Owv; and classes and instances of Owvs where a re-classification

(class to instance or vice versa) has occurred.

Consequently, simple usage rules for Change-Bridging Ontology are needed, describ-
ing how it should and can be used to form mappings between versions Ov; and Ov,

of the ontology. These rules include:
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Change type Relation after change

classChange classesDeclaredDisjoint
differentFrom

merged

sameAs

split

usedToBe

hierarchyChange classMovedDown
classMovedUp
propertyMovedDown
propertyMovedUp
subclassSuperclassLinkAdded

subclassSuperclassLinkRemoved

propertyChange narrowed PropertyRestriction
samePropertyAs

widenedPropertyRestriction

typeChange classRe-classified AsInstance

instanceRe-classified AsClass

setOfPropertiesEncapsulatedIntoNewClass

Table 2: Concepts of a Change-Bridging Ontology.

1. Relations between versions Ov; and Ovs are expressed using the Change-

Bridging Ontology by creating instances of the classes it suggests.
2. The mapping is stored preferably in a separate file.

3. The arrows (directed edges) point from the bridge classes to the certain classes

of versions Ov; and Owvy of the ontology.

4. Mappings can be made either between the entities of versions Ov; and Ovs of
the ontology or between the entities found only in Ovs. In other words, the
ontology modeler can leave — if he chooses so — the outdated classes also to

the new version and provide bridges with the more recent classes.

5. When a mapping is made, it has to be complete, that is, no halfway bridges

having only partial information are allowed.

6. A revision ontology is used to automatically get identification, status, author
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Version Ov; |Covers =0.77 | Version Ovs
|Soviet Union [ Same As

Figure 14: The territories of Russia and Soviet Union are used for calculating the

“covers” property.

and other important identification information from the versioning system in

use

When using a Change Bridge like sameAs it is assumed that the concepts are com-
pletely the same. There are situations, however, where a sameAs relation after the
change has occurred is only partial. Consider for example classes “Soviet Union” and
“Russia”. In a location ontology it would be reasonable to have a sameAs-relation
between the deprecated class “Soviet Union” in an old ontology revision Ov; and
the class “Russia” of a new ontology revision Ovy. The problem is that these classes
are partly different, e.g. the countries they represent differ by size, the administra-
tion is different and so on. For these reasons the definition of the change bridge
could be extended to include a “covers” property that gets values between 0 and 1.
Calculating a value for “covers” property always needs a viewpoint. For example,
here, the “covers” property of relation (Russia sameAs SovietUnion) is calculated
by comparing the territories modern day Russia occupies with the territories Soviet
Union used to occupy i.e. how much the territory of Russia covers the territory of

former Soviet Union. Thus, we calculate

Territory(Russia) __17,075,200sq.km .~ 0.77
Territory(SovietUnion) — 22,274,900sq.km "~ °°

Figure 14 depicts the new situation. Other possibility would be, for example, to
calculate the overlap using some other property such as the number of inhabitants,

length of land boundaries or the coastline, depending on the selected viewpoint.
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1809 1944 2004

Pechenga ‘

Petsamo

‘ 20th Century

1900 2000

Figure 15: Temporal validity (or persistence) of the classes Petsamo, Pechenga and
20th Century.

3.3 Temporal Overlap in Sorting Query Results

Ontology classes and instances with temporal information can be used to sort the
query results. For example, assume that classes Petsamo and Pechenga have been
valid in different revisions of an ontology during the periods listed in Figure 15.
Recall the motivating example from Chapter 1.2 defining an ontology where Petsamo
is a part of Finland in the ontology version Ov; and in the new version Ovy Petsamo
has the new name Pechenga and it is a part of the Soviet Union as a result of the
World War II. Assume also that there is a record in a museum collection about a hat
— for example a “Kolkkahattu” — that has been annotated using the time interval
concept 20th Century and moreover using both the concepts Petsamo and Pechenga.
Assume also that resources are evenly distributed over the temporal intervals of the

concepts used for annotating them.

We are interested in providing the user with a probability of whether the hat is
from Petsamo or from Pechenga, using only the given annotation knowledge. If we
query the ontology using the time period 20th century, the query results can be
sorted using the validity periods of Petsamo and Pechenga depending how much
they overlap 20th century. Temporal overlap of concepts that have some relation

between them give an estimate about how relevant concepts are to each other.

(i)

Following our example, the probability that the hat is from Pechenga, when the user
searches a hat of the 20th Century is

(inT|

PV |T] = T
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where V] = validity period of Pechenga, valid during an interval from 1944 until
2004 and T = 20th Century, meaning years from 1900 until the end of year 1999.

P [V | T] is calculated as follows:

VinT |
PV [T] = T
2000 — 1944
~ 2000 — 1900
56
100
= 0.56

In a similar way, we get the probability that the hat is from Pechenga, when the
user searches a hat of the 20th Century. We get

[ VanT |

PIVRIT] = i

where V5 = validity period of Petsamo, valid during an interval from 1809 until 1944

and again T' = 20th Century.

Next we calculate P [V, | T:

([ VanT |
PV [T] = T
1944 — 1900
~ 2000 — 1900
44
100
= 0.44

(ii)

Next, assume that there are means such as change bridges defined before in Chap-
ter 3.1 to provide mappings between ontology revisions. Assume that the classes
Petsamo and Pechenga have been valid in different revisions of the ontology during
the same periods and that a change bridge C'B, for example usedToBe, has been
formed between classes Petsamo and Pechenga because they represent the same ge-

ographical areas. Hence we get Pechenga usedToBe Petsamo. Let us assume again



34
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Petsamo U Pechenga

20th Century

1900 2000

Figure 16: Temporal validity of classes Petsamo, Pechenga and 20th Century.

the record about a hat that has been annotated using a time interval 20th Century
and using both the concepts Petsamo and Pechenga. A combined temporal period
Petsamo U Pechenga is from 1809 to 2004. We are interested in providing the user
the probability, that tells whether a hat of our example is from Petsamo or from
Pechenga, using only the given annotation knowledge. If we query the ontology us-
ing the time period 20th century, the query results can be sorted using the validity
periods of Petsamo and Pechenga depending how much they overlap 20th century.

We get the probability that the hat is from an area called previously Petsamo and

nowadays Pechenga:

| VaNT |

P[V3 | T] T

where V3 = validity period of Petsamo U Pechenga, valid during an interval from
1809 until 2004 and again T' = 20th Century.

We can calculate P [V3 | T7:

VanT
Plalr) = O
2000 — 1900
~ 2000 — 1900
_ 100
100

= 1.0
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4 The Framework Implemented and Experimented

4.1 A Revision Ontology for Versioning

The two most used knowledge models that can be used in implementing ontologies
are RDF (Resource Description Framework) [LS99] and a more recent extension,
OWL (Web Ontology Language) [BvHH'04|. Now if ontologies are defined, say,
in OWL, and if the revision metadata has to be incorporated into the ontology
in order to meet the requirement for ontology identification it sounds natural to
describe also the metadata using OWL. In this way existing means for including
other ontologies — like the import-directive of OWL — can be taken into use.
The ontological metadata can hence be imported (included) into the main ontology
and the identification requirement met. Below is a short example of usage of the
properties description, format and identifier of Revision Ontology developed as a

part of this thesis:.

<rdf:Property rdf:about="&Versioning;description"
a:defaultValues="Free description of the ontology"
a:maxCardinality="1"
rdfs:label="description";
rdfs:comment="This ontology is intended for describing classes and
relations of musical works">
<rdfs:domain rdf:resource="&Versioning;Versioning"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf :Property>
<rdf :Property rdf:about="&Versioning;identifier"
a:defaultValues="$Id: Versioning.rdfs,
v 1.4 2004/03/01 13:36:12
tomikauppinen Exp $"
a:maxCardinality="1"
rdfs:label="identifier">
<rdfs:domain rdf:resource="&Versioning;Versioning"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf :Property>
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Furthermore, the recently proposed Ontology Web Language (OWL) annotation
properties [BvHH'04] can be used in providing metadata, like the following short

example shows:

<owl:AnnotationProperty rdf:about="&dc;creator"/>

<owl:Class rdf:about="TheMiraculousMandarin'>
<rdfs:label>The Miraculous Mandarin</rdfs:label>
<dc:creator>Béla Bartdk</dc:creator>

</owl:Class>

Even though metadata is important in identifying an ontology, creating metadata
requires a lot of error-prone handwork and hence the metadata generation phase
should be automated as much as possible. Although ontology versioning is still
in its infancy, good revising practices have been created in the area of software
development. A good version control system, such as CVS (Concurrent Versions
System) [Ber90|, provides the basic versioning automatically, including keeping a

log of when, and why changes occurred and who conducted them.

CVS also provides means to include version identification information in the han-
dled files through usage of a special set of CVS keywords. Every time the resource
is committed to the version management system, the system fills up the latest infor-
mation inside the special tags. Thus, using the keywords we can now automatically
provide contents for many of the metadata elements described above. This is a big
advantage in the identification of ontology elements. Furthermore, it can be used
in reasoning about complete ontology evolution. Those ontology elements in which

the keywords can be used are listed in Table 3.

filename $RCSfile: Versioning.rdfs,v $

state $State: Exp $

author $Author: tkauppin $

creator $Author: tkauppin $

date $Date: 2004/03/01 13:36:12 $

identifier $1d: Versioning.rdfs,v 1.4 2004/03/01 13:36:12 tkauppin Exp $

versionInfo | $Revision: 1.4 $

versionTag | $Name: $

Table 3: Those metadata elements of the Revision Ontology that can be filled
automatically by CVS.
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4.2 Difference Tracking and Change Bridge Generation

Another possibility to aid reasoning about versions is to produce change bridges
(i.e. mappings) as was introduced in Chapter 3.2. Forming the change bridges
between the ontology classes from version Ov; and version Owvs of the ontology
O must be made as automatically as possible. Algorithm 1 outlines the method
used in the implementation that is made as a part of this thesis. Comparison of two
ontology versions is not straightforward. For instance, the RDF Schema specification
[BG0OO] recommends that “a new namespace URI should be declared whenever an
RDF schema is changed”. If the recommendation is followed and a new namespace
for each version created (Ovy, Ovy, Ovs,...) then all the classes and instances are
considered different. Thus when comparing ontology versions, a common namespace

— at least a temporal one — for all the versions to be handled is needed.

Furthermore, it would be ideal if the system could further narrow down the possible
selections and suggest certain relations automatically, like illustrated in Figure 17,

where the most likely bridge, “merged”, is in bold.

In previous research findings about ontologies a method is developed to facilitate
defining rules that link different ontologies [MWKOO]; these rules are called graph
transformation rules. A similar approach would possibly benefit ontology versioning

research as well but it is not researched as a part of this thesis.
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vl class | suggested bridge | v2 class

http://ontologies/#EastGermany | sameAs http://ontologies /#Germany
http://ontologies/#WestGermany | split

merged

differentFrom

usedToBe

Figure 17: Output of the version bridger.

input : Version Ov; and version Ov, of the ontology O
output: Change bridges between the ontology classes
begin
//track how version 1 differs from version 2;
diff1 = versionl.difference(version2);
//
//track how version 2 differs from version 1;
diff2 = version2.difference(versionl);
//
while differences left do
‘ changeBridges.add(getSuggestion(diff1,diff2));

end
end

//Return the change bridges as an ontology ;
return changeBridges;

Algorithm 1: Algorithm for checking the differences and forming the change

bridges. Suggestions can be either given by the user or generated automatically.
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1809 1917 1944 2004

Finland part of Russia

E Pechenga

Petsamo

19th Century 20th Century ’

1800 1900 2000

Figure 18: An example of temporal intervals.

4.3 Handling Time and Sorting Query Results

A temporal ontology — or Time Ontology — can be used to instantiate different
periods of time, like the validity periods of classes depicted in Figure 18. As a part
of this project the Time Ontology has been developed using RDF, adopting the
approach presented by Pan and Hobbs [PH04]. Below is a short example of how
a period can be constructed as an instance to form descriptive temporal events: it
defines the period of time consisting of when the fact "Finland part0f Russia" was

valid.

<TimeOntology:IntervalEvent rdf:about="&TimeOntology;T01"
TimeOntology:StartTime="1809"
TimeOntology:EndTime="1917"
rdfs:label="Finland part0f Russia"/>

Furthermore, explicating the temporality (or the life cycle) of classes can be auto-
mated using the temporal knowledge retrieved from CVS timestamps. These time-
stamps imply the life cycle of classes and properties and therefore timestamps can
be used to automatically suggest a temporal enrichment of the ontology. But the
temporal data got as a result from CVS timestamps have to be strictly segregated
from other temporal intervals depicting validity periods of concepts in ontology revi-
sions. For example, we might today get to know some new historical fact about some
concept, say, Petsamo and hence in that case the time is modeled independently of
the CVS timestamps.
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Moreover, these kind of ontologies that define temporally indexed concepts can be
used to annotate entities — like items of a museum collection — that are from some
historical period. A complete life cycle for a concept can be generated by following
a suitable method. Below is one suggestion for the method that is developed as a

part of this thesis. The method consists of the following phases.

1. Retrieve all the different versions Ov; of an ontology O. Also store the temporal
intervals for each concept. Note that a concept life cycle can consist of several

separate intervals.

2. Generate namespaces based on information about concept occurrences. For
example, if concept ¢ has occurred in versions 1.0, 1.1 and 1.2 then generate a
namespace like “1.0-1.1-1.2” (if it does not exist already) and move concept c

into it.

3. Create a new ontology where all classes from all ontology versions are depicted

in their own namespaces.

4. Create a life cycle using the intervals, i.e., bind the classes with intervals
created using the Time Ontology. Note that each interval has to be created

once and reused for multiple classes having the same interval in their life cycle.

The Temporal sorting -method described previously in Chapter 3.3 has been imple-
mented as an utility called TemporalSorter that uses Java [Sun04|, interval checks
from Allen Algebra and an implementation of the conditional probability calcula-

tion. The implementation is outlined in Algorithm 2.
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input : Intervals T1 and T2

output: P [T1 | T2]=T10T2

begin
// Calculate the intersection of the given two temporal intervals ;
if T1.getBegin() < T2.getBegin() then
‘ intersectBegin = T2.getBegin();
end
else
‘ intersectBegin = T1.getBegin();
end
if T1.getEnd() < T2.getEnd() then
‘ intersectEnd = T1.getEnd();

end
else
‘ intersectEnd = T2.getEnd();

end

Tolength — C2tE)_Toptneont,

intersectLength = i"t"“ffggfggfgg:;gwegm;
end
// Return the conditional probability ;
return intersectLength

T2length )

Algorithm 2: Algorithm for calculating a weight as a conditional probability
P[T1|T2].

The results depicting the ranked query results given by TemporalSorter can be seen
in Table 4. The weights for each class can now be used e.g. to sort the query results
for the user. Note that the implementation calculates the exact overlap. The months
and days together with the differences between the duration of different years like

leap-years have been taken into account.

The algorithm has been implemented as a Java [Sun04] implementation.
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Rank Class | Weight

1 | Pechenga 0.56

2 | Petsamo 0.44

Table 4: Ranked query results for Petsamo and Pechenga when 20th century is

selected.

4.4 Summary of Framework Tools

To enable and to aid transparent translating between ontology versions, the software

and ontologies listed in Table 5 have been developed to form an ontology versioning

framework. The framework aims to enable and to aid reasoning about a complete

ontology version history.

Component

Description

Revision Ontology

An ontology defining metadata elements for ontology

identification

Change-Bridging Ontology
ChangeTracker

Version Bridger

A set of change bridges (mappings) as an ontology
A Java program utility for providing differences be-
tween two ontology versions and suggestions

A Java program that tries a rule-based approach for
semi-automatic forming of change bridges. This is a

part of the future work.

Time Ontology

TemporalSorter

Temporallnterval

An ontology intended for representing life cycles, that
is, validity periods of ontology concepts

A Java program for calculating and sorting query re-
sults using concept validity periods

A Java program that provides means for representing

and comparing temporal intervals

Table 5: Components of the Ontology Versioning Framework.

Revision Ontology provides metadata elements for ontology identification. Elements

include classes like author, language, publisher, title, date, priorVersion and id. To

maximize the automation, many of the metadata elements are filled automatically

by CVS interoperability.

Change-Bridging Ontology provides a set of change bridges (mappings) as classes
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and properties for expressing the situation when a change has occurred. Change-
Tracker checks the differences between two ontology versions and is able to use
Version Bridger for providing suggestions about change bridges to be formed be-
tween ontology revisions. ChangeTracker uses Jena [CDD* 03] for processing RDF
and OWL. VersionBridger is a test utility to try a rule-based approach for semi-
automatic forming of change bridges (mappings) between concepts from different
ontology versions. Version Bridger is a part of the future work and therefore it is
not described in detail in this thesis.

Time Ontology is intended for representing life cycles, that is, validity periods of
ontology concepts including classes, properties, relations and instances. Temporal-
Interval provides means for representing temporal intervals and making comparisons
(like meets, before, after, ...) between temporal intervals. TemporalSorter provides
sorting of query results using the validity periods or other temporal intervals binded
to concepts and in that uses services provided by Temporallnterval to compare
intervals in the Allenian way. TemporalSorter implements conditional probability
calculation and uses Java Calendar Libraries [Sun04| to provide exact values for

sorting.
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5 Conclusions

Classes, properties, individuals and relations between classes and individuals can be
expressed as an ontology. As ontologies are altered to correct errors, to accommodate
new information or to adjust the representation of the domain, they are said to
evolve. Hence there has been a need for methods and means to manage the ontology
evolution in order to ensure that applications using ontologies work properly. In this
thesis ontology versioning has been studied by exploring previous research findings,
gathering the requirements for ontology versioning, identifying the critical questions

and finally presenting and implementing a framework for ontology versioning.

Previous research findings for ontology versioning were presented combining four
important questions, namely identification, change-tracking, life cycle and transpar-
ent translating in the ontology evolution. These viewpoints were taken as a starting
point and each area was discussed. Firstly, identification of the ontology can be done
using an ontology collecting the revision metadata. The Revision Ontology combines
the metadata elements — such as author, date, id, publisher — into a single package,
which can be included in the edited ontology. Creating identifying metadata requires
a lot of error-prone handwork and hence the metadata generation phase should be
automated as much as possible. Although ontology versioning is still in its infancy
— with no current ontology tools supporting versioning — good revising practices
have been created in the area of software development. Concurrent Versions System,
for example, provides the basic versioning automatically, including keeping a log of
when, and why changes occurred and who conducted them. This can be utilized to

fill up part of the Revision Ontology as was shown.

Change-tracking is another important requirement that was recognized. It is impor-
tant to explicate changes, for example, in classes, instances, properties, relations or
in a class hierarchy. It is also necessary to identify which change operations have
produced the changes and further express the change as a mapping between evolved
entities. In this thesis the idea of a Change Bridge was presented and defined to
enable bridging the semantic gap between different versions of the ontology. Future
work includes researching methods to automatically narrow down the set of possible

change bridges between versions of an ontology.

Ontologies change as a function of time, meaning that time has a significant role in
ontology evolution. Temporal knowledge about an ontology evolution is needed in

order to answer questions like “When has the change occurred?” or “When have the
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concepts been valid i.e. what are their life cycles?” Temporal overlap of concept life
cycles can be used to sort the query results as was shown. Furthermore, using the
Change Bridges in temporal sorting, complete life cycles of the evolved concepts can
be taken into use and that way enable reasoning about a complete ontology version

history.
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