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With the increasing interest in various creative scenes such as social media, film production, and intelli-
gence courses, people expect to be able to compile rich visual content according to their subjective ideas
and actual needs. In this context, visual content synthesis technique based on multimodal data has
attracted much attention in recent years. Compared to traditional generative methods, multimodal data
offer more flexible and concrete clues that provide an interactive and controllable way to generate the
desired visual content. In this survey, we comprehensively summarize the improvements in
multimodal-guided visual content synthesis. We first formulate the taxonomy of visual content synthesis
and divide it into four different subfields depending on the input modality, including visual-guided visual
content synthesis, text-guided visual content synthesis, audio-guided visual content synthesis, and visual
content synthesis guided by other modalities. In each subfield, we describe the paradigm of different
modality-guided visual content synthesis, and also discuss the signature methods mainly based on
Generative Adversarial Networks (GANs). Next, we present commonly used benchmark datasets and
metrics for evaluating models, as well as detailed comparisons between different methods. Finally, we
provide insight into current research challenges and possible future research directions.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

As one of the fundamental research areas of Deep Learning [1],
visual content synthesis aims to generate or beautify images or
videos that matches the target distribution based on certain inputs
(text, image, video, audio, etc.). It is widely used in our daily life,
because the essence of many creative scenes is a practical exten-
sion of visual synthesis, such as art painting, film production, and
entertainment advertising. In such scenes, the creative process
can be regarded as a process that constantly fitting people’s subjec-
tive imagination. The development of deep visual content synthe-
sis can help people better transform their subjective imagination
into visual creations, and provide more comfort and inspiration.
Therefore, the research of multimodal-guided visual content syn-
thesis has become a topic in the field of artificial intelligence.

In recent decades, artificial intelligence technology has devel-
oped rapidly thanks to the powerful representation learning capa-
bilities [11–14,220,227]. Various models [15–20] based on deep
neural networks have achieved remarkable success in the field of
computer vision. Among them, deep generative networks
[21–23] have broken new ground driven by the development of
hardware and availability of larger datasets. The central idea of
generative modeling stems around training a generative network
to fit the training data distribution x � phðxÞ. Early generative
methods were implemented by the Restricted Boltzmann Machine
(RBM) based method, which attracted considerable attention due
to its strong interpretability and progress in the generation effect.
However, these models suffer from a significant timing problem
caused by the sampling of the data. To circumvent this issue, Vari-
ational AutoEncoders (VAEs) [22] have been proposed to fit data
distribution through variational inference [24]. Subsequently,
autoregressive models, such as PixelRNN [25], PixelCNN [25], and
other methods have also appeared. In the last few years, with the
advent of Generative Adversarial Network (GAN) [21], GAN-based
generative methods have become dominant. The vanila GAN uses
Jensen-Shannon divergence as loss function to measure the gener-
ative distribution and the real data distribution. To improve train-
ing instability of GAN model, a number of GAN variants with better
metrics have emerged, such as LSGAN [26], WGAN [26], and
WGAN-GP [27]. In addition, a number of large-scale GANs have
been proposed to synthesize photorealistic and high-resolution
visual content from noise inputs, such as Progressive GAN [28],
BigGAN [29], StyleGAN [30,31].

The development of above models has laid the foundation for
processing more complex data, making it possible to generate
visual content guided by multimodal data. Like other outstanding
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Fig. 1. A taxonomy of visual content synthesis techniques. Different forms of inputs (shown in first row) and models are adopted for visual content synthesis tasks. We
categorize visual content synthesis into four categories according to the different input forms (visual, text, audio, and other modalities). The second row illustrates the
corresponding synthetic contents which are from [4–10]., respectively.
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multimodal learning methods [32–39,221], progress has been
made in extending generative methods to multimodal settings
[3,222,223]. Mansimov et al. propose the first multimodal synthe-
sis method [40], which leverages recurrent variational autoen-
coders to generate visual scenes guided by captions. With the
rise of powerful GANs, the research of multimodal visual content
synthesis is then greatly advanced by its variants [41,42]. On the
one hand, this field has achieved remarkable improvements thanks
to the enhancement of multimodal data processing capabilities
[43–45]. Reed et al. [46] extend conditional GANs [47] to generate
natural images based on text descriptions. Chen et al. [48] intro-
duce conditional GANs to achieve cross-modal audio-visual gener-
ation of musical performances. Johnson et al. develope a novel
GAN-based model [7] that takes as input a scene graph to generate
a realistic image. On the other hand, novel architectures have been
developed to adapt to high-fidelity multimodal visual content syn-
thesis, such as stack architecture [49,50], cycle architecture
[51,52], and attention mechanism [43,53]. In addition to explo-
ration of the latent space [54] of GANs, many methods use a pre-
trained GAN to process images through GAN inversion [55]. With
the development of large-scale natural language processing mod-
els such as Transformer [56], methods like DALL-E [57] can per-
form high-fidelity and controllable cross-modal generation.
Obviously, the study of visual content synthesis has important
implications for artificial intelligence.

The key contributions of this survey can be summarized in the
following points:

� This survey covers contemporary literature with respect to
multimodal-guided visual content synthesis, and provides a
comprehensive overview of the recent efforts in terms of the
modalities, datasets, evaluation metrics, and future research
directions.

� In order to make the survey more organized, we formulate a
taxonomy of multimodal-guided synthesis methods according
to its guidance forms. In each subsection, we summarize the
related models under the aspects of structure, idea, application,
and limitation. Then, the commonly used datasets and evalua-
tion metrics are provided, followed by the performance of exist-
ing methods.

� Finally, this survey summarizes the typical challenges with an
outlook towards promising areas and directions for future
research in this field.
111
The reminder of this survey is organized as follows: Section 2
discusses the taxonomy of visual content synthesis. In order to
make a clear roadmap, we categorize the tasks according to differ-
ent input forms. In Section 3–6, we summarize the typical task of
visual content synthesis, and discuss the ideas and structures of
each model. Section 7 summarizes benchmark datasets and com-
mon evaluation metrics. Finally, challenges and future directions
are given in Section 8.
2. The Taxonomy of Visual Content Synthesis

Automatically synthesizing lively visual content conditioned on
different modal information, is of great value in many real-world
applications, such as social media, film production and entertain-
ment advertising. It is interesting that people could ask the machi-
nes to synthesize the desired images or videos, depending on the
information they get from seeing, reading, hearing or other ways.
The data obtained from different senses has a different form, which
is called multimodal data. Based on the powerful generation capa-
bilities of neural networks, the synthesis of diverse visual content
driven by multimodal guidance has evolved rapidly. In the follow-
ing, we propose a taxonomy to summarize multimodal-guided
visual content synthesis methods, and divide them into four cate-
gories, including visual-guided, text-guided, audio-guided and other-
modal-guided, depending on the form of input data. Our proposed
taxonomy of visual content synthesis is illustrated in Fig. 1.

2.1. Visual-Gudied Visual Content Synthesis

Visual information makes up most of the information people
receive in their daily lives. Thanks to the development of uncondi-
tional synthesis methods [21,28,31], conditional visual content
synthesis methods could train a powerful generative network that
uses additional visual information as a condition. Compared to
other modal data, visual modality could provide clearer cues of
texture and structure [42,58–61]. We discuss the visual-gudied
visual content synthesis in Section 3.

2.2. Text-Guided Visual Content Synthesis

Text descriptions are more flexible modal data for conditional
visual content synthesis. The common task of text-guided visual



Fig. 2. The overview of StarGAN2 model. Through different networks, the model
can achieve multiple domain transaltion. This figure comes from [62].
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content synthesis is general text-to-image synthesis [46,63–66],
which uses the text description as semantic guidance. Moreover,
text-guided visual content manipulation [67,68] is another com-
mon task for visual content synthesis, which combines both visual
and text modalities as conditional input. Since the text descriptions
usually contain objects and their corresponding relationships, it is
crucial to extract explicit guidance information from it. In addition,
due to the heterogeneous features, different researchers have pro-
posed several approaches for cross-modal fusion. We discuss text-
guided visual content synthesis in Section 4.

2.3. Audio-Guided Visual Content Synthesis

Sound is a special modal for conditional visual content synthe-
sis that helps people recognize the real world. Audio-to-visual
cross-modal generation and manipulation have attracted consider-
able attention recently [69–71]. It involves separating semantic
information from audio signals and creating a cross-modal gener-
ation network. Although it is easy for human to perceive the natu-
ral correlation between sounds and appearance, this task is still
challenging for machines due to heterogeneity of modalities. We
discuss audio-guided visual content synthesis in Section 5.

2.4. Other-Modal-Guided Visual Content Synthesis

Beyond regular modalities, there also exists other forms of data
that provides more refined objective relationships and more direct
way for interaction. Such modalities also can be treated as condi-
tional guidance, including semantic segmentation [72,73], scene
graph [7], facial mask [74], keypoints [8], line art drawing [75].
We give a brief review of such methods in Section 6.

3. Visual-Guided Visual Content Synthesis

For visual content synthesis, the common guidance modalities
are natural images and videos. We group the visual-guided visual
content synthesis as image-to-image (Section 3.1), image-to-
video (Section 3.2), and video-to-video (Section 3.3) synthesis.

3.1. Image-to-Image Translation

Many problems in image processing, computer graphics, and
computer vision can be posed as ‘‘translating” an input image into
a corresponding output image [41]. Image-to-image translation
aims to learn the mapping from a reference image to a target
image, which can be regarded as domain transfer problem
[2,76,77]. The key idea of this task goes back to Hertzmann et al.
[78]. In order to better transfer cross-domain information, image-
to-image translation needs to disentangle the domain-dependent
features and domain-independent features. Due to that collecting
a pair of images which belongs to different domains may be
unreachable, it is challenging to learn the mapping tranformation
betweent multiple domains. In the following we discuss the way
of supervision, then we list three common tasks.

3.1.1. Paired & Unpaired Supervision
Ideally, image-to-image translation requires paired data con-

taining the original images and its corresponding ground truth
images ðx; yÞ belonging to different domains ðX;YÞ respectively,
which is called paired supervision. During training, the models
learn a mapping network to translate x to y. Isola et al. propose
Pix2Pix [41], which is the first supervised image-to-image transla-
tion approach using conditional GAN. Pix2Pix framework consists
of a U-Net-based [80] generator and a markovian discriminator.
The objective function of Pix2Pix uses conditional GAN (cGAN) loss
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with L1 norm, which leads to ideal image tranlation. However, the
Pix2Pix method [41] is still limited to being of low resolution.
Besides, directly using L1 loss as constrain leads to blurry images
[41,81]. Wang et al. propose Pix2pix-HD [82], which increases
the resolution of the tranlation images to 2048� 1024. Pix2pixHD
utilizes a coarse-to-fine generator with three multiscale discrimi-
nators. The robust adversarial objective function helps to synthe-
size high-resolution images.

Usually paired data for training image-to-image translation is
unreachable, so dominant method in this field gradually adopts
unpaired supervision. CycleGAN [42] and DualGAN [83] are two
methods in the field of unsupervised image translation research.
These two methods simultaneously use the cycle consistency loss,
which can learn the mapping of one domain to another without the
aligned paired image data. Liu et al. [84] propose an UNsupervised
Image-to-image Translation framework (UNIT), which uses VAE to
project different domain images into the shared latent space. Aim-
ing at the problem that the existing methods cannot generate mul-
tiple styles of images from a given source domain image, Hu et al.
[85] propose Multimodal UNsupervised Image-to-image Transla-
tion (MUNIT). This method trains two autoencoders to encode
the content and the style respectively, which can disentangle the
image representation into domain-invariant and domain-specific
parts. By combining the different domain codes, this method can
realize high-quality and diverse image translation. At the same
time, Lee et al. propose DRIT [86], which uses the content discrim-
inator and cross-cycle consistency loss to achieve image represen-
tation disentanglement. Subsequently, on the basis of DRIT, DRIT++
[87] adds regularization items to alleviate the problem of pattern
collapse in DRIT. To learn multi-domain image translation, Choi
et al. propose StarGAN [88] which allows simultaneous training
of multiple datasets within different domains of a single network
by leveraging three loss functions. After that, StarGAN2 [62] is pro-
posed, which is able to use a single generator and discriminator
with multiple branches to map between multiple domains and
produce a diverse set of images, as illustrated in Fig. 2.

3.1.2. Common Tasks
There are many meaningful tasks in the field of image-to-image

translation. We give a review of three common tasks in the follow-
ing, including image super-resolution, image dehazing, and image
style transfer.

Image Super-Resolution (SR) aims to recover a high-resolution
image from a single low-resolution image. SRCNN [89] is the earli-
est deep image SR method, which directly use a convolutional neu-
ral network to learn the mapping relationship between low-
resolution interpolated images and high-resolution images. After
that, image super-resolution developed rapidly [90–92]. With the
development of GANs, SRGAN [93] first applies it to solve single
image SR task. RCAN [94] introduces an attention mechanism into
the network model for single image SR task to improve the expres-
sive ability of the network. Since the training data distribution in



Fig. 3. The overview of SFTGAN model. The method proposed a novel Spatial Feature Transform (SFT) layer based on affine transforation to perform image super resolution.
This figure comes from [79].
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super-resolution tasks is generally uniform, the batch normaliza-
tion layer will not improve the model effect but will complicate
the mapping which the network needs to learn, resulting in a poor
model effect. ESRGAN [95] removes the batch normalization layer
in the residual module to improve the effect of the model. Wang
et al. [79] propose a method to recover natural and realistic texture
named SFTGAN, which leverages a novel Spatial Feature Transform
(SFT) layer based on affine transforation, as shown in Fig. 3.
Besides, AdderSR [96] leverages additive neural networks to deal
with the single image SR task. Chan et al. [97] propose an image
super-resolution method based on GAN inversion, which is named
GLEAN. Reference-based SR (Ref-SR) is a technical route of image
SR which is different from single-image super-resolution. Aiming
at the problem that the existing Ref-SR method has less consider-
ation of the scene structure and cannot complete the high-quality
super-resolution in the case of a large resolution gap, Zhou et al.
[98] propose Cross-MPI. It proposes plane-aware attention mecha-
nism to make full use of the hidden scene structure for efficient
attention-based correspondence search. In order to solve the trans-
formation gap (representing scale and rotation transformation)
and resolution gap (the mapping between high-resolution and
low-resolution), Jiang et al. [99] propose the C2-Matching method,
which uses contrastive learning and teacher-student knowledge
distillation to enhance transformation mapping relationship.

Image Dehazing has received a great deal of research focus in
image restoration field. Various end-to-end CNN-based methods
have been proposed [100–104]. Zhang et al. [105] propose an
end-to-end image dehazing method (DCPDN). It adopts the
encoder-decoder structure of densely connected edge reservation
based on the multi-level pyramid pooling module. Zhang et al.
[106] propose a multi-scale image dehazing method based on a
deep perceptual pyramid network, which uses CNN to learn the
nonlinear relationships between the blurred image and the corre-
sponding clear image. Due to inaccurate parameter estimation,
the performance of dehazing will further reduce, resulting in color
distortion. To solve this problem, Dong et al. [107] propose an end-
to-end image dehazing method dubbed FD-GAN which is based on
GANs with fusion-discriminator. By using frequency information as
the additional priors, this model can generate more realistic dehaz-
ing images with less color distortion and fewer artifacts. Wu et al.
propose AECR-Net [108] with autoencoder-like architecture and
contrastive regularization to further enhance dehazing ability.

Image Style Transfer has become an active research topic in
computer vision fields that aims to map a content image into the
style of a different reference image [109,110,4,111]. Gatys et al.
[112] propose the method which is the first to study how to use
the convolution neural network to reproduce the well-known
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painting style on natural images. The method successfully pro-
duces a stylized image with a given artistic style and opens up a
new field called image style transformation, which is the initial
work of rendering different styles for content images using convo-
lution neural networks. The current image style transfer methods
can be categorized as being based on either image optimization
or model optimization [113]. The pioneering work of the method
based on iterative optimization of images is proposed [114], which
changes the style of the input image through iterative optimiza-
tion. The key idea of image optimization is to match feature statis-
tics of intermediate layers in a CNN [115–118]. However, iterative
optimization per image is comparatively slow. Model
optimization-based approach trains feed-forward networks offline
on datasets, which have the advantage that it can realize real-time
image style transfer [81,119]. Johnson et al. [81] construct percep-
tual loss by using specific scale features extracted from the pre-
trained network. Then, the perceptual loss is used as the objective
function to train the feed-forward network for style transfer tasks.
However, these methods were restricted to a fixed set of styles
[120,119]. To solve this problem and realize multi-style transfer,
Dumoulin et al. [121] propose Conditional Instance Normalization
(CIN) based on Instance Normalization (IN). Subsequently, Huang
et al. [122] propose Adaptive Instance Normalization (AdaIN) on
CIN which makes that arbitrary image style transfer models can
be realized.

3.2. Image-to-Video Synthesis

Generating video from image refers to changing static image
into dynamic visual frequency, which can be used in time-lapse
photography to make video animation from images [123–127]. In
video generation, an important problem is how to obtain timing
information. Most methods rely on the color appearance change
information provided by the reference video, but it is very difficult
to find the reference video with similar semantic information to
the input image. Nam et al. propose Time-Iapse [128] that can gen-
erate a continuous video with timing information from a single
outdoor image to achieve the effect of time-lapse photography
by learning the correlation between lighting changes and time of
outdoor scene. Zhao et al. propose a method to generate a painting
video according to the created painting [126].

3.3. Video-to-Video Synthesis

Different from image, video modality includes temporal
information which is more complicated for machines to process.
The original synthesis researches are aimed at the task of video



Fig. 4. The overview of MoCoGAN model. The generator produces a frame using the
content and the motion vectors which are mapped from random variables via
recurrent neural network. This figure comes from [58].
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generation. Among them, the Video Generative Adversarial Net-
work (VGAN) [130], the Time Generative Adversarial Network
(TGAN) [131], and the Motion and Content decomposed Generative
Adversarial Network (MoCoGAN) [58] are proposed for uncondi-
tional video synthesis. The overview of MoCoGAN model is shown
in Fig. 4. Thanks to the development of such models, video-to-
video synthesis [132,133] has attracted more attention. Video-to-
video synthesis aims to convert the input semantic video into real-
istic video, but it is difficult to ensure the consistency of frames.
Wang et al. propose a video-to-video synthesis model (Vid2Vid)
[132], which takes the optical flow information as constraints to
generate coherent and high-quality videos. Aiming at the problems
of lack of data and limited generalization ability of model, Wang
et al. [133] propose a few-shot video-to-video synthesis frame-
work, which uses a small number of samples to synthesize videos
of objects or scenes that have not been seen before.
3.3.1. Common Tasks
The common tasks of video-to-video synthesis mainly includes

video SR, style transfer, and video prediction [134–136]. Earlier,
Shechtman et al. [137] use the multiple spatio-temporal informa-
tion at the same time to perform video super-resolution. How-
ever, because the super-resolution operation is performed in the
high-resolution space, the calculation complexity is relatively
large. Therefore, Shi et al. [91] reduce the video super-resolution
process by extracting feature maps in the low-resolution space.
In addition, Wang et al. [132] introduce spatio-temporal adversar-
ial loss to realize that videos can be generated from inputs of dif-
ferent formats to achieve high-resolution video-to-video synthesis.

In the direction of video style transfer, Chan et al. propose a
model [134] that transfers the dance pose from source video to tar-
get video. The model first uses a detector to create a pose estima-
tion model for the input video, and then designs a system to learn
the image mapping from the normalized pose to the target person.
Nonetheless, it is still difficult to establish an accurate model to
describe the complex nonlinear motions of human body. Yang
et al. propose Trans-MoMo [136] model, which uses 2D keypoint
information to train the network end-to-end, so as to better gener-
ate human action videos.

Video prediction is another task which predicts future frames
based on existing frames. Video prediction trains a video predic-
tion model to predict future frames based on existing frames. Con-
volutional Dynamic Neural Convection Network (CDNA) [138] and
Video Ladder Network (VLN) [139] use the Long Short-Term Mem-
ory [225] network and stacked autoencoder respectively to model
the motion through the transformation of pixels, which realize the
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prediction of future frames. Chiappa et al. [140] design an action
condition generative model to accurately predict future frames
based on the actions in the known frames. The above research only
considers motion information, so the DRNET [141] learns and com-
bines the potential representation of content and motion in the
video. However, these methods do not explicitly model the inher-
ent pixel motion trajectory, which can lead to blurred predictions.
Therefore, Liang et al. [142] develop a dual motion generative
adversarial network architecture, which uses a dual adversarial
learning mechanism to make the synthesized pixel value in the
future frame consistent with the pixel motion trajectory, thereby
generating a clear prediction.
4. Text-Guided Visual Content Synthesis

Text is the most common guidance for cross-modal visual con-
tent synthesis in the real world. The goal of text guidance synthesis
is to generate high-realistic visual content matching with the
semantics of the given textual descriptions. Due to the flexibility
and multiformity of text modal, it is essential to extract the correct
guidance information influenced by ambiguous semantics. What’s
more, there still exists heterogeneous differences between modal-
ities, which makes it hard for deep models to generate precise
visual content. Although significant progress has been made, it is
still challenging to maintain the semantic consistency between
the text description and the generated visual content. Thus, the
keys can be measured from two aspects, namely, text encoding
and consistent generation. In the following sections, we first give
a brief of common text encoding methods in Section 4.1. Then,
we discuss text-guided visual content synthesis tasks in
Section 4.2.
4.1. A Brief of Text Encoding Approaches

As mentioned above, a good semantic representation encoded
from text descriptions is essential to guide visual synthesis. In
the begining, traditional methods, such as Bag-of-Words [143]
and Word2Vec [144], have been used to encode texts. With the
development of natural language processing, more efficient meth-
ods are leveraged in text guidance synthesis. The milestone work,
GAN-CLS [46] uses a hybrid character-level convolutional-
recurrent neural network to encode texts. StackGAN [49] leverages
Conditioning Augmentation (CA), which samples latent codes from
a Gaussian distribution based on text embedding, to yield more
training image-text pairs. AttnGAN [43] learns text encoding with
a bidirectional LSTM [145] by concatenating its hidden states. Mir-
rorGAN [51] uses recurrent neural networks to extract word fea-
ture and sentence feature. Other methods [146] leverage the
large-scale pre-trained models, such as Transformer [56] and BERT
[147], as powerful text encoder. As one of the cross-modal pre-
trained models, CLIP [129] has attracted more and more attention.
It jointly trains an image encoder and a text encoder to predict the
correct pairings of a batch of (image, text) training examples, as
depicted in Fig. 5, achieving SOTA performance on both image
and text representations. Recently, some methods
[148,45,149,150] leverage the pre-trained text encoder integrated
in CLIP to yield accurate text embeddings.
4.2. Text-Guided Visual Content Synthesis Methods

In the following, we discuss two tasks in the field of text-guided
visual content synthesis. Each tasks we list different efficient mod-
els with various basic networks.



Fig. 5. The contrastive pre-training overview of CLIP model. The pre-trained text
encoder of CLIP model can be leveraged to extract textual guidance. This figure
comes from [129].
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4.2.1. Text-to-Visual Generation
Given a desire text description T, this task aims to generate

visual content V matching in the semantic space. Through the text
encoding network, the textual semantic information is extracted to
guide the deep generator network. In the following, we categorize
and discuss the different methods according to their
characteristics.

Pioneer. Reed et al. [46] propose GAN-CLS, which is the pioneer
of text-to-image generation method. It concatenates text encoding
with randomly sampled gaussian noise to synthesize final images,
and leverages matching-aware discriminator to score three types
of input. Mittal et al. proposed Sync-DRAW [226] that is the first
method for text-to-video generation. It creates the sequence of
time frames through VAE combined with attention mechanism,
and effectively learns the spatio-temporal property from the video.

Stacked Architectures. Aimming to synthesize high-resolu-
tion images, stached architectures are adopted in text-to-image
synthesis. Zhang et al. [49] propose StackGAN, which uses an iter-
ative method to generate high-resolution images. The first genera-
tor ouputs a low-resolution image, which is further improved
resolution by the second generator. Most of the subsequent text-
to-image synthesis methods follow the two-stage model. Stach-
GAN++ [50] leverages three generators and discriminators jointly
to perform high-resolution synthesis. Instead of using multiple
generators, HDGAN [152] utilizes hierarchically nested discrimina-
tors at multi-scale layers.

Attention Mechanisms. To fucus on the synthesis of detailed
local region, attention mechanism was employed in text-to-
image synthesis. Xu et al. [43] propose an Attention Generation
Adversarial Network (AttnGAN). It learns the relationship between
related words and images through the attention mechanism so
that each area of the synthesized image has finer-grained details.
Tan et al. [153] propose the Semantic Enhance Generative Adver-
sarial Network (SEGAN) which constructs adaptive attention
weights to distinguish between keywords and unimportant words
to improve the stability and accuracy of the network. ControlGAN
[53] proposes a word-level spatial attention which allows to corre-
late the words with the corresponding semantic region.

Cycle Consistency. Cycle consistency could enforce a strong
connection between domains by constraining the models (e.g.,
encoder and decoder) to be consistent with one another
[42,83,154]. Qiao et al. [51] propose MirrorGAN, which uses a
text-to-image generation framework with global–local attention
and semantic preserving mechanism to deal with text-to-image
generation problems. Lao et al. propose [155] to disentangle the
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content and style by augmenting current text-to-image synthesis
frameworks with a dual adversarial inference mechanism. Liu
et al. propose CMDL [228], which through the dual learning mech-
anism to learn the bidirectional mapping between sentences and
videos simultaneously.

Contrastive Mechanisms. Zhang et al. [5] use contrastive learn-
ing to build a cross-modal generative adversarial network (XMC-
GAN) to deal with text-to-image generation problems. XMC-GAN
uses multiple contrastive loss to maximize the mutual information
between image and text, captures the correspondences of inter-
modality and intra-modality of text and images. The attentional
self-modulation generator and contrast discriminator are used to
force the learning of text-image correspondence to achieve the
continuity, rationality, semantic relevance of text-to-image
synthesis.

Language-Free. Inspired by the recent progress in large-scale
cross-modality pre-training model CLIP [129], various methods
attempt to leverage the latent space of CLIP to optimize the match-
ing score between textual prompt and visual generation content.
Along with this approach, a new generation paradigm, language-
free text-to-image generation, is rising. Wang et al. propose CLIP-
GEN [45], which uses the cross-modal semantic consistency in CLIP
space to realize language-free generation. The framework is
trained to leverage the extracted visual embedding from CLIP to
synthesize images with language-free. During inference, the
framework can generate images driven by the given description.

4.2.2. Text-Guided Visual Content Manipulation
Visual content manipulation is a challenging task in computer

vision. Given a desire textual prompt T and visual content V, the
manipulator learns to edit the visual content to meet the require-
ments. Take image manipulation as an example, it mainly manip-
ulates images through color and geometric interaction and
completes tasks such as image deformation and mixing. However,
it is challenging for this task to manipulate relevant visual content,
while keep the unrelevant parts unchanged. In the following, we
discuss this task in two ways.

GAN-Based manipulation methods are dominant which lever-
ages the cross-modal alignment. Dong et al. propose a Semantic
Image Synthesis GAN (SISGAN) [156] for synthesize realistic
images directly with language description. SISGAN concatenates
text and image representations to synthesize final manipulated
images while discriminator performing the distinguishing task
conditioned on text semantic features. However, such methods
could not disentangle the relevant and irrelevant regions, resulting
in undesirable modification of text-irrelevant parts. To overcome
this problem, Nam et al. propose the Text-Adaptive Generative
Adversarial Network (TAGAN) [157], which forces the generator
to disentangle differenet regions of image. The key idea is to split
a single sentence-level discriminator into a number of word-level
discriminators so that each word-level discriminator is attached
to a specific type of visual attribute. Li et al. propose ManiGAN
[67], as illustrated in Fig. 6. It is composed of text-image affine
combination module (ACM) and correction module (DCM). The for-
mer enforces text and image features to collaborate to select text-
relevant regions, and correlate those regions with corresponding
semantic words for generating new visual attributes semantically
aligned with the given text description. The latter rectifies mis-
matched attributes and complete missing contents.

GAN inversion manipulation methods have been proposed
recently to bridge real and fake image domains, which can be used
to perform text-guided image manipulation. We briefly introduce
the preliminary of GAN inversion.

The unconditional GAN learns to map a latent vector z to image
x. By contrast, GAN inversion is to map real image x back to latent
representation z� through a well-trained generator. Formally,



Fig. 6. The architecture of ManiGAN model. The network could effectively select image regions corresponding to the given text, and correlate those regions with text
information for accurate manipulation. This figure comes from [67].
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denoting the signal to be inverted as x, the well-trained generator
as G, latent vector as z, GAN inversion can be formulated as below:

z� ¼ argmin
z

‘ðGðzÞ; xÞ; ð1Þ

where ‘ðÞ is a distance metric in the image or feature space. Typi-
cally, ‘ðÞ can be based on ‘1; ‘2, perceptual [81] or LPIPS metrics
[158]. After obtaining the latent vector z�, we can edit the corre-
sponding image throuth latent manipulation, the schematic dia-
gram is shown in Fig. 7.

Through GAN inversion, text-guided manipulation can be
achieved in a latent way. Xia et al. [160] propose TediGAN for mul-
timodal image generation and manipulation with textual descrip-
tions. It consists of three parts: a model inversion module based
on StyleGAN [30,31], visual-linguistic similarity learning, and
instance-level optimization. The inversion module maps the real
image to the latent space of the pre-trained StyleGAN. Visual lan-
guage similarity learns the text-image matching relationship by
mapping images and text to a common space. The instance-level
optimization is for identity preservation in manipulation. By using
a control mechanism based on style mixing, TediGAN can support
image synthesis with multi-modal input. Inspired by the recent
progress in cross-modality language-vision pre-training of CLIP
model [129], various optimization-based methods attempt to
search in image space based on a query text by optimizing the
Fig. 7. Illustration of GAN inversion, which maps a real image x back into the latent
space and obtains the latent vector z� . By varying the interpretable directions of z�

(e.g. z� þ n), the image manipulation can be achieved in a latent manner. This figure
comes from [151].
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text-image matching score of a pre-trained CLIP model. StyleCLIP
[148] leverages the latent codes inverted by pre-trained StyleGAN
model. By optimizing the semantic distance between text and
image in CLIP space, StyleCLIP can achieve image manipulation
through latent mapping, as shown in Fig. 8.

5. Audio-Guided Visual Content Synthesis

Humans can imagine the scenes corresponding to sounds and
vice versa. Researchers have tried to endow machines with this
kind of imagination for many years. Due to the difference between
audio and visual modalities, the potential correlation between
them is nonetheless difficult for machines to discover. Thanks to
the development of deep generative networks, many methods
[70,161,69] succeed in synthesizing visual content guided by audio
modal. In this section, we first provide a brief of audio encoding in
Section 5.1. Then, we give a review of audio-to-visual generation
tasks in Section 5.2.

5.1. A Brief of Audio Encoding Approaches

To perform perfect generation, it is essential for machines to
obtain powerful audio embeddings from audio signals. Chen
et al. [48] explore a set of representations including the Short-
Time Fourier Transform (STFT), Constant-Q Transform (CQT),
Mel-Frequency Cepstral Coefficients (MFCC), Mel-Spectrum (MS)
and Log-amplitude of Mel-Spectrum (LMS). Besides, Wang et al.
propose [162] a audio-to-image generation network given pairs
of sound segments and images. To perform better cross-modality
synthesis, the method evaluates four sound feature representation
approaches, including Spectrogram, MFCC, Fbank, and pre-trained
SoundNet [163]. After encoding, all the features in the sequence
are averaged into a single vector which is taken as the condition
of generator.

5.2. Audio-Guided Visual Content Synthesis

In the following, we give a brief review of several audio-driven
visual synthesis tasks, incluing audio-to-visual generation and
audio-guided visual manipulations.

5.2.1. Audio-to-Visual Generation.
Speech-to-image Generation. Chen et al. [48] first introduce

the problem of cross-modal audio-visual generation. The method
defines a Sound-to-Image (S2I) network and an Image-to-Sound
(I2S) network. Each of them contains an encoder, a generator,



Fig. 8. The training strategy of StyleCLIP model. The image is inverted into latent codes first. Then mapping network manipulates the latent code to meet the requirements
guided by CLIP model. This figure comes from [148].
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and a discriminator. Most recently, some studies try to generate
images conditioned on the speech description. Li et al. [159] pro-
pose a speech-to-image model that trains the speech encoder via
teacher-student learning, so that the knowledge in a pre-trained
image encoder is transferred to speech encoder. Then, the speech
feature is leveraged to synthesize images through conditional
GAN, as illustrated in Fig. 9.

Body Motion Generation. Body motion generation aims to ani-
mate avatars motions using audio signals as input. Alemi et al. pro-
pose a real-time GrooveNet [164]. It is trained on a set of
recordings of dance movements performed with dance music.
The model is based on conditional restricted Boltzmann machines
and recurrent neural neworks to generate dance movements from
music. Shlizerman et al. propose a method [165] that predicts body
skeleton and uses the skeleton to animate an avatar given as input
a music of violin. First it builds a LSTM network that learns the cor-
relation between audio features and body skeleton landmarks.
Then, it animates an avatar using predicted landmarks.

Talking Face Generation. Talking face generation aims to syn-
thesize people’s faces from speech or music, which abstracted
great interest in cross-modality generation. Kumar et al. propose
ObamaNet [166] that uses LSTM network with time-delay to pre-
dict the representation of the mouth shape given the audio fea-
tures as input and further generates photo-realistic lip-sync
videos. Eskimez et al. propose a method [167] that trains a neural
network to process the waveform with 1D convolutional layers,
and predict the active shape model (ASM) parameters of 3D face
landmarks with a following fully connected (FC) layer. Chen et al.
[161] design a hierarchical structure that leverages facial land-
Fig. 9. The speech-to-image generative network translates the audio signals to photo-re
[159].
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marks as intermediate representation and further generates talk-
ing faces based on the landmarks. Wang et al. [168] release the
MEAD dataset and proposes a method that generates emotional
talking faces by manipulating the upper and lower part of the face
respectively. Song et al. [169] propose a method that factorize each
target video frame into orthogonal parameter spaces, i.e., expres-
sion, geometry, and pose, via monocular 3D face reconstruction
to construct a photo-realistic video. Ji et al. [6] propose cross-
reconstructed emotion disentanglement to decompose content
and emotion of the audio, and achieves emotional video portraits
generation.

5.2.2. Audio-Guided Visual Manipulation.
Sound provides polyphonic information of the scene and con-

tains multiple sound events [170]. Audio-guided visual manipula-
tion aims to use polyphonic information as an imagery source for
visual content editing. Some methods mainly focus on music-
guided cross-modal generation with no sound semantics. Lee
et al. propose a music-to-visual style transfer method [171]. The
transfer system contains two major networks, including the Music
Visualization Net (MVNet) and the Style Transfer Net (STNet). The
former translates an input audio to an image which resembles the
style of that image paired with the audio. Then, the style image
generated by the MVNet and the target image are fed into the
STNet to synthesize the modified image which resembles the style
of the style image. Jeong et al. propose Tr€aumerAI [172] that gen-
erates a visually appealing video that responds to the input music.
The author manually labeled the music and image paires in a sub-
jective manner. The music covers various genres including classi-
alistic images, which is trained via teacher-student learning. This figure comes from



Fig. 10. The input scene graph is used to predict a scene layout. After that the layout is converted to an image using a cascaded refinement network (CRN). This figure comes
from [7].
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cal, jazz, pop, and so on. Based on the collected data, Tr€aumerAI
trained a simple transfer function that converts an audio embed-
ding to a style embedding which is generated as a sequence of
images by StyleGAN. The method sampled the 30 audio embed-
dings per second so that each frame of video is generated from
the corresponding audio embedding. Besides, Lee et al. [173] lever-
age GAN inversion to maninpulate images guided by sound.

6. Other-Modality-Guided Visual Content Synthesis

Inspired by the rapidly growing of deep generative networks,
many approaches try to synthesize realistic visual content with
the help of its expressive generating ability. Thus, other modalities,
such as semantic segment, scene graph, facial mask, sketch and so
on, are leveraged as special input to synthesize more diverse visual
content.

Some methods try to leverage the semantic segmentation or
layout as more meticulous conditions. Karacan et al. propose AL-
CGAN [72], which takes semantic layout and scene attributes inte-
grated as conditioning variables. The model is based on a cGAN
architecture which learns the layout and the content of the scene
using ground truth semantic layouts and transient attributes. Qi
et al. propose a semi-parametric method to photographic image
synthesis from semantic layouts, dubbed as SIMS [73]. It combines
the complementary strengs of parametric and nonparametric tech-
niques. Park et al. propose SPADE [174] with spatially-adaptive
normalization to convert semantic segmentation mask to a photo-
realistic image. The proposed normalization utilizes input seman-
tic layout while performing the affine transformation in the
normalization layers. Zhu et al. propose Semantic Region-
Adaptive Normalization (SEAN) [9], which extended SPADE [174].
The method proposed semantic region-adaptive normalization
for GANs conditioned on segmentation masks that describe the
semantic regions in the desired output image. The SEAN normal-
ization can extract style from a given reference image, and pro-
cesses the style information to bring it in the form of spatially-
varying normalization parameters. To perform fast and efficient
high-resolution synthesis, Shaham et al. propose ASAP-Net [175].

Besides, some methods utilize scene graph as condition to syn-
thesize visual content. Johnson et al. develop a model [7] which
takes as input a scene graph to generate a realistic image, as shown
in Fig. 10. The scene graph is processed with a graph convolution
network to compute embedding vectors for all objects. These vec-
tors are used to predict bounding boxes and segmentation masks
for objects, which are combined to form a scene layout. Finally,
the layout is converted to an image using a cascaded refinement
network [176].

What’s more, many methods leverages other modalities as
input, such as sketch, facial mask. Jo et al. [177] propose a GAN-
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based face editing method, which named SC-FEGAN. By using the
end-to-end trainable convolutional network and free-form user
input with colors and shapes as a guide, the image is generated
by the guidance of masks, sketches, and colors. Dong et al. [178]
propose FE-GAN, which first uses the parsing network with
multi-scale attention normalization to generate human parsing
from sketches and color. Subsequently, the generated human pars-
ing is used as the input of the image inpainting network, and a
fashion image with detailed texture is generated under the seman-
tic guidance from the human parsing. Gu et al. [179] propose a por-
trait editing method based on mask-guided cGAN, which is guided
by the facial mask and can generate various high-quality images.
By learning the feature embedding of each face component to con-
trol the synthesis and editing of face images, it is helpful to
improve the performance of image translation and partial editing
of face images. Li et al. propose a novel framework [10] that
explores and leverages semantic information to generate realistic
textures in sketch-to-image synthesis. Xu et al. [180] propose Face-
ShapeGene, which learns the disentangled shape representation of
the face image to achieve editing. FaceShapeGene realizes the task
of face editing by encoding the shape information of each semantic
part of the face into one-dimensional latent vectors while preserv-
ing the identity of the input face image at the same time.
7. The Experimental Evaluation

7.1. Datasets

It is obvious that high-quality and sufficient data is essential for
visual content synthesis. In this section, we list benchmark data-
sets for visual content synthesis under multimodal settings.
7.1.1. Visual-Guided Datasets
MNIST. The MNIST dataset [181] is a widely used dataset in

deep learning methods. It contains 70,000 labeled handwritten
digital images of which 6,000 are used as the training set and
1000 are used for testing.

SVHN. The Street View House Numbers (SVHN) digit database
[182] is a color house number dataset, which is similar to the
MNIST dataset. The dataset contains a total of 99,289 images.
Among them, 73,257 images are used as the training set and
26,032 are used for testing.

CIFAR. The CIFAR-10 dataset [183] is composed of color natural
scene graphs with a pixel size of 32� 32. The 60000 images can be
divided into 10 categories. CIFAR-100 is composed of 100 types of
images, each category contains 600 images. Among them, 500
images in each category are used for training, and 100 images
are used as test set.



Fig. 11. Examples images of mentioned datasets for image super-resolution,
include DVI2K[184] dataset and OST300[79] dataset.

Fig. 12. Examples images and corresponding captions of mentioned datasets for
text-to-image generation, including CUB-200 [185], Oxford-102 [186], and MS-
COCO [187].
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BSD. The BSD300 [188] have collected 12,000 hand-labeled seg-
mentations of 1,000 corel dataset images from 30 human subjects.
Half of the segmentations were obtained from presenting the sub-
ject with a color image; the other half from presenting a grayscale
image. The public benchmark based on this data consists of all of
the grayscale and color segmentations for 300 images. The images
are divided into a training set (BSD200) of 200 images, and a test
set (BSD100) of 100 images. The BSDS500 is an extended version
of the BSDS300 that includes 200 fresh test images. The BSD100,
together with Set5 [189], Set14 [190], Urban100 [191], and Man-
ga109 [192], is often used as a test set for single-image super-
resolution task.

Transient Attributes. The transient attributes dataset [193]
contains 8;571 images taken from 101 webcams. This database
uses a taxnomy of 40 attributes labels related to weather, lighting,
time of the day, season and more subjective impressions.

DIV2K. The DIV2K [184] dataset is divided into training set, val-
idation set, and testing set. The training set consists low resolution
images with 2;3 and 4 downscaling factors obtaining from 800 cor-
responding high resolution images. Validation set and the testing
set each contain 100 images for testing. Examples are shown in
Fig. 11.

OST300. This outdoor scene dataset [79] is divided into Out-
doorSceneTrain and OutdoorSceneTest for training and testing
respectively. For OutdoorSceneTrain, each image is cropped so that
only one category exists, resulting in 1 k to 2 k images for each cat-
egory. Background images are randomly sampled from ImageNet.
The total number of training images is 10;324. The Out-
doorSceneTest partition consists of 300 images and they are not
pre-processedIn particular. Examples are shown in Fig. 11.

LSUN. The Large-scale Scene Understanding (LSUN) [194] chal-
lenge aims to provide a benchmark for large-scale scene classifica-
tion and understanding. The LSUN classification dataset contains
10 scene categories, such as dining room, bedroom, chicken, out-
door church, and so on. For training data, each category contains
a huge number of images, ranging from around 120,000 to
3,000,000. The validation data includes 300 images, and the test
data has 1000 images for each category.

FFHQ. Flickr-Faces-HQ (FFHQ) [30] consists of 70,000 high-
quality facial images at 1024� 1024 resolution and contains con-
siderable variation in terms of age, ethnicity, background and other
attributes.

Vimeo90K. The Vimeo90K [195] is the most widely used data
set in the field of video super-resolution. It is used for video
super-resolution, video denoise, video artifact removal and video
interpolation. But the resolution of this data set is relatively small.

REDS. The realistic and dynamic scenes (REDS) [196] was pro-
posed in the NTIRE19 Challenge. The dataset is composed of 300
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video sequences with resolution of 720� 1280, and each video
has 100 frames, where the training set, the validation set and the
testing set have 240, 30, and 30 videos.

CelebA-HQ. CelebA-HQ [28] dataset, which consists of 30;000
high quality facial images picked from the original CelebA [197]
dataset. The size of each high quality image is 1024� 1024. In
the original dataset, each image has 40 attributes annotations
inherited from the original CelebA.
7.1.2. Text-Guided Datasets
CUB. CUB [198] is a widely used text-to-image generation data-

set. CUB-200–2011 [185] is an extended version of CUB-200 which
has a total of 11,788 bird images in 200 categories. Each image only
contains a single object associated with 10 captions, as shown in
Fig. 12.

Oxford-102. The Oxford-102 dataset [186] is a flower dataset
proposed by Oxford University in 2008, which is mainly used for
image classification. The dataset contains 8,189 flower images in
102 categories. Each image contains a single object associated with
10 captions, as shown in Fig. 12.

MS-COCO. Microsoft Common Objects in Context dataset (MS-
COCO) [187] is built by Microsoft in 2014, which contains 91 object
categories. It contains captions that can be used for text-to-image
generation, as shown in Fig. 12. The 2014 split (COCO-14) is used
for evaluation in most methods. LN-COCO [199], which contains
localized narratives for images in the 2017 split of MS-COCO
(COCO-17), is a more challenging than MS-COCO for text-to-
image synthesis.

Visual Genome. Visula genome [200] dataset contains 108 K
images densely annotated with scene graphs containing objects,
attributes and relationships, as well as 1.7 million visual question
answers. It contains 5:4 million region descriptions, which can be
used for text-guided image generation.

ImageNet. ImageNet database contains more than 14 million
images, and a little more than 21 thousand classes. To evaluate
conditonal generation tasks, Wang et al. [45] construct the input
descriptions.
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7.1.3. Audio-Guided Datasets
GRID. There are 34 native English speakers in this dataset [201],

with 16 female and 18 male speakers, who are ranging from 18 to
49 years old. Each speaker has 1000 recordings that are 3 s in dura-
tion. The recordings contain sentences that are identical for each
speaker. The videos in GRID dataset have a frame rate of 25 FPS
and a resolution of 720� 576 pixels. Since each recording is 3 s
in duration, each video has a total of 75 frames. The video files con-
tain the corresponding audio that has a sampling rate of 44:1 kHz.

VoxCeleb2. This dataset [202] contains over 1 million utter-
ances for over 6,000 celebrities, extracted from videos uploaded
to YouTube. Videos included in the dataset are shot in a large num-
ber of challenging visual and auditory environments.

MEAD. MEAD [168] is a large-scale, highquality emotional
audio-visual dataset that contains 60 actors and actresses talking
with eight different emotions at three different intensity levels.
This large-scale emotional dataset can be applied to many fields,
such as conditional generation, cross-modal understanding, and
expression recognition.

7.1.4. Other Datasets for Visual Content Synthesis
Facial Mask. CelebAMask-HQ dataset [74] is a large-scale face

image dataset that has 30;000 high-resolution face images
selected from the CelebA [197] dataset with their corresponding
segmentation mask of facial attributes. The masks of
CelebAMask-HQ are manually-annotated with the size of
512� 512 and 19 classes including all facial components and
accessories.

Scene Graph. Visual Genome [200] version 1.4 (VG) contains
annotated scene graph, which can be used for visual content
synthesis.

Semantic Segmentation. ADE20K [203] dataset is annotated
with a 150-class semantic segmentation. Besides, COCO-Stuff
[204] and Cityscapes [205] also serve as the benchmark datasets
for semantic image synthesis.

Keypoints. DeepFashion [206] dataset, Faces dataset [207], and
Market-1501 [208] dataset can be used for human keypoint guided
image generation.

7.2. Evaluation Metrics

In the field of visual content synthesis, a variety of evaluation
metrics have been adopted for various tasks. The following is the
commonly used evaluation metrics for visual content synthesis.

RMSE. The Root-Mean-Square Error (RMSE) is a frequently used
metric that measures the differences between samples predicted
by the model. The RMSE represents the square root of the second
sample moment of the differences between predicted values and
observed values or the quadratic mean of these differences. RMSE
is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðĥÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eððĥ� hÞ2Þ

q
; ð2Þ

where ĥ is estimator respect to parameter h.
SSIM. The Structural Similarity Index Measure (SSIM) [209] is a

method for predicting the perceived quality of images and videos.
SSIM is used for measuring the similarity between two images,
consisting of luminance, contrast and structure. A more advanced
form of SSIM, called Multiscale SSIM (MS-SSIM) [210] is conducted
over multiple scales through a process of multiple stages of sub-
sampling, reminiscent of multiscale processing in the early vision
system. Suppose x and y are two nonnegative image signals, SSIM
is defined as follows:
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SSIMðx; yÞ ¼ ½lðx; yÞ�a � ½cðx; yÞ�b � ½sðx; yÞ�c;
lðx; yÞ ¼ 2lxlyþC1

l2
xþl2

yþC1
;

cðx; yÞ ¼ 2rxryþC2

r2
xþr2

yþC2
;

sðx; yÞ ¼ rxyþC3
rxryþC3

;

ð3Þ

where lðx; yÞ; cðx; yÞ, and sðx; yÞ denote comparisons of luminance,
contrast and structure, respectively. In order to simplify the expres-
sion, the weights are generally setting as a ¼ b ¼ c ¼ 1 and
C3 ¼ C2=2, which results in a simplified form of the SSIM:

SSIMðx; yÞ ¼ ð2lxly þ C1Þð2rxy þ C2Þ
ðl2

x þ l2
y þ C1Þðr2

x þ r2
y þ C2Þ ;

where lx and ly are the averages of x and y;r2
x and r2

y are the vari-
ances of x and y.

PSNR. Peak Signal-to-Noise Ratio (PSNR) denotes the ratio
between the maximum possible power of a signal and the power
of corrupting noise that affects the fidelity of its representation.
PSNR is commonly used to quantify reconstruction quality for
images and video subject to lossy compression. PSNR is defined
via the mean squared error (MSE) as follows:

PSNR ¼ 10log10
MAX2

i

MSE

 !
; ð5Þ

where MAXi is the maximum possible pixel value of the image.
LPIPS. Learning Perceptual Image Patch Similarity (LPIPS) [211]

measures the differences between two images. The lower the value
of LPIPS is, the more similar the two images are.

Inception Score. The Inception Score (IS) [212] is a popular
metric for image generation tasks. The IS uses the Inception v3
[229] network pre-trained on ImageNet, and calculates the statis-
tics of the network output when applied to the generated images,
as follows:

IS ¼ exp Ex2pgDKL p yjxð Þkp yð Þð Þ
� �

; ð6Þ

where x 2 pg denotes an image x sampled from pg , while DKL repre-
sents the KL-divergence, pðxjyÞ is the conditional class distribution,
and pðyÞ indicates the marginal class distribution. An approximation
to the expected KL-divergence can be calculated as follows:

IS 	 exp
1
N

XN
i¼1

DKL p yjxi
� �kp̂ yð Þ� �

: ð7Þ

Fréchet Inception Distance. The Fréchet Inception Distance
(FID) [213] evaluates the quality of an image generator by measur-
ing the difference between two distributions. The distributions of
these two types of images are regarded as multivariate Gaussian
distributions with different parameters. The lower the FID value
of a model, the better the performance. The FID between real
images and generated images is calculated as follows:

FID ¼ l1 � l2

�� ��2 þ TrðC1 þ C2 � 2ðC1C2Þ1=2Þ; ð8Þ
where l1;l2 denote the mean vectors of the features of the real and
generated images, respectively. Correspondingly, C1 and C2 are the
covariance matrices, while �k k represents the norm operator on vec-
tors and Trð�Þ indicates the trace operator on a matrix. Compared
with the Inception score, FID is a more reasonable evaluation
metric: specifically, this is because FID compares the generated



Fig. 13. Qualitative comparison of latent-guided image synthesis results on the
CelebA-HQ [28]. Each method translates the source images (left-most column) to
target domains using randomly sampled latent codes. The top three rows
correspond to the results of converting male to female and vice versa in the bo.
ttom three rows.

Table 2
Above the horizontal line is the summary of performance of image super-resolution
models on Set5 [189] dataset. The rest is the performance on other datasets. The
evaluation metrics include peak signal-to-noise ratio(PSNR), structural similarity
(SSIM).

Model PSNR " SSIM " Max Scale

SRCNN[89] 30:49 0:8628 �4
VDSR[90] 31:35 0:8838 �4
ESPCN[91] 30:90 - �4
EDSR[92] 32:60 0:8982 �4
SRGAN[93] 29:40 0:8472 �4
RCAN[94] 27:47 0:7913 �4
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image directly with the real images, and not with images of Ima-
geNet in the Inception score.

R-precision. R-precision [43] is an evaluation metric for the
text-to-image synthesis task. First the cosine similarities between
the global image features and the global text features are com-
puted. Then, rank candidate text descriptions for each image in
descending similarity. If there are R documents for a query with r
relevant descriptions, for the top R ranked retrieval results the R-
precision is r=R.

Landmark Distance & Landmark Velocity Difference. Land-
mark Distance (LD) [161] and Landmark Velocity Difference [217]
are utilized to evaluate facial motions. LD represents the average
Euclidean distance between generated and recorded landmarks
and LVD represents the average velocity differences of landmark
motions between two sequences.

7.3. Experimental Results

We list experimental results of multimodal-guided visual con-
tent synthesis collected from the related literature.

7.3.1. Visual-Guided
For visual-guided visual content synthesis, we conduct compar-

ison on image-to-image translation and image SR. For image-to-
image translation, the experimental comparison is conducted on
transient attributes [193] and CelebA [197] datasets, which is
shown in Table 1. Evaluation is performed with F1 Score and
Fréchet Inception Distance (FID) [213]. Meanwhile, qualitative
experiment conducted on CelebA-HQ dataset for image-to-image
translation [41,42,85,62] is shown in Fig. 13. Methods of compar-
ison include MUNIT [85], DRIT [86], MSGAN [218], and StarGAN2
[62]. By contrast, StarGAN2 model outperforms other methods in
both experimental results.

For image super-resolution, the experimental comparison is
conducted on Set5 [189] dataset, as illustrated in the top half of
Table 2. The rest of the Table 2 is experimental results on other
datasets: GLEAN is evaluated on Face [28] dataset, Cross-MPI is
evaluated on RealEstate10K [219] dataset, C2-Matching is evalu-
ated on Manga109 [192].

7.3.2. Text-Guided
For text-to-image generation task, we conduct comparison on

several datasets, including MS-COCO [187], Oxford-102 [186],
CUB [198]. The quantitative results are shown in Table 3. The eval-
uation metrics include IS [212], Human Rank (HR), FID [213], and
Table 1
Results of image-to-image translation methods on two datasets. The evaluation
metrics include F1 Score and Fréchet Inception Distance (FID).

Dataset Application Models F1 Score " FID #
Transient

Attributes [193]
Night to Day Pix2Pix 0:025831 202:146

CycleGAN 0:107669 199:840
MUNIT - 268:827
StarGAN2 0:212981 197:913

Day to Night Pix2Pix 0:012000 228:808
CycleGAN 0:010880 177:672
MUNIT 0:003818 240:590
StarGAN2 0:089745 180:301

CelebA [197] Male to Female CycleGAN 0:721799 47:529
MUNIT 0:939948 40:630
StarGAN2 0:787322 36:249

Female to Male CycleGAN 0:717887 48:420
MUNIT 0:814733 19:486
StarGAN2 0:871022 30:120

SFTGAN[79] 29:82 0:8400 �4
AdderSR[96] 32:13 0:8864 �4
GLEAN Face[97] 26:84 - �16
Cross-MPIRealEstate10K[98] 32:878 0:937 �8
C2-MatchingManga109[99] 30:47 0:911 �8
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R-precision [43]. The selected qualitative results are shown in
Fig. 14. Compared to other models [214–216], the images gener-
ated by XMC-GAN [5] are much higher fidelity.
7.3.3. Audio-Guided
We conduct the comparison in the task of audio-guided talking

face generation on MEAD dataset [168]. The metrics of Landmark
Distance (LD) and Landmark Velocity Difference (LV-D) [161,217]
are utilized to evaluate facial motions. The quantitative results
are shown in Table 4. By contrast, model [6] outperforms others
[161,168,169] in audio-visual synchronization (M-LD, M-LVD),
facial expressions (F-LD, F-LVD), and video quality (SSIM, PSNR,
FID).



Table 3
A summary of performance of text-to-image synthesis models mentioned above with
regard to evaluation metrics. The evaluation metrics include Inception Score (IS),
Human Rank (HR), Fréchet Inception Distance (FID), and R-precision (RP) [43].

Model Dataset Metrics Performance

GAN-CLS[49] CUB IS 2:88
 :04
HR 2:81
 :03

Oxford IS 2:66
 :03
HR 1:87
 :03

COCO-14 IS 7:88
 :07
HR 1:89
 :04

StackGAN[49] CUB IS 3:70
 :04
HR 1:37
 :02

Oxford IS 3:20
 :01
HR 1:13
 :03

COCO-14 IS 8:45
 :03
HR 1:11
 :03

AttnGAN[43] CUB IS 4:36
 :03
RP 67:82
 4:43

COCO-14 IS 25:89
 :47
RP 85:47
 3:69

StackGAN++[50] CUB IS 4:04
 :05
FID 15:30
HR 1:19
 :02

Oxford IS 3:29
 :01
FID 48:68
HR 1:30
 :03

COCO-14 IS 8:30
 :1
FID 81:59
HR 1:55
 :05

MirrorGAN[51] CUB IS 4:56
 :05
RP 60:42

COCO-14 IS 26:47
 :41
RP 80:21

SEGAN[153] CUB IS 4:67
 :04
FID 18:167

COCO-14 IS 27:86
 :31
FID 32:276

OPGAN[214] COCO-14 IS 27:88
 :12
FID 24:70

SDGAN[215] CUB IS 4:67
 :09
COCO-14 IS 35:69
 :50

CPGAN[216] COCO-14 IS 52:73
 :61
XMC-GAN[5] COCO-14 IS 30:45

FID 9:33
RP 71:00

LN-COCO IS 28:37
FID 14:12
RP 66:92

LN-OpenImages IS 24:90
FID 26:91
RP 57:55

CLIP-GEN[45] COCO-14 IS 21:4
FID 20:7

ImageNet IS 45:16
FID 16:74

Fig. 14. Qualitative experiment on MS-COCO dataset [187] for text-to-i.mage
generation.
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8. Challenges & Future Directions

Multimodal-guided visual content synthesis has achieved
impressive success in the field of deep learning, which comes with
higher requirements and challenges. In this section, we overview
the typical challenges in this field. Then, we highlight the future
directions through a comprehensive view.
8.1. Challenges

It is gratifying to see that visual content synthesis methods have
made great strides at present. However, since visual synthesis is
still in the development stage, there exist several challenges for
their practical applicability. To this end, we delve deep into this
field, and discuss the challenges for future development including
the following aspects.
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Interpretability & Controllability. In order to enable the speci-
fic visual content generated by the deep networks to meet people’s
requirements, we need to analyze the interpretability of the model
and improve its controllability. However, due to the high complex-
ity, most generative models lack the interpretability of the gener-
ation process. Although some methods try to increase the
interpretability of the model to some extent, they cannot be used
effectively to guide the synthesis process because they do not per-
form a quantitative analysis of each dimension of the hidden space.

Training Stability. The vast majority of current visual synthesis
methods are based on GANs, which achieve outstanding success in
this field. For further development, the open challenges of GANs
are still worthy of attention, such as ‘‘mode collapse” and unstable
training problems. Therefore, how to stabilize the training process
and improve the performance of GANs are still challenging in the
future research,.

Novel Generative Models. In order to process higher dimen-
sions and more complex multimodal input, novel efficient genera-
tive models are needed. With the emergence of Transformer model
[56] that supports for multimodal data processing, new generative
paradigm has been established for visual content synthesis. How-
ever, due to the quadratical complexity, it is hard for Transformer
model to perform real-time inference. Therefore, the design of
novel generative models remains a grand challenge in this field.

Evaluation Metrics. In addition, the evaluation metrics are
another important aspect that needs further improvement. Cur-
rently, there is no consensus on which evaluation metric best
assesses the strengths and limitations of models and can be used
for fair comparisons. Leveraging pre-trained models (e.g., FID) to
conduct evaluations does not adapt well to the new datasets.
Besides, user study is the most direct evaluations for visual content
synthesis, which is however too subjective.
8.2. Future Directions

The development of multimodal-guided visual content synthe-
sis technology is a concentrated manifestation of the development
of computer vision and multimodal information processing, and



Table 4
Quantitative comparisons with the state-of-the-art methods on MEAD dataset [168], including the results of landmark accuracies and video qualities. M- represents mouth and F-
stands for face region.

Model M-LD # M-LVD # F-LD # F-LVD # SSIM " PSNR " FID #
Chen et al. [161] 3:27 2:09 3:82 1:71 0:60 28:55 67:60
Wang et al. [168] 2:52 2:28 3:16 2:01 0:68 28:61 22:52
Song et al. [169] 2:54 1:99 3:49 1:76 0:64 29:11 36:33

Ji et al. [6] 2:45 1:78 3:01 1:56 0:71 29:53 7:99
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aims to generate visual content as realistically as possible. Contin-
uous advances in hardware and software have expanded access to
information sources and utilization of information. In this case,
more multimodal data can be obtained for visual content synthe-
sis. Therefore, novel algorithms are expected to be able to handle
guidance from multiple modalities concurrently. Moreover, the
interpretability and controllability that exist in visual content syn-
thesis are still worthy research directions. Although some meth-
ods, such as GAN inversion methods, have been explored in this
regard, but are still in their infancy. Further exploration the inter-
pretability and controllability of models is needed in the future to
generate higher quality visual content. Currently the vast majority
of visual synthesis methods are based on GANs which suffer from
unstable training problems. For multimodal-guided visual content
synthesis, it is valueable to find the way to improve the stability
and efficiency of model training. In addition, the use of different
evaluation metrics can lead to conflicting conclusions about the
quality of image synthesis. The evaluation metrics of multimodal
visual content synthesis are another directions of future develop-
ment. By making improvements in the above directions, the qual-
ity of visual content synthesis can be further improved in the
future, which will facilitate further applications of this research
in other fields such as education, business, and human–computer
interaction.
9. Conclusion

Understanding the world better from a human perspective is a
perennial topic in the deep learning community. In this survey, we
provide an overview of visual content synthesis from four perspec-
tives depending on input form, including visual-guided, text-guided,
audio-guided, and other-modal-guided. Furthermore, we detail the
advantages and motivation of these methods for various tasks,
such as image-to-image generation, text-to-image generation,
and audio-to-image generation. After introducing the methods,
we give a comprehensive overview of common datasets and eval-
uation metrics for visual content synthesis considering different
control modalities. Then, we compare the performance of existing
methods on several tasks. Last but not least, we give a comprehen-
sive overview of the challenges and future directions in visual con-
tent synthesis.
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