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Abstract
Zero-Shot Learning (ZSL) handles the problem that
some testing classes never appear in training set.
Existing ZSL methods are designed for learning
from a fixed training set, which do not have the
ability to capture and accumulate the knowledge
of multiple training sets, causing them infeasible
to many real-world applications. In this paper,
we propose a new ZSL setting, named as Life-
long Zero-Shot Learning (LZSL), which aims to
accumulate the knowledge during the learning from
multiple datasets and recognize unseen classes of
all trained datasets. Besides, a novel method is
conducted to realize LZSL, which effectively al-
leviates the Catastrophic Forgetting in the contin-
uous training process. Specifically, considering
those datasets containing different semantic em-
beddings, we utilize Variational Auto-Encoder to
obtain unified semantic representations. Then, we
leverage selective retraining strategy to preserve the
trained weights of previous tasks and avoid nega-
tive transfer when fine-tuning the entire model. Fi-
nally, knowledge distillation is employed to trans-
fer knowledge from previous training stages to cur-
rent stage. We also design the LZSL evaluation
protocol and the challenging benchmarks. Ex-
tensive experiments on these benchmarks indicate
that our method tackles LZSL problem effectively,
while existing ZSL methods fail.

1 Introduction
In recent years, Zero-Shot Learning (ZSL) [Socher et al.,
2013; Xian et al., 2018a; Zhao et al., 2019; Wei et al., 2019;
Xu et al., 2019] has gained increasing attention in computer
vision [Chang et al., 2020] and machine learning communi-
ties [Yang et al., 2019]. Different from traditional classifica-
tion tasks that require adequate samples of all classes in train-
ing phase, ZSL aims to recognize samples of new classes,
which have never appeared in the training stage. In the pop-
ular ZSL setting, the learning model is only trained on seen
classes of a single dataset, and then tested on unseen classes
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of the same dataset, whose seen and unseen classes are dis-
joint. However, in many real-world applications, the recog-
nition system is required to have the ability of learning from
obtained training data continuously and to improve the sys-
tem in a lifelong manner.

To meet such a requirement, we propose a more practical
ZSL setting, named as Lifelong Zero-Shot Learning (LZSL),
which requires the model to accumulate the knowledge of dif-
ferent datasets and recognize the unseen classes of all faced
datasets. As illustrated in Figure 1, the model is trained in
multiple learning stages, and each stage includes images and
semantic embeddings from a new dataset. The semantic em-
beddings of these datasets are various and complex, e.g., the
attribute lists of these datasets are different. After finishing
all training stages, the model is evaluated on both seen and
unseen testing images of all these datasets.

The mainstream ZSL methods aim to learn a mapping
between images and corresponding semantic embeddings.
These methods can be divided into three types according to
the classification spaces, i.e., visual space, semantic space
and common embedding space. Besides, there are some ZSL
methods [Felix et al., 2018; Zhu et al., 2018], which train
generative models to obtain the features of unseen classes.
Then, the visual features of seen classes and the generated
visual features of unseen classes are used to train the classi-
fier. These methods convert ZSL tasks to supervised learning
tasks. However, these methods cannot effectively deal with
LZSL problem, since they lack the mechanism to accumulate
knowledge from previously trained tasks without rehearsal.

Aiming to solve aforementioned problems and realize
LZSL, we propose a novel method that integrates unified se-
mantic embedding, selective retraining and knowledge distil-
lation strategies seamlessly. Cross and Distribution Aligned
VAE (CACD-VAE) [Schonfeld et al., 2019] is selected as
the base model, which trains VAEs [Kingma and Welling,
2013] to encode and decode features of visual and seman-
tic embeddings respectively, and uses the learned latent fea-
tures to train a ZSL classifier. To equip CACD-VAE with
the ability of Lifelong Learning, we first use the trained
VAEs to obtain unified semantic embeddings in each train-
ing stage. With the unified semantic embeddings, the la-
tent space of different tasks is learned and fixed respec-
tively. To ensure the visual features can be projected into
the fixed latent space precisely, selective retraining strategy
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Figure 1: The overview of Lifelong Zero-Shot Learning. When new task arrives, the model learns the new task sequentially, which accu-
mulates the knowledge from all faced tasks. Transferring knowledge from previous tasks to current task promotes the model to classify the
unseen classes of different datasets effectively.

is leveraged to promote the similarity among the classifi-
cation spaces of different tasks, which also avoids negative
transfer in the process of capturing the knowledge of new
task. Besides, knowledge distillation [Hinton et al., 2015;
Chen et al., 2019] is employed to transfer knowledge from
previous tasks to current task. Extensive experiments show
that our method effectively accumulates knowledge from
previous learned tasks and relieves Catastrophic Forgetting,
while other state-of-the-art ZSL methods are inoperative. The
contributions of our method are summarized as follow:
• To the best of our knowledge, we are the first to pro-

pose and tackle Lifelong Zero-Shot Learning problem.
The LZSL benchmark and evaluation protocols are also
designed in a novel way.
• Aiming to tackle the challenge of isomerism semantic

embeddings of different datasets, we employ VAEs to
obtain the unified semantic embeddings, which can fix
the latent space of corresponding tasks.
• The selective retraining is utilized to promote the

similarity among the classification spaces of different
datasets, and supervised by knowledge distillation loss,
which regularizes the process of transferring the knowl-
edge from previous tasks to current task.
• Extensive experimental results on the proposed bench-

mark demonstrate the effectiveness of our proposed ap-
proach, which significantly outperforms state-of-the-art
ZSL methods.

2 Related Work
2.1 Zero-Shot Learning
Zero-Shot Learning [Socher et al., 2013; Zhang et al., 2017;
Zhao et al., 2018; Chen et al., 2018] has become a popular re-
search topic, which aims to recognize unseen classes without
any labeled training data. In addition, ZSL is a subproblem
of transfer learning, whose key point is to transfer knowledge

from seen classes to unseen classes. In testing stage, the test
samples are captured from visual space, while we only have
the semantic embeddings of unseen classes in semantic space.
Thus, the mainstream approach of ZSL methods [Chen et al.,
2018] is to construct the connection between visual space and
semantic space. Typical methods learn functions that maps
the visual features and semantic features into a common em-
bedding space, where the embeddings of visual features and
semantic features are matched. Recently, generative adver-
sarial networks (GANs) [Goodfellow et al., 2014] had been
proposed and successfully introduced to ZSL. The target of
generative ZSL methods [Felix et al., 2018; Zhu et al., 2018]
is to generate visual features of unseen classes from semantic
features, which converts ZSL to traditional supervised classi-
fication task. For instance, f-CLSWGAN [Xian et al., 2018b]
was proposed by employing conditional Wasserstein GANs,
which generated discriminative unseen visual features. Based
on f-CLSWGAN, Cycle-WGAN [Felix et al., 2018] lever-
aged reconstruction regularization that aimed to preserve the
discriminative features of classes in transferring process.

However, all the methods mentioned above are only trained
on a single dataset, with limited ability to learn various
datasets sequentially. To our best knowledge, we are the
first to propose and tackle the problem of Lifelong Zero-Shot
Learning.

2.2 Lifelong Learning
Lifelong Learning [McCloskey and Cohen, 1989; Rebuffi et
al., 2017] is the learning pattern which requires the model
to have the ability to learn from a sequence of tasks and to
transfer knowledge obtained from earlier tasks to later one.
The key challenge for Lifelong Learning is Catastrophic For-
getting, which means the trained model forgets the knowl-
edge of previous task when new task arrives. Many Lifelong
learning methods were proposed, which can be divided into
three parts, i.e, storing training samples of previous tasks [Re-
buffi et al., 2017; Li and Hoiem, 2017], regularizing the pa-
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Figure 2: The framework of our proposed method in the tth training stage, which consists of two VAEs and a trained encoder of visual
modality in the (t− 1)th training stage. Given an image, the feature extractor captures its visual feature xt, which is mapped into the
latent space as µt

v and Σt
v . Meanwhile, the corresponding semantic embedding ct is mapped into the latent space as µt

a and Σt
a. Aiming

to achieve latent distribution alignment, the Wasserstein distance between the latent distributions (LDA) is minimized in the training stage.
Then, the cross-alignment loss (LCA) is employed to guarantee the latent distributions aligned through cross-modal reconstruction. Besides,
we leverage knowledge distillation (LKD) to transfer knowledge obtained from previous tasks to current task.

rameter updates [Liu et al., 2018; Yoon et al., 2017] when
new tasks arrives, and memory replay [Shin et al., 2017;
Wu et al., 2018] that employs extra generative models to re-
play training samples of previous tasks.

Different from traditional Lifelong Learning problems,
whose training and testing classes are the same in popular
Lifelong Learning classification problems, those are disjoint
in LZSL.

3 Methodology
To tackle LZSL problems, we propose Lifelong Zero-Zhot
Learning, which unifies Lifelong Learning and Zero-Shot
Learning seamlessly. The framework of our method is shown
in Figure 2. First, we leverage VAEs to obtain the unified
semantic embeddings of different datasets. Then, selective
retraining strategy is used to approximate the classification
space of different datasets and avoid negative transfer. Fi-
nally, knowledge distillation is employed to transfer knowl-
edge from previous tasks to current task.

3.1 Problem Formulation
During the tth training stage, a dataset St =
{(xt, yt, ct) |xt ∈ Xt,yt ∈ Y ts , ct ∈ Ct} is given, consisting
of image features xt extracted by a pre-trained convolution
neural network (CNN), class labels yt of seen classes Y ts and
semantic embeddings ct of corresponding classes. Besides, a
dataset U t = {(ut, ctu) |ut ∈ Y tu , ctu ∈ Ct} is available, con-
taining unseen class labels ut from a set Y tu and the semantic
embeddings ctu of unseen classes. For the most realistic and
challenging metric of Generalized Zero-Learning (GZSL),
the target is to learn a classifier f tGZSL: Xt → Y ts ∪ Y tu .
However, our method focuses on learning a generative
model through training different datasets sequentially, and

then constructs several classifiers corresponding different
datasets.

3.2 Background: CADA-VAE
We first introduce a state-of-the-art ZSL methods, Cross and
Distribution Aligned VAE (CADA-VAE), which is the basic
model of our method. Its goal is to search a common classifi-
cation space, where the embeddings of semantic features and
visual features are aligned. The model contains two VAEs,
one for semantic features and the other for visual features,
each of which consists of an encoder and a decoder. The ob-
jective function of a VAE is the variational lower bound on
the marginal likelihood of a given sample, which can be for-
mulated as:
L = Eqφ(z|x) [log pθ(x|z)]− λDKL (qφ(z|x)‖pθ(z)) , (1)

where the first term is the reconstruction loss and the second
term is the unpacked Kullback-Leibler divergence to regular-
ize the inference model q(z|x) and p(z). In addition, λ is em-
ployed to weight the KL-Divergence. The encoder predicts µ
and Σ such that qφ(z|x) = N (µ,Σ), and a latent vector z is
obtained by employing the reparametrization trick. The en-
coders is used to project features into the common space and
the decoders are used to reconstruct the original data. The
VAE loss of the whole model is the sum of two VAE basic
losses:

LV AE = LaV AE + LvV AE , (2)
where LaV AE and LvV AE represent the VAE losses of seman-
tic modality and visual modality respectively. Besides, aim-
ing to match the embeddings from semantic space and vi-
sual space in the common space, the model aligns the latent
distributions precisely and needs a cross-reconstruction crite-
rion to ensure. Therefore, the cross-alignment loss (CA) and
distribution-alignment loss (DA) are designed and applied.
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The cross-alignment loss regulars the reconstructed fea-
tures from the other modality to be similar to the original
modality features. The cross-Alignment loss is:

LCA = |c−Da (Ev (x))|+ |x−Dv (Ea (c))| , (3)

where c, Da and Ea are feature, decoder and encoder of se-
mantic modality, and x, Dv and Ev are feature, decoder and
encoder of visual modality.

The distribution-alignment loss is employed to minimize
the Wasserstein distance between the latent Gaussian dis-
tributions of semantic modality and visual modality, which
makes the latent embedding from semantic space and visual
space matched. The distance is denoted as:

LDA =

(
‖µa − µv‖22 +

∥∥∥Σ
1
2
a − Σ

1
2
v

∥∥∥2
Frobenius

) 1
2

, (4)

where µa and Σa are predicted by the encoder Ea, while µv
and Σv are predicted by the encoder Ev . The objective func-
tion can be denoted as:

LCACD−V AE = LV AE + γLCA + δLDA, (5)

where γ and δ are the hyper-parameters of the cross alignment
and the distribution alignment loss to weight these losses.

3.3 Unified Semantic Embedding
Since the numbers and kinds of attributes are different among
datasets, the semantic embeddings of different datasets are
various and complex, which is the challenge to be solved first.
To solve this problem, we try to find unified semantic embed-
dings of different datasets. After training the tth task, se-
mantic embeddings ct can be predicted as µta and Σta mapped
by Eta. The latent vector z is generated by employing the
reparametrization trick, the process of which is to generate
various latent vectors from point data. The generated latent
vectors can be the training data for the final classifier, which
contain the discriminative information of the corresponding
classes. Based on this, we replace original semantic embed-
ding ct with µta and Σta, from one point data to two point data,
which can be viewed as more representative semantic embed-
dings. After training all tasks, we can employ these new se-
mantic embeddings to replay latent vectors of all datasets, and
train robust classifiers.

3.4 Selective Retraining
For the new task, a natural way would be fine-tuning the
entire model. However, fine-tuning the entire model would
change the affected weights of previous tasks, leading to
Catastrophic Forgetting of neural network. Thus, we employ
selective retraining strategy to fine-tune the whole model.
When the unified semantic embeddings are obtained, the clas-
sification spaces for different datasets are fixed, which are
also the latent spaces for previous tasks. Therefore, the model
that is the projection from the visual space to the classifica-
tion space, is the encoder of visual modality Etv . We denote
W t as the parameter of Etv and W t

l is denoted as the model
parameter at layer l, the number of whose layer is L. When a
new task arrives, we first froze the parametersW t−1

L and fine-
tune the model to obtain the connections between the output

Algorithm 1 The Process of Selective Retraining
Input: Dataset St, Previous parameter W t−1

Output: Selected parameterW t
s

1: Froze parameter W t−1
L , St = {ot}

2: Fine-tune the network
3: for l = L, . . . , 1 do
4: Add neural i to St if there exists some neural j ∈ S

such that W t−1
l,ij 6= 0

5: end for
6: Fine-tune the selected parameter W t

S

unit ot and the hidden unit at layer L − 1. Then, we can
select all units and weights that are affected in the training
process, and remain the part that are not connected to output
unit ot unchanged. The selective operation can be viewed as
giving the model an initialization, ensuring that the direction
of optimization is to protect the classification spaces of pre-
vious tasks. Finally, we only fine-tune the selected weights,
which is denoted as W t

S . Algorithm 1 describes the selective
retraining process.

3.5 Knowledge Distillation
Through selective retraining, the selective neurons change
and other neurons are frozen, but the optimization direction
of the whole model, which motivates the model to preserve
the knowledge of previous tasks, is not ensured. Aiming to
transfer the knowledge from previous tasks to current task,
we adopt knowledge distillation strategy. When the tth task
arrives, we hope the outputs of Etv is similar to the outputs of
Et−1v with the same input xt, which would ensure the classi-
fication spaces of the tth task and the (t− 1)

th task are ap-
proximate. After training all datasets sequentially, the final
Ev have the ability to predict the similar µtv and Σtv as the Etv
when inputting the same image feature xt. The distillation
loss is denoted as :

LKD =
∥∥∥µtv − µ̂tv∥∥∥

1
+
∥∥∥Σtv − Σ̂tv

∥∥∥
1
, (6)

where µtv and Σtv are predicted by Etv , while µ̂tv and Σ̂tv are
predicted by Et−1v .

When t > 1, the objective function is denoted as:

L = LCACD−V AE + βLKD, (7)

where β is the hyper-parameter to weight the knowledge dis-
tillation loss and set to 1.

3.6 Training and Inference
In training, we train the datasets sequentially and save the
unified semantic embeddings of all classes. After the training
stage of VAEs, we employ the saved semantic embeddings to
replay the latent vectors of all classes. The process of gener-
ating latent vectors is repeated ns times for every seen class
and nu for every unseen class. ns and nu are set to 200 and
400, respectively. These latent vectors contain the discrimi-
native information of these classes. We use the latent vectors
of different datasets to train softmax classifiers respectively.
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Dataset Semantics Dim Image Seen Classes Unseen Classes

APY 64 15339 20 12
AWA1 85 30475 40 10
CUB 312 11788 150 50
SUN 102 14340 645 72

Table 1: Datasets used in our experiments, and their statistics.

In testing stage, the test visual features of seen classes and
unseen classes are projected as the latent vectors by the en-
coder of visual modality Ev . Then the test features are fed to
the trained classifier to get the results on different datasets.

4 Experiment
In this section, involved datasets, evaluation metrics and the
implementation details are introduced in detail. Then, we will
present several state-of-the-art competitors as well as the ex-
perimental results of our method. Finally, the ablation studies
will prove the effectiveness of our proposed approach.

4.1 Benchmark and Evaluation Metrics
We evaluate our method on four dataset: Attribute Pascal and
Yahoo dataset (aPY) [Farhadi et al., 2009], Animals with At-
tributes 1 (AWA1) [Xian et al., 2018a], Caltech-UCSD-Birds
200-2011 dataset (CUB) [Wah et al., 2011], and SUN At-
tribute dataset (SUN) [Patterson and Hays, 2012]. Statistics
of the datasets are presented in Table 1. For all datasets, we
extract 2048 dimensional visual features using the pre-trained
101-layered ResNet. The sequence of training dataset is aPY,
AWA1, CUB and SUN, which is alphabetical order.

Following the Generalized Zero-Shot Learning setting, we
employ the same evaluation metrics for LZSL:
• u: average per-class classification accuracy on test im-

ages from the unseen classes with the prediction label
set, which is used to measure the capacity of recogniz-
ing unseen classes.
• s: average per-class classification accuracy on test im-

ages from the seen classes with the prediction label set,
which is used to measure the capacity of recognizing in-
cremental seen classes.
• H: the harmonic mean of u and s, which is formulated

as
H =

2× u× s
u+ s

. (8)

H balances the performance between u and s metrics, which
is the most important metrics for our task. All results of the
three metric are measured after the training of all datasets.

4.2 Implementation Details
All encoders and decoders are multilayer perceptrons with
one hidden layer. We use 1560 hidden units for the image fea-
ture encoder and 1660 for the decoder. The attribute encoder
and decoder have 1450 and 660 hidden units, respectively. δ
is increased from epoch 6 to epoch 22 by a rate of 0.54 per
epoch, while γ is increased from epoch 21 to 75 by 0.044 per
epoch. The weight λ of the KL-divergence is increased by
a rate of 0.0026 per epoch until epoch 90. Besides, we use

the L1 distance as reconstruction error, which obtains better
results than L2.

For every dataset, the number of epochs is set to 100, and
the batch size is set to 50. The learning rate of VAEs is set
to 0.00015, which is set to 0.001 for classifiers. In addition,
our method is implemented with PyTorch and optimized by
ADAM optimizer.

4.3 Comparison to Exisiting Baselines

Baseline Models. Since there is no previous work for Life-
long Zero-Shot Learning, we compare the baselines, which
combine CACD-VAE with traditional lifelong methods. (a)
Sequential Fine-tuning (SFT): The model is fine-tuned when
a new task arrives sequentially, the parameters of which is
initialized from the model trained/fine-tuned on the previ-
ous task. (b) L2 regularization (L2): at each task t , W t

is initialized as W t−1 and continuously trained with L2-
regularization between W t and W t−1. (C) L1 regularization
(L1): at each task t , W t is initialized as W t−1 and continu-
ously trained with L1-regularization between W t and W t−1.

Results and Analysis. Table 2 summarizes the results of all
the comparing methods and our method under three evalua-
tion metrics on the four benchmark datasets. For ZSL meth-
ods on GZSL metrics, the H is the most important metric to
evaluate the performance of ZSL methods, which balances
the performance of u and s metrics.

The “Base” in Table 2 denotes the model is trained sequen-
tially without any lifelong strategy and the “Original” denotes
the models, which train the datasets respectively. Obviously,
we can find the results of base obtain the worst performance
of previous datasets, which do not have the ability to accu-
mulate the knowledge of previous datasets when a new task
arrives. Besides, the model with sequential fine-tuning strat-
egy also obtain the worse results compared with those without
such a strategy, which indicates the existence of Catastrophic
Forgetting in ZSL.

Compared with other baselines, our method obtains the
best performances of three evaluation metrics in previous
three datasets. On aPY, our model achieves 29.11% in u,
43.29% in s and 34.81% in H , with improvements of 2.69%
in u, 13.50% in s and 6.80% in H . On AWA1, our model
achieves 51.17% in u, 63.66% in s and 56.73% in H , with
improvements of 1.53% in u, 4.59% in s and 3.14% in H .
On CUB, our model achieves 38.82% in u, 45.81% in s and
42.03% in H , with improvements of 3.29% in u, 11.07%
in s and 7.68% in H . Although our method do not obtain
best results in SUN datasets, the drop of results is little com-
pared with the improvement in other datasets, whose reason is
that our method balances the ability of accumulating knowl-
edge from previous tasks and capturing knowledge of current
task better. We also calculate the average H results of these
methods on four datasets. The average H results are 10.2%,
36.73%, 38.03%, 36.73% and 42.48% for base, SFT, L1, L2
and our method, with improvements of 4.45% in average H
results. In conclusion, our method obtains a balanced per-
formance of previous tasks and current task, which notably
outperforms the baselines.
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aPY AWA1 CUB SUN
Method u s H u s H u s H u s H

Base 6.69 0.59 1.09 5.14 0.92 1.56 0.87 0.67 0.76 43.40 33.95 38.10
SFT 24.24 23.21 23.71 47.27 55.18 50.92 35.46 34.74 35.10 38.47 36.10 37.20

L1 26.42 29.79 28.01 49.64 58.23 53.59 35.11 32.31 33.65 40.14 34.11 36.88
L2 24.08 23.61 23.84 46.71 59.07 52.17 35.53 33.24 34.35 42.08 32.33 36.56

Ours 29.11 43.29 34.81 51.17 63.66 56.73 38.82 45.81 42.03 42.43 31.78 36.34
Original 30.36 59.36 40.18 57.30 72.80 64.10 53.50 51.60 52.40 35.70 47.20 42.60

Table 2: Classification accuracy (%) of Lifelong Zero-Shot Learning with the three evaluation metrics on the four datasets.

aPY AWA1 CUB SUN
Method u s H u s H u s H u s H

Base 24.24 23.21 23.71 47.27 55.18 50.92 35.46 34.74 35.10 38.47 36.10 37.20
KD 26.47 35.09 30.17 56.95 52.67 54.73 37.65 42.92 40.11 41.53 32.48 36.45
SR 25.63 40.62 31.43 53.70 56.94 55.27 40.94 40.64 40.79 40.42 31.98 35.70

Ours 29.11 43.29 34.81 51.17 63.66 56.73 38.82 45.81 42.03 42.43 31.78 36.34

Table 3: Ablation study: classification accuracy (%) with different modules, “KD“ and “SR“ respectively indicate knowledge distillation and
selective retraining.
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Figure 3: The average H results with different ns and nu hyper-
parameters.

4.4 Ablation Study

We conduct two groups of ablation experiments to study the
effectiveness of our method.

The results of our basic model added different modules are
presented in Table 3. The base model is CACD-VAE with
sequential fine-tuning training strategy. Based on the base
model, we add knowledge distillation and selective retrain-
ing modules, which are represented as “KD” and “SR” re-
spectively. As shown in Table 3, both knowledge distillation
and selective retraining can improve the performance on the
previous three datasets. The improvement of adding “KD“
indicates knowledge distillation can transfer the knowledge

of previous task to the current task, which remits the un-
favourable influence of Catastrophic Forgetting to some ex-
tent. Besides, the improvement of adding “SR“ indicates se-
lective retraining can preserve the affected weights of previ-
ous tasks and avoid negative transfer, since neurons that are
not selected will not get affected by the retraining process.
When adding all modules, our method performs best.

We perform an experiment to discuss the influence of the
numbers ns and nu for replaying, whose average H results
are shown in Figure 3. The best performance is achieved
when ns and nu are set as 200 and 400. Obviously, we can
notice the phenomenon that the average H increases with the
increasing of ns and nu before achieving the peak perfor-
mance of the average H .

5 Conclusion

Tto our best knowledge, this paper strikes the first effort to
introduce and tackle Lifelong Zero-Shot Learning. Firstly,
we employ VAEs to obtain the unified semantic embeddings,
which bridges the gaps among the semantic embeddings of
different datasets. Then, the selective retraining strategy are
leveraged to preserve the projection to a great extent, which
is constructed in previous training stage. Finally, we distil-
late the knowledge from previous tasks and transfer to cur-
rent training stage. Experiments show that our method out-
performs previous methods by a large margin on four bench-
mark datasets.
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