
E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 819–828, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Content Creation on the Semantic Web Using
Metadata Schemas with Domain Ontology Services

(System Description)

Onni Valkeapää, Olli Alm, and Eero Hyvönen

Helsinki University of Technology (TKK), Laboratory of Media Technology
University of Helsinki, Department of Computer Science

Semantic Computing Research Group (SeCo)
P.O. Box 5500, FI–02015 TKK, Finland

{onni.valkeapaa,olli.alm,eero.hyvonen}@tkk.fi
http://www.seco.tkk.fi/

Metadata creation is one of the major challenges in developing the Semantic
Web. This paper discusses how to make provision of metadata easier and cost-
effective by an annotation editor combined with shared ontology services. We
have developed an annotation system supporting distributed collaboration in
creating annotations, and hiding the complexity of the annotation schema and
the domain ontologies from the annotators. Our system adapts flexibly to
different metadata schemas, which makes it suitable for different applications.
Support for using ontologies is based on ontology services, such as concept
searching and browsing, concept URI fetching, semantic autocompletion and
linguistic concept extraction. The system is being tested in various practical
semantic portal projects.

1 Introduction

Currently, much of the information on the Web is described using only natural
language, which can be seen as a major obstacle in developing the Semantic Web [1].
Since the annotations describing different resources are one of the key components of
the Semantic Web, easy to use and cost-effective ways to create them are needed, and
various systems for creating annotations have been developed [14,18]. However, there
seems to be a lack of systems that 1) can be easily used by annotators unfamiliar with
the technical side of the Semantic Web, and that 2) are able to support distributed
creation of semantic metadata based on complex metadata annotation schemas and
domain ontologies [19].

Metadata descriptions are usually based on ontologies of two kinds. First, an
annotation ontology, i.e. a metadata schema, tells what kind of properties and value
types should be used in describing a resource. For example, the Dublin Core schema
uses 15 elements, such as dc:title, dc.creator, dc:subject, etc. Second, a set of domain
ontologies are used to define vocabularies by which the values for metadata properties
are given. This suggests that three kinds of tools are needed to address the problems

820 O. Valkeapää, O. Alm, and E. Hyvönen

of metadata creation. First, an annotation editor supporting the usage of different
metadata schemas is needed. Second, we need services for supporting the usage of the
domain ontologies (vocabularies) that are employed for the annotations. Third, tools
for automating the creation of actual metadata descriptions in various ways, e.g., for
finding suitable values for the elements, must be developed.

To test this idea, we have developed a system of three integrated tools that can be
used to efficiently create semantic annotations based on metadata schemas, domain
ontology services, and linguistic information extraction. These tools include, at the
moment, an annotation editor system Saha1 [19], an ontology service framework
Onki2 [9] and an information extraction tool Poka3 for (semi)automatic annotation.
The annotation editor Saha supports collaborative creation of annotations and it can
be connected to Onki servers for importing concepts defined in various external
domain ontologies. Saha has a browser-based user interface that hides complexity of
ontologies from the annotator, and adapts automatically to different metadata
schemas. The tool is targeted especially for creating metadata about web resources. It
is being used in different applications within the National Semantic Web Ontology
Project in Finland (FinnONTO)4 [4].

In order to support the kind of annotation that is required in our project, we
identified the following basic needs for an annotation system. These were also
features that we felt were not supported well enough in many of the current
annotation platforms:

• Simplicity. The system should, as a rule, hide technical concepts related to
markup languages and ontologies from its user.

• Adaptivity. The system should be adaptable to different annotation cases with
different kinds of contents to be described.

• Quality. When annotation is done by hand, the annotator should be guided to
produce annotations in qualified and pre-defined form, if needed.

• Collaboration. The system should support collaborative annotation, where the
annotation process can be shared among different annotators at different
locations.

• Portability. The annotator should be able to use the system at any location
without installing any special software.

2 Saha Annotation System

2.1 Utilizing Annotation Schemas

Ontologies may be used in two different ways in annotation: they can either serve as a
description template for annotation construction (annotation schemas/ontologies) or
provide an annotator with a vocabulary which can be used in describing resources

1 http://www.seco.tkk.fi/applications/saha/
2 http://www.seco.tkk.fi/applications/onki/
3 http://www.seco.tkk.fi/applications/poka/
4 http://www.seco.tkk.fi/projects/finnonto/

 Efficient Content Creation on the Semantic Web Using Metadata Schemas 821

(reference/domain ontologies) [15]. An annotation schema has an important role in
expressing how the ontological concepts used in annotations are related to the web
resources being described. Without annotation schemas, the role of these concepts
would remain ambiguous. In addition to explicitly expressing the relation between a
resource and an annotation, the schema helps the annotator to describe resources in a
consistent way and it can be effectively used to construct a generic user-interface for
the annotation application.

Saha uses an approach similar to the one introduced in [8] to form its user interface
according to an annotation schema loaded on it. Saha does not use any proprietary
schemas, but instead will accept any RDF/OWL-based ontology as a schema. By
schemas we mean a collection of classes with a set of properties. An annotation in
Saha is an instance of a schema’s class that describes some web resource and is being
linked to it using the resource’s URL (in same cases, URI). We make the distinction
between the annotation of a document (e.g. a web page) and the description of some
other resource (e.g. a person) that is somehow related to the document being
annotated. In addition to containing classes used to annotate documents (annotation
classes), an annotation schema used with Saha can also contain reference classes for
describing resources other than documents. In other words, an annotation schema
forms a basis for the local knowledge base (KB) that contains descriptions of different
kinds of resources that may or may not exist on the web. Instances of the reference
classes are used as values of properties in annotations.

Each annotation schema loaded to Saha forms an annotation project, which can
have multiple users as annotators. In practice, an annotation project is Jena’s5
ontology model stored in a database. A model is comprised of the annotation schema
and the instances of the schema’s classes. It can be serialized to RDF/XML in order to
use the annotations in external applications.

2.2 Architecture and User Interface

The main difference between Saha and ontology editors such as Protégé [12] is that
Saha offers the end-user a highly simplified view of the underlying ontologies
(annotation schemas). It does not provide tools to modify the structure (classes and
properties) of ontologies, but rather focuses on using them as a basis for the
annotations.

Saha is a web application implemented using the Apache Cocoon6 and Jena
frameworks. It uses extensively techniques such as JavaScript and Ajax7. The basic
architecture of Saha is depicted in figure 1. It consists of the following functional
parts: 1) annotators using web browsers to interact with the system, 2) Saha
application running on a web server, 3) applications using the annotations created
with Saha, 4) the Onki ontology service, 5) PostgreSQL database used store the
annotations, and 6) the Poka information extraction tool.

The user interface of Saha, depicted in figure 2, provides an annotator with a view
of the classes and properties of an annotation schema. The annotator can choose a

5 http://www.hpl.hp.com/semweb/tools.htm
6 http://cocoon.apache.org/
7 http://en.wikipedia.org/wiki/Ajax_%28programming%29

822 O. Valkeapää, O. Alm, and E. Hyvönen

Fig. 1. Architecture of Saha

class from the class hierarchy (left side of the screen), view the annotations/KB-
instances and create new ones. The lower part of the screen views the resource being
annotated. In figure 2, an annotation belonging to class “Document” is being edited.
The properties of the annotation, such as “Title”, as well as fields to supply values for
them are shown on the right side of the class hierarchy.

Fig. 2. The user interface of Saha

Properties of an annotation schema accept either literal or object values. In the
latter case, values are KB-instances or concepts of some external domain ontology.
KB-instances can be chosen using semantic autocompletion [5]. Here, the user types

 Efficient Content Creation on the Semantic Web Using Metadata Schemas 823

in a search word and selects a proper instance from the list populated by the system. If
the proper KB-instance does not exist, user may also create a new one. rdfs:range or
owl:Restriction is used to define the types of things that are allowed as values.

2.3 Setting Up an Annotation Project

Saha’s annotation cycle starts by defining settings for an annotation schema. These
settings will define 1) the way how the schema is visualized for the annotator, 2) how
human readable labels (rdfs:label) are automatically created for new annotations and
KB-instances, and 3) how different property fields are filled in the annotations. By
visualization, we refer to e.g. defining a subset of schema’s classes that are shown in
the editor’s class-hierarchy, or defining an order of the properties of a class in which
they are shown to the annotator. Human readable labels, by turn, are needed when
annotations or instances are represented in the user-interface. These labels can be, in
many cases, formed automatically using property-values supplied by the annotator for
the annotation/KB-instance. In Saha, properties can be filled manually or using
integrated ontology services, which include the ontology server system Onki and the
information extraction tool Poka to be presented in section 3. When using these
services, we map a property of an annotation schema to the desired service. In the
case of Onki, the values of the property will be concepts defined in some external
domain ontologies, selected by an annotator using a dedicated Onki-browser. When
Poka is used, values are ontological concepts or literals provided by the extraction
tool. For example, an extraction component recognizing people’s names could be
coupled with the property dc:creator.

Settings for an annotation project are defined in a schema-specific RDF-file, which
we call meta-schema. Although the use of a meta-schema is not compulsory, it is
highly practical in most cases. At the moment, meta-schemas are done by hand, but
we are developing an easy-to-use editor for the task.

3 Utilizing Ontology Services

3.1 Onki Ontology Services

One of the key features of Saha is its ability to connect to the Onki ontology service
[9]. The Onki system has an important role in sharing ontological resources between
different organizations and actors. In annotation, Onki enables the use of concepts of
external domain ontologies as values of an annotation schema’s properties. These
ontologies are made available to the annotators through the Onki ontology server,
which offers two interfaces to ontological information: searching and browsing. The
first one is similar to the instance KB search described above. When using it, the
annotator types a search word which is sent to the Onki ontology server character by
character and matched with the concepts in the underlying ontology. Concepts
matching to the query will be sent back to Saha and shown below the search field
from which they can be selected by the user. The other option is to use a browser
view of the Onki system. It is practical when the annotator does not get agreeable

824 O. Valkeapää, O. Alm, and E. Hyvönen

results using the semantic autocompletion, or wants to see the resources within the
context of the class hierarchy. The Onki ontology browser can be opened in a new
window by clicking a property field in Saha (see figure 3). After that, the annotator is
able to browse the class hierarchy, and when a suitable concept is found, fetch it to
the input form of Saha by clicking on the button “Fetch concept” on the Onki browser
page. Both modes of using ontology services provided by Onki can be conveniently
integrated to different web applications on the client side using Ajax.

Fig. 3. Using the Onki ontology browser

3.2 Automatic Recognition of Concepts and Entities

Saha uses the ontology-based information extraction tool Poka to suggest concepts
based on the documents being annotated. Poka can process a document to 1)
recognize concepts of external ontologies and to 2) extract named entities using non-
ontological tools.

In schema-based annotation, things to be extracted are defined by the properties of
the annotation schema’s classes. Accordingly, the function of an extraction
component is to provide suitable concepts or entities to be used as values of those
properties. Because Saha supports arbitrary annotation schemas, extraction tools must
be adaptable in order to support different extraction tasks. In the Poka environment
we have solved the problem of adaptivity in two ways. First, we have implemented
generic non-ontological extraction components such as person name identifier and
regular expression extractor. Second, user-defined external ontologies can be
integrated with the system and used in concept recognition.

 Efficient Content Creation on the Semantic Web Using Metadata Schemas 825

Extraction of Non-ontological Entities. In Poka, two extraction components for
non-ontological entities have been implemented: person name extractor for Finnish
language and regular expression extractor. The main idea in the rule-based name
recognition tool is to first search for full names within the text at hand. After that,
occurrences of the first and last names are mapped to full names. Simple coreference
resolution within a document is implemented by mapping the individual name
occurrences to the corresponding unambiguous full name if there exist one. Single
first names and surnames without corresponding full names are discarded. Search for
potential names is started from the uppercase words of the document. Predefined list
of first names is utilized for recognizing potential full names. With morphosyntactic
clues some hits can be discarded. For example, first names in Finnish rarely have
certain morphological affixation such as “-ssa” (similar to the English preposition
“in”) or “-lla” (preposition “on”) when they occur before the surname in the sentence.
Poka makes use of the morphosyntactic analyzer and parser FDG8 [17]. The FDG-
parser's surface-syntactic analysis is also used for revealing proper names.

The names that are automatically recognized are suggested as potential new
instances in Saha. The type of a new instance is a reference class of the annotation
schema used in Saha, say myAnnotation:Person. If there exists an instance with the
same name, the user can tell whether the newfound name refers to an existing instance
or to a new one.

The regular expression extractor acts in a similar way as the name extractor. The
difference is that the thing to be extracted is defined by the expression, not the
component itself. Expressions can be utilized to find literal values or potential new
instances from the document.

Extraction of Ontological Concepts. For ontological extraction, an ontology has to
be integrated to the extraction system. By ontological extraction we mean 1)
deduction of string representations of concepts from the ontology and 2) finding the
occurences of the representations.

In Poka, the integration starts by defining a set of concepts in an ontology that are
to be extracted from the documents. The ontology can be used in its entirety, or it can
be only partly used by selecting e.g. instances or some sub-part of the ontology’s
hierarchy tree. After this, the human readable properties representing concept names,
e.g. the values of the literal properties rdfs:label or skos:prefLabel, are chosen as
targets for the recognition.

For the string matching in the extraction process, the string representations of
ontological resources are indexed in the prefix trie. Since two or more concepts may
share the same label, a trie entity can refer to multiple URIs. In some languages (e.g.
Finnish), it is useful to lemmatize the concept representations for efficient extraction.
This is because syntactical forms of words may vary greatly in languages with heavy
morphological affixation [11]. Lemmatization of both the text and the concept names
helps to achieve better recall in the extraction process.

Currently the adaptation of new extraction ontologies is done by system experts.
Our future work involves developing a user interface for integrating ontological
resources for extraction.

8 http://www.connexor.com, Machinese Syntax

826 O. Valkeapää, O. Alm, and E. Hyvönen

4 Discussion

4.1 Contributions and Applications

Ontology-based semantic annotations are needed when building the Semantic Web.
Although various annotation systems and methods have been developed, the question
of how to easily and cost-effectively produce quality metadata still remains largely
unanswered. We tackled the problem by first identifying the major requirements for
an annotation system. As a practical solution, an annotation system was designed and
implemented which supports the distributed creation of metadata and which can
utilize ontology services as well as automatic information extraction. It is designed to
be easily used by non-experts in the field of the Semantic Web.

Saha is currently a working prototype. It is in trial use for the distributed content
creation of the semantic health promotion portal TerveSuomi.fi [3,16]. Much of the
content and metadata for the portal will be provided by health experts working at
various health organizations in Finland. Saha has also been tested, among others, in
metadata creation for the Opintie portal, a follow-up version of the educational
semantic portal Orava [10], using Learning Object Metadata (LOM).

Full usability testing of Saha has not yet been conducted. Initial feedback from end
users indicates that some intricate ontological structures, such as deep relation paths
between resources, are difficult to comprehend. These difficulties, however, can be
facilitated by proper design of annotation schemas.

4.2 Related Work

A number of semantic annotation systems and tools exist today [14,18]. These
systems are primarily used to create and maintain semantic metadata descriptions of
web pages.

Annotea [6] supports collaborative, RDF-based markup of web pages and
distribution of annotations using annotation servers. Annotations created with
Annotea can be regarded as semi-formal, since the system does not support the use of
ontological concepts in annotations. Instead, annotations are textual notes which are
associated with certain sections of the documents they describe.

The Semantic Markup Tool [8] has a user interface that is generated according to
an annotation schema in a similar way as is done in Saha. It uses Information
Extraction techniques to find different kinds of entities in documents and proposes
them for values of the annotation’s properties. The schemas it supports are relatively
simple, and it cannot be thus used to describe more complex semantic relations.
Moreover, the expressivity and adaptation of templates is not explicitly stated in [8].
The Ont-O-Mat system [2], in turn, can be used to describe diverse semantic
structures as well as to edit ontologies. It also has a support for automated annotation.
The user interface of the Ont-O-Mat is not, however, very well suited for the
annotators unfamiliar with concepts related to ontologies and semantic annotation in
general. Another example of the user interface of an annotation tool requiring
understanding of the Semantic Web concepts can be found in SMORE [7].

Most of the current annotation systems, like the ones mentioned here, are
applications that run locally on the annotator’s computer. Because of this, the systems

 Efficient Content Creation on the Semantic Web Using Metadata Schemas 827

may not necessarily be platform independent and must always be installed on the
user’s system, before the annotation can begin. In Saha, these problems are addressed
by implementing the system as a web application. By doing so, the system can be
installed and maintained centrally and the requirements for the annotator’s
computational environment are minimal. The way Saha is designed and implemented
also strongly supports the collaboration in annotation, making the sharing of
annotations and new individuals (free indexing concepts) easy.

4.3 Future Work

Our future plans include using Saha to provide metadata for additional semantic
portals as well as further develop the automation of the annotation. Currently, the
coupling of the annotation schema’s properties and information extraction
components provided by the Poka are not fully utilizing the ontological
characteristics. In other words, instead of using restrictions and constraints such as
rdfs:range to define which of the schema’s properties an automatically recognized
resource matches to, we are currently using a meta-schema to do the mapping.
However, our plans include using the property restrictions to do the matching in the
future. We are also aiming to map the automatically extracted entities to ontologies in
order to support property restriction with them as well. For example, date regular
expressions would be mapped to a corresponding class of the reference ontology, say
myOnto:Date. This way, the proper values for an object property are defined by the
range (ontological restriction), not by the component itself.

Acknowledgements

This research is a part of the National Ontology Project in Finland (FinnONTO) 2003-
2007, funded mainly by the Finnish Funding Agency for Technology and Innovation
(Tekes) and a consortium of 37 companies and public organizations.

References

1. Dill, S., Tomlin, J., Zien, J., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A.,
Kanungo, T., Rajagopalan, S. and Tomkins, A. (2003) SemTag and Seeker: Bootstrapping
the Semantic Web via Automated Semantic Annotation. Proceedings of the 12th
International World Wide Web Conference, WWW2003.

2. Handschuh, S. and Staab, S. (2002) Authoring and Annotation of Web Pages in CREAM.
Proceedings of the 11th International Conference on World Wide Web, WWW2002.

3. Holi, M., Lindgren, P., Suominen, O., Viljanen, K. and Hyvönen, E. (2006) TerveSuomi.fi
– A Semantic Health Portal for Citizens. Proceedings of the 1st Asian Semantic Web
Conference, ASWC2006, poster papers.

4. Hyvönen E. (2006) FinnONTO—Building the Basis for a National Semantic Web
Infrastructure in Finland. Proceedings of the 12th Finnish AI Conference STeP 2006.

5. Hyvönen, E. and Makelä, E. (2006) Semantic Autocompletion. Proceedings of the 1st
Asian Semantic Web Conference, ASWC2006.

828 O. Valkeapää, O. Alm, and E. Hyvönen

6. Kahan, J., Koivunen, M.R., Prud'Hommeaux, E. and Swick R.R. (2001) Annotea: An
Open RDF Infrastructure for Shared Web Annotations, Proceedings of the 10th
International World Wide Web Conference, WWW2001.

7. Kalyanpur, A., Hendler, J., Parsia, B. and Golbeck, J. (2005) SMORE – Semantic Markup,
Ontology, and RDF Editor. Available at: http://www.mindswap.org/papers/SMORE.pdf

8. Kettler, B., Starz, J., Miller, W. and Haglich, P. (2005) A Template–based Markup Tool
for Semantic Web Content. Proceedings of the 4th International Semantic Web
Conference, ISWC2005.

9. Komulainen, V., Valo, A. and Hyvönen, E. (2005) A Tool for Collaborative Ontology
Development for the Semantic Web. Proceedings of the International Conference on
Dublin Core and Metadata Applications, DC 2005.

10. Känsälä, T. and Hyvönen, E. (2006) A Semantic View–Based Portal Utilizing Learning
Object Metadata. Proceedings of the Workshop on Semantic Web Applications and Tools,
the 1st Asian Semantic Web Conference, ASWC2006.

11. Löfberg, L., Archer, D., Piao, S., Rayson, P., McEnery, T., Varantola, K. and Juntunen, J.–
P. (2003) Porting an English Semantic Tagger to the Finnish Language. In Proceedings of
the Corpus Linguistics 2003 conference, pp. 457–464. UCREL, Lancaster University.

12. Noy, N., Sintek, M., Decker, S., Crubézy and M., Fergerson, R. (2001) Creating Semantic
Web Contents with Protégé–2000. IEEE Intelligent Systems 2(16):60–71.

13. Popov, B., Kitchukov, I., Angelov, K. and Kiryakov, A. (2006) Co-occurrence and ranking
of entities. Available at: http://www.ontotext.com/publications/CORE_otwp.pdf

14. Reeve, L. and Han, H. (2005) Survey of Semantic Annotation Platforms. Proceedings of
the 2005 ACM Symposium on Applied Computing.

15. Schreiber, G., Dubbeldam, B., Wielemaker and J.,Wielinga, B. (2001) Ontology–Based
Photo Annotation. IEEE Intelligent Systems, 16(3):66–74.

16. Suominen O., Viljanen K. and Hyvönen E. (2007) User-centric Faceted Search for
Semantic Portals. Proceeedings of the 4th European Semantic Web Conference
ESWC2007, forth-coming.

17. Tapanainen, P. and Järvinen, T. (1997) A Non–projective Dependency Parser. Proceedings
of the 5th Conference on Applied Natural Language Processing, pp. 64–71.

18. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E. and Ciravegna,
F. (2006) Semantic Annotation for Knowledge Management: Requirements and a Survey
of the State of the Art. Journal of Web Semantics, 4(1):14–28.

19. Valkeapää, O. and Hyvönen, E. (2006) A Browser-based Tool for Collaborative
Distributed Annotation for the Semantic Web. Proceedings of the Workshop on Semantic
Authoring and Annotation, the 5th International Semantic Web Conference, ISWC2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

