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Abstract—The goal of zero-shot learning (ZSL) is to recog-
nize objects from unseen classes correctly without corresponding
training samples. The existing ZSL methods are trained on a set
of predefined classes and do not have the ability to learn from
a stream of training data. However, in many real-world appli-
cations, training data are collected incrementally; this is one of
the main reasons why ZSL methods cannot be applied to certain
real-world situations. Accordingly, in order to handle practical
learning tasks of this kind, we introduce a novel ZSL setting,
referred to as incremental ZSL (IZSL), the goal of which is
to accumulate historical knowledge and alleviate Catastrophic
Forgetting to facilitate better recognition when incrementally
trained on new classes. We further propose a novel method to
realize IZSL, which employs a generative replay strategy to pro-
duce virtual samples of previously seen classes. The historical
knowledge is then transferred from the former learning step to
the current step through joint training on both real new and
virtual old data. Subsequently, a knowledge distillation strat-
egy is leveraged to distill the knowledge from the former model
to the current model, which regularizes the training process
of the current model. In addition, our method can be flexibly
equipped with the most generative-ZSL methods to tackle IZSL.
Extensive experiments on three challenging benchmarks indicate
that the proposed method can effectively tackle the IZSL problem
effectively, while the existing ZSL methods fail.

Index Terms—Generative replay, incremental learning, knowl-
edge distillation, transfer knowledge, zero-shot learning (ZSL).

I. INTRODUCTION

IN RECENT years, zero-shot learning (ZSL) [1]–[4]
has attracted significant attention in computer vision

fields [5]–[9]. These methods aim to recognize unseen classes
without any labeled training data. In the popular ZSL set-
ting [10], [11], the model is trained on a set of predefined
seen classes, which subsequently leverages the learned map-
ping to transfer the knowledge from seen to unseen classes,
the labels of which are disjoint with those of seen classes.

However, the existing ZSL methods [12]–[17] are unable
to learn and accumulate the knowledge of new training data
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sequentially, which leads to their inflexibility in many real-
world applications. In contrast, humans have the ability to
incrementally learn from a stream of new data and make better
predictions on unseen class data when the more classes they
see. Inspired by this phenomenon, we propose a more real-
istic ZSL setting, namely, incremental ZSL (IZSL), the goal
of which is to accumulate historical knowledge to improve
its ability to recognize unseen classes, as well as to alleviate
Catastrophic Forgetting and preserve its ability to recognize
seen classes when incrementally learning new classes. As illus-
trated in Fig. 1, the model is trained on multiple learning steps;
each of these steps includes images and semantic embeddings
of new classes, which contain abundant information regarding
the corresponding classes. The classes of different learning
steps are disjoint. During every learning step, the model is
evaluated on test images from both seen and unseen classes.
The key difference between the traditional ZSL and IZSL
settings is that our IZSL involves multiple learning steps on
new classes, while the traditional setting only conducts offline
training once on a fixed training set.

Due to the rapid growth of online data and constraints
on computational resources, incremental learning [18]–[20],
which aims to learn incrementally from a stream of training
data, has attracted significant attention in recent years. Our
IZSL is also a kind of Incremental Learning. However, unlike
the mainstream incremental learning setting [21], the training
and test sets in our IZSL are disjoint, which is more similar
to the human learning process and more suitable for real-
world applications. In addition, our setting focuses not only on
mitigating Catastrophic Forgetting [22] to preserve the ability
to recognize seen classes but also on accumulating historical
knowledge to improve the predictions on unseen classes.

Typical ZSL methods [1], [23], [24] try to learn a mapping
function between image features and semantic embeddings
of given seen class data. Subsequently, given a set of test
data, it is projected to semantic embedding space with the
learned mapping, and its label is predicted according to the
distance to the semantic embeddings of unseen classes. There
are also some ZSL methods [2], [10], [25] that train genera-
tive models in order to generate corresponding visual features,
given the semantic embeddings of the unseen classes, after
which the visual features from both seen and unseen classes
are utilized to train a better classifier that converts ZSL to
Supervised Learning. However, these ZSL methods are unable
to deal effectively with the IZSL problem; this is because
they cannot accumulate knowledge from old classes that have
previously been trained, which limits the application of these
methods to real-world situations. For example, as shown in
Fig. 2, a pretrained ZSL classifier for animals must recog-
nize the unseen class “panada,” which is not contained in
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Fig. 1. Overview of IZSL. As the number of seen classes increases, the model learns the new classes sequentially, which accumulates the knowledge from
previous seen classes, then transfers the knowledge from seen to unseen classes, which aids the model in effectively classifying these unseen classes.

the training dataset. The training dataset only contains the
seen class “bear,” which has some attributes related to panada.
Moreover, when we collect the data of other related classes,
for example, “cat” and “palm civet,” existing ZSL methods are
unable to capture the knowledge of these classes and cannot
recognize the unseen class panada without relearning previous
seen classes. For another example, Google employs “Zero-
Shot Translation” to achieve the translation between language
pairs that have never been seen explicitly, which extends their
previous Google neural machine translation (GNMT) to facil-
itate translation between multiple languages. However, it is
still necessary to learn new words and sentences sequentially
to improve Zero-Shot translation quality, thus equipping the
ZSL methods with the ability to perform incremental learn-
ing is essential to the application of these methods in many
real-world situations.

Accordingly, in this article, we present a novel approach
that employs the generative replay strategy [26], [27] and
knowledge distillation strategy [28]. f-CLSWGAN [10], which
is made up of traditional ZSL methods combined with generative
models, is selected as the basic model. f-CLSWGAN employs
Wasserstein-GAN (WGAN) [29] to generate the virtual visual
features of unseen classes from the corresponding semantic
embedding, after which these features are combined with the
visual features of the seen class to train a classifier. Based
on f-CLSWGAN, we further introduce the generative replay
strategy, which learns to generate the virtual visual features of
previously learned classes. The model is then trained jointly
on the training data of the current learning step and the virtual
data of previously learned classes. In addition, a knowledge
distillation strategy is employed to equip the current model
with the ability obtained from previous training steps, which
ensures that the current model generates similar visual features
as the former model generated with the same input.

To evaluate our new method and existing ZSL methods
under the proposed IZSL setting, we further design and

provide benchmarks tailored to the IZSL problem, based on
three popular ZSL datasets. More specifically, we split the
seen classes in every dataset into T subsets, each of which
has disjoint classes. Each subset serves as the training set in
a learning step. Extensive experiments demonstrate that our
method is able to effectively accumulate historical knowledge
from previously learned classes and alleviate Catastrophic
Forgetting, in cases where other state-of-the-art ZSL methods
are inoperative. In summary, the contributions of this work are
as follows.

1) To the best of our knowledge, we are the first to pro-
pose and tackle the IZSL problem. IZSL benchmarks
are accordingly designed and provided for evaluation.

2) We devise a novel approach for IZSL that employs
a generative replay strategy and knowledge distillation
strategy. The generative replay strategy enables knowl-
edge to be transferred from previously learned classes
to the current training step, while the knowledge distil-
lation strategy is employed to teach the current model
to capture the knowledge of previous learned classes.

3) Extensive experimental results on three benchmarks
demonstrate the effectiveness of our proposed approach,
which notably outperforms state-of-the-art ZSL
methods.

II. RELATED WORK

A. Generative Adversarial Networks

Generative adversarial networks (GANs) [30], which have
recently attracted considerable attention in the computer vision
field, consist of two components: 1) a generator and 2) a dis-
criminator. The generator learns to map from a latent space to a
particular data distribution of interest, while the discriminator
distinguishes between samples from the true data distribution
and candidates produced by the generator. In order to make
full use of the prior information, Mirza and Osindero [31]
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Fig. 2. Real-world example of IZSl. With the classes for training increasing,
the prediction of unseen class becomes more accurate.

introduced the conditional GAN (CGAN), which can feed the
class labels and sentence descriptions into both the genera-
tor and the discriminator. Moreover, in an attempt, to improve
the performance of GAN, the seminal technique known as
DC-GAN [32] was introduced to stabilize the training of
GAN, and has improved performance on many computer
vision tasks, for example, image generation [12] and video
generation [33]. Subsequently, to solve the unstable train-
ing issues associated with GAN, WGAN [29] was proposed
to optimize an efficient approximation of the Wasserstein
distance. Furthermore, to efficiently solve the task of image-
to-image translation, pix2pix [34] was introduced along with
its novel generator and discriminator. In addition, to resolve
the dilemma arising from the lack of paired data, Cycle-
GANs [35] was introduced based on CGANs and has obtained
good performance.

In a departure from the methods described above, our
method endows GAN with more new properties, accumulating
historical knowledge from the seen classes and transferring this
knowledge from the seen to unseen classes, which is the most
important bridge to seamlessly connect ZSL and Incremental
Learning.

B. Zero-Shot Learning

ZSL is a hot topic in transfer learning, which handles the
problem of some test classes not being included in the training
set. In the ZSL context, the unseen test samples are cap-
tured from the visual space, while their class embeddings
are available only in the semantic space. Thus, mainstream
ZSL approaches aim to build the connection between the
visual and semantic spaces by embedding visual features and

semantic embeddings. Typical embedding methods [1], [36]
learn a mapping function that projects the visual features into
a common embedding space, in which the unseen samples
can be recognized. Moreover, AREN [37] pays attention to
the region of images, which tries to construct the connection
between the regions and attributes. RGEN [38] leverages a
region graph embedding network to capture the discriminative
information of attributes. VMAN [39] considers the neighbor-
hood relationships between samples in both the semantic and
feature spaces. Recent developments have seen the success-
ful introduction of GANs have been successfully introduced
to ZSL. The purpose of GAN-based ZSL is to generate
visual unseen features from random noise and the correspond-
ing semantic embeddings. For instance, a feature-generating
network (f-CLSWGAN) [10] was proposed by employing
conditional WGANs. Based on f-CLSWGAN, a new regu-
larization was further employed [25] for GAN training that
forces the generated visual features to reconstruct their orig-
inal semantic embedding. In addition, VAE is employed to
synthesize the convolutional neural-network (CNN) features
of the unseen classes to tackle the ZSL task by many fol-
lowing methods [40], which obtain impressive performance.
Since generative-based methods convert ZSL into a conven-
tional supervised classification problem and achieve appealing
performance, we select f-CLSWGAN as our basic model.
LZSL [41] is leveraged to alleviate Catastrophic Forgetting
when learning different datasets, which cannot be applied
in IZSL.

However, all of the above-mentioned methods are trained on
a set of predefined classes and, thus, lack the ability to learn
additional classes without forgetting knowledge of previous
classes. In this article, we thereby propose IZSL to tackle the
problem.

C. Incremental Learning

Incremental Learning requires data to arrive sequentially
and the transfer of prior knowledge to the current task. A key
challenge for Incremental Learning is Catastrophic Forgetting,
which refers to cases in which the trained model forgets the
previous learned knowledge when adapting to a new task.
Many incremental models have been proposed to address
this issue, which can be broadly divided into three cate-
gories: 1) storing training samples [42]–[44]; 2) regularizing
the parameter updates [45]–[48]; and 3) learning a genera-
tive model to generate discriminative data [27], [49], [50].
Besides, the replay was first proposed in the work [51], where
the images of the previous tasks are produced by generative
methods and combined together with the data for the new
task by forming a new complete dataset, after which a new
model is trained using this new dataset. In addition, some
methods [48], [52], [53] leveraged representation learning to
bridge the semantic gap between two adjacent tasks. Recently,
Incremental Learning has been applied to many computer
vision tasks, including Few-Shot Learning [54] and seman-
tic segmentation [55], [56], which bridge the gap between the
computer vision field and real-world situations.
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Fig. 3. Framework of our proposed method in the t-th training step. The framework consists of a pretrained feature extractor, a pretrained classifier, two
generators, and a discriminator. Given an image, the extractor captures its visual features xt

i . Meanwhile, the corresponding attribute ct
i concatenated with

random Gaussian noise is mapped as x̃t−1
i and x̃t

i by Gt−1 and Gt , respectively. Subsequently, the x̃t
i is fed into the pretrained classifier and regularized by

Lcls. xt
i and x̃t

i are regularized by LWGAN, which makes xt
i and x̃t

i similar. Finally, Gt−1 teaches the training process of Gt , supervised by Lkd .

Unlike in traditional incremental tasks, the training and test
sets are disjoint in our IZSL when others are the same. In this
article, we leverage the generative replay strategy to tackle
IZSL without the need to train an extra generator, meaning
that this approach combines seamlessly with the generative
ZSL model.

III. METHODOLOGY

The existing ZSL models are only trained once on a set of
predefined classes and do not have the ability to incremen-
tally learn new classes without forgetting previously obtained
knowledge. To address this problem, we propose IZSL, the
framework of which is illustrated as Fig. 3. We leverage a
generative replay strategy to transfer the knowledge of seen
classes from previous training steps to the current training
step, facilitating the sequential accumulation of knowledge.
Moreover, we employ a knowledge distillation strategy to
supervise the learning process of the current model by encour-
aging the two networks to produce similar output given the
same input, which is effective in alleviating Catastrophic
Forgetting.

A. Problem Formulation

Assume that the entire training set is divided into T parts
without any overlap. During the t-th training step, we are given
a training dataset containing Nt samples, that is, denoted as
Dt = {(xt

i, yt
i, ct

i)|xt
i ∈ Xt, yt

i ∈ Yt, ct
i ∈ Ct}Nt

i=1, where xt
i ∈ Xt

is the visual feature of t-th image extracted from the CNN,
yt

i ∈ Yt denotes the class label in Yt = {y1,t, . . . , yKt,t} con-
sisting of Kt seen classes in the t-th training step, and ct

i ∈ Ct

is the semantic embedding of the class, which is the attribute

of class yt
i. In addition, we have a disjoint class label set of

unseen classes Yu = {u1, . . . , uL}, whose semantic embed-
ding set U = {(u, c)|u ∈ yu, c ∈ Cu} is available, although
the training images and visual features are missing. For all
T training steps, Yu is the same. Given Dt and U , the
task of IZSL is to learn a classifier fizsl : Xt → Ys ∪ Yu,
where Ys = (y1,1, y2,1, . . . , yKt−1,t, yKt,t), which contains all
seen classes from the beginning to the current training step.
Moreover, we also have all semantic embeddings from the
beginning to the current training step, which take the form
of point data for each class and can be saved with limited
memory.

B. Background: f-CLSWGAN

In this section, we first introduce the f-CLSWGAN
model [10], which is the backbone of our approach. The
f-CLSWGAN model is composed of a generator G, which
produces a virtual visual feature x̃, given its correspond-
ing semantic embedding c and a random Gaussian noise
z ∼ N(0, 1), a discriminative model D that tries to distinguish
the visual feature x from the virtual visual feature x̃ generated
from its semantic embedding c, and a pretrained classifier. The
original GAN, conditioned on the semantic embedding c, is
learned by optimizing the following objective function:

LGAN = E
[

log D(x, c)
] + E

[

log(1 − D(̃x, c))
]

(1)

with x̃ = G(z, c). Based on this, f-CLSWGAN relies on one
of the most stable training strategies for GANs, namely, the
Wasserstein GAN [29], the objective function of which is
denoted as follows:
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LWGAN = E[D(x, c)] − E[D(̃x, c)]

− λE
[

(‖∇̂xD(̂x, c)‖2 − 1)2
]

(2)

where x̃ = G(z, c), x̂ = αx + (1 − α)̃x with α ∼ U(0, 1),
while λ is the penalty coefficient. The first two terms in (2)
approximate the Wasserstein distance, and the third term is the
gradient penalty that enforces the gradient of D to regularize
the straight line between pairs of real and generated points with
a unit norm. To guarantee that the virtual visual features will
contain discriminative features of classes and will be suited for
training a robust classifier, f-CLSWGAN employs the classifi-
cation loss over the generated features. The classification loss
is defined as follows:

Lcls = −Ẽx∼p̃x

[

log P(y|̃x; θ)
]

(3)

where x̃ = G(z, c), y is the class label of x̃, while P(y|̃x; θ)

denotes the probability of x̃ predicted with its true class label y.
θ is the parameter of a softmax classifier, which is pretrained
on the real visual features of seen classes. The classification
loss can enforce the generator to construct the discriminative
features of seen classes.

The full objective function then becomes

L = LWGAN + βLcls (4)

where β is a hyperparameter used to balance the classification
loss and the WGAN loss, which is empirically set to 0.01.

In the testing stage, given the semantic embedding c from an
unseen class u ∈ Yu, f-CLSWGAN combines it with Gaussian
noise z and generates corresponding virtual visual feature x̃;
this process is then repeated ncls times. We subsequently com-
bine the visual features of the seen classes and the virtual
visual features of the unseen classes to construct a new joint
dataset, Dcls, which is a dataset for supervised classification.
Finally, we train another classifier using this new dataset Dcls,
which is a standard softmax classifier. The standard softmax
classifier minimizes the negative log-likelihood loss as follows:

min
θ

− 1

|�|
∑

(x,y)∈�

log P(y|x; θ) (5)

where θ is the weight matrix of a fully connected layer that
projects the visual feature x to N unnormalized probabilities,
with N being the number of candidate classes. Moreover, � =
S ∪ ˜U for our IZSL, where S is denoted as the training
data of the seen classes and ˜U is defined as the generated data
of the unseen classes. The prediction objective function is as
follows:

f (x) = arg max
y

P(y|x; θ) (6)

where y ∈ Ys ∪ Yu in IZSL. The predictions of the test dataset
are used to evaluate the performance of the method.

C. Generative Replay

In the t-th training step, the network is trained on Dt with-
out relearning the samples of previous seen classes; this does
not accumulate the knowledge from previous seen classes or
enable the samples of the unseen classes to be accurately rec-
ognized. The effective way to tackle this theory problem is to

Fig. 4. Illustration of generative replay.

transfer knowledge from previous training steps to the current
training step.

Inspired by previous incremental learning methods [27],
[57], we seamlessly integrate the generative replay strategy
with f-CLSWGAN seamlessly. Unlike other incremental clas-
sification methods, our method does not require an extra
generator and transfers more discriminative knowledge of the
classes, which is learned in previous training steps. The gen-
erative replay strategy is leveraged between two training steps
to facilitate knowledge transfer. As shown in Fig. 4, given cm

i
(0 < m < t) and random Gaussian noise z, we employ Gt−1

to generate the virtual visual feature x̃m
i of the previous seen

class, which contains the knowledge of class ym
i . This genera-

tion process is then repeated nre times for every previous seen
class, while the features generated via this process are used
to construct a generated dataset. Then, by fusing the dataset
Dt and the generated dataset, which consists of virtual visual
features, semantic embeddings, and class labels, we can obtain
the new dataset Dt

joint, which contains all the visual features of
seen classes from the beginning to the t-th training step. We
next use the new dataset Dt

joint to complete the training process
in the t-th training step. With the aid of the generative replay
strategy, in the t-th training step, our method can convert the
IZSL problem into a traditional ZSL problem and attain better
prior knowledge for use in recognizing unseen classes.

D. Knowledge Distillation

At the t-th steps, we obtain the visual features of previous
seen classes, which contain knowledge of previous steps after
generative replay is complete. With the goal of accumulating
the knowledge of seen classes further, the knowledge distilla-
tion strategy is employed to supervise the learning process of
the current step. The knowledge distillation strategy is adopted
to distill information from a previously trained network to the
current network by encouraging these two networks to produce
similar output values or patterns when given the same input.
As shown in Fig. 3, cm

i , concatenated with random Gaussian
noise z, is fed into Gt−1 and Gt, respectively, then mapped
as x̃t−1

i and x̃t
i, which are virtual visual features generated by

the two generators. To force Gt to obtain the same ability to
generate visual features of previous seen classes, we introduce
the knowledge distillation loss to align x̃t−1

i and x̃t
i in visual
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TABLE I
DATASETS USED IN OUR EXPERIMENTS, AND THEIR STATISTICS

space. The knowledge distillation loss is denoted as follows:

LKD =
∥

∥

∥̃xt−1
i − x̃t

i

∥

∥

∥

1
. (7)

Moreover, when t > 1, the objective function is denoted as
follows:

L = LWGAN + βLcls + λLKD (8)

where λ is the hyperparameter used to weight the knowledge
distillation loss and is set to 20.

E. Training and Inference

In the training stage, the model is trained sequentially
on different split datasets sequentially. The generative replay
strategy is employed between two split datasets to generate
the discriminative visual features of previous seen classes.
The generated visual features are then fused with the cur-
rent dataset to construct a new dataset for the training process
of the current step. Except for the first step, the knowl-
edge distillation process is leveraged to supervise the training
process.

In the testing stage, GT is employed to generate the virtual
visual features of all previous seen classes and unseen classes.
The generated and current visual features are then fused to
train a softmax classifier. All test samples are fed into the
trained classifier to obtain the predictions.

IV. EXPERIMENTS

In this section, we first present the benchmarks and imple-
mentation details. A comparison with several competitors is
then provided. Finally, we conduct ablation studies to prove
the effectiveness of the proposed method.

A. Dataset and Evaluation Metrics

We evaluate our method on three popular datasets: 1) the
Caltech-UCSD-Birds 200-2011 dataset (CUB) [58]; 2) the
Oxford Flowers dataset (FLO) [59]; and 3) the SUN Attribute
dataset (SUN) [60]. In terms of the number of classes, these
datasets are ranked in the top three out of the six most popular
ZSL datasets. Statistics of the datasets are presented in Table I.
For all datasets, we extract 2048-D visual features from the
entire images using the pretrained 101-layered ResNet [61];
the test classes in our datasets are disjoint with those classes
in the ImageNet training set. In terms of semantic embed-
ding, we use per-class attributes for CUB and SUN, while for
FLO, we extract 1024-D character-based CNN-RNN [62] fea-
tures from fine-grained visual descriptions (ten sentences per
image).

The seen classes of the three datasets are divided into five
parts on average by label order, whose classes are not overlap-
ping. The test seen classes for the t-th training step contain all
seen classes from the beginning to the current training step.
The test seen classes change with the training step.

When incrementally learning the new seen classes, the goal
of IZSL is to accumulate the historical knowledge to better
recognize the unseen classes better, as well as to alleviate
Catastrophic Forgetting to preserve the ability to recognize
seen classes. Therefore, following the Generalized ZSL set-
ting [10], [24], we employ the same evaluation metrics for
IZSL.

1) u: Average per-class classification accuracy on test
images from the unseen classes with the prediction label
set, which is used to measure the capacity to recognize
unseen classes.

2) s: Average per-class classification accuracy on test
images from the seen classes with the prediction label
set, which is used to measure the capacity to recognize
incremental seen classes.

3) H: The harmonic mean of u and s, which is formulated
as follows:

H = 2 × u × s

u + s
. (9)

H balances the performance between the u and s metrics,
which are the most important metrics for our task. All results
of the three metrics are measured after the final training step.

To evaluate our method’s ability to accumulate knowledge
and alleviate Catastrophic Forgetting, respectively, we select
the ZSL metric and the mean accuracy for every seen class
rather than u and s in GZSL, which are the balanced values
used to achieve the best H results. In ZSL, the test data are
only from unseen classes. The ZSL metric means average per-
class classification accuracy on test images from the unseen
classes with the unseen label set. Moreover, the mean accuracy
for every seen class is the traditional metric used in incremen-
tal learning methods to evaluate the performance of alleviating
Catastrophic Forgetting.

Average forgetting is defined to estimate the forgetting
of previous steps. The forgetting for the jth step is f k

j =
maxl∈1,...,k−1(al,j − ak,j) ∀j < k. The average forgetting at the
kth step is written as Fk = (1/[k − 1])

∑k−1
j=1 f k

j .

B. Implementation Details

Our method consists of one generator and one discriminator,
both of which are MLP with LeakyReLU activation. The hid-
den layer of the generator consists of 4096 hidden units, while
the discriminator has one hidden layer with 4096 units. Our
method is implemented with PyTorch1 and optimized by the
ADAM optimizer. The learning rate and batch size are set to
0.0001 and 64, respectively, and the epoch of each training step
is set to 100. We perform one update for generator parameters
after five discriminator updates. The numbers of generated fea-
tures for classification ncls and for generative replay nre will

1https://pytorch.org/
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TABLE II
CLASSIFICATION ACCURACY (%) OF IZSL WITH THE THREE EVALUATION METRICS ON THE THREE DATASETS

be discussed in the ablation study, the settings of which differ
between datasets.

The number of subtraining datasets is flexible and is set
to 5 as the IZSL standard in our experiments. In addition,
we divide the dataset equally by the original label order into
five parts without artificial selection; we hope that such a
division strategy will become the standard for IZSL. If we
divide the seen classes randomly, the results of our method
may be fluctuating, which would not conducive to a fair
comparison. Especially, when the number becomes larger, the
phenomenon of Catastrophic Forgetting will be more obvious
and the performances will decrease.

C. Comparison to Existing ZSL Methods

1) Baseline Models: Since there is no previous work for
IZSL, we combine several traditional incremental learning
methods with the f-CLSWGAN as the competitor methods.
The traditional incremental learning methods are as follows.

1) Sequential Fine-Tuning (SFT): The SFT means the
model is fine-tuned in a sequential manner with parame-
ters initialized from the model fine-tuned on the previous
task.

2) L1 Regularization (L1): At each step t, Gt is initialized
as Gt−1 and continuously trained with L1- regularization
between Gt and Gt−1.

3) L2 Regularization (L2): At each step t, Gt is initialized
as Gt−1 and continuously trained with L2- regularization
between Gt and Gt−1.

4) EWC [45]: This method was proposed to keep the
network parameters close to the optimal parameters for
the previous step while training the current step.

5) MAS [63]: This method was proposed to accumulate an
importance measure for each network parameter based
on how sensitive the predicted output function is to a
change in this parameter.

6) SDC [52]: This method aims to approximate the seman-
tic drift of prototypes after training of new step. The
method is complementary to several existing incremental
learning methods to improve the performance further.

2) Results and Analysis: Table II summarizes the results of
all comparison methods and our method under three evaluation
metrics on three benchmark datasets. For all datasets, our
method significantly improves u, s, and H relative to the base-
lines. In addition, joint learning (JL) refers to the results when
the model is directly trained on the entire training set, which
constitutes the upper bound of the performance, while “Base”
indicates the results when the model is trained directly with-
out any incremental method. Apart from “JL” and our method,
other methods need to generate the virtual visual features of
previous seen features with the generator GT , which are then
fused with Dt to train the Softmax classifier. The promising
performance of IZSL is expected to achieve satisfactory results
in terms of the H metric, which is the most important met-
ric to balance the performance of recognizing seen classes
and unseen classes. Compared to the results of JL, the results
of other methods decrease in u, s, and H, which indicates
the existence of Catastrophic Forgetting in the IZSL setting
and the necessity of further studying IZSL. On CUB, our
model achieves 38.12% in u, 45.63% in s, and 41.54% in
H, with improvements of 1.14% in u and 4.91% in H relative
to the competitors. On FLO, our model achieves 55.00% in u,
61.10% in s, and 57.89% in H, with improvements of 14.43%
in u and 12.54% in H relative to the competitors. On SUN,
our model achieves 38.96% in u, 24.77% in s, and 30.28%
in H, with improvements of 2.04% in H relative to the com-
petitors. SDC obtains the best s performance and unsatisfied
u performance on three datasets, which proves that SDC can-
not balance the recognition on seen and unseen classes. The
classification performance improvement is contributed by the
effectiveness of our model in accumulating knowledge from
previous seen classes and alleviating Catastrophic Forgetting.
Moreover, the performance improvement relative to the com-
parison methods is more significant on the FLO dataset. This
phenomenon proves that our method can alleviate the historical
knowledge of previous seen classes when semantic embed-
dings are more fine-grained. Overall, our model achieves a
great balance between u and s metrics and outperforms the
baseline methods for IZSL by a large margin.

Table III summarizes the results of all comparison meth-
ods and our method under ZSL settings on the benchmark
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(a) (b) (c)

Fig. 5. ZSL results of competitors and our method in five steps on three datasets. (a) CUB. (b) FLO. (c) SUN.

TABLE III
ZSL RESULTS (%) ON IZSL SETTING

datasets. The ZSL setting is employed to evaluate the abil-
ity to accumulate historical knowledge. All methods need to
generate virtual visual features of unseen classes, which are
then used to train a Softmax classifier. The more knowledge
the model accumulates, the more knowledge it transfers from
seen to unseen classes, which leads to better predictions under
the ZSL setting. On CUB, our model achieves 51.16%, rep-
resenting an improvement of 1.99% over the competitors. On
FLO, our model achieves 63.98%, and 3.11% better than the
competitors. On SUN, our model achieves 58.96%, obtain-
ing an improvement of 3.06% relative to the competitors. Our
method obtains the best performance on all three datasets,
meaning that it demonstrates the best ability to accumulate
historical knowledge. In addition, the results of all compar-
ison methods and our method in the five steps are shown
in Fig. 5 for ZSL settings on the three benchmark datasets.
The performance of the base fluctuates across the five steps,
while that of the other methods increases, which means these
methods obtain the ability to accumulate knowledge. However,
the performances of other methods would be decreased over
the training process, while this phenomenon does not appear
in our method, which proves the superiority of our proposed
approach in accumulating historical knowledge.

Table IV summarizes the accuracies and average forgetting
among seen classes of all comparison methods and our method
on three benchmark datasets. The accuracies of seen classes
are employed to evaluate the ability to alleviate Catastrophic
Forgetting. Except for JL, other methods need to generate the
virtual visual features of previously seen features with the gen-
erator Gt, after which these features are fused with Dt to train

TABLE IV
MEAN ACCURACIES AND AVERAGE FORGETTING OF SEEN CLASSES (%)

ON IZSL SETTING

the Softmax classifier. The more knowledge the model forgets,
the worse performance it yields. On CUB, our model achieves
59.36%, an improvement of 7.72% over the competitors. On
FLO, our model achieves 79.49%, an improvement of 4.98%
over the competitors. On SUN, our model achieves 32.25%,
an improvement of 1.63% over the competitors. The average
forgetting results are also shown in Table IV, and our method
also obtains the best performance on all three datasets, demon-
strating that our method effectively alleviates Catastrophic
Forgetting. In addition, the accuracies among seen classes of
all comparison methods and our method in five steps are shown
in Fig. 6 on the three benchmark datasets. The performances
of all methods decrease as the training process progresses,
which means the phenomenon of Catastrophic Forgetting still
exists. However, our performance reduction trend is the slow-
est among all methods, which indicates the superiority of our
method in alleviating Catastrophic Forgetting.

D. Ablation Study

We conduct ablation experiments to prove the effectiveness
of our method.

The results of our basic model with the addition of dif-
ferent modules are presented in Table V. The base model is
our model without either the generative replay strategy and
knowledge distillation strategy. Based on the base model, we
can add the generative replay strategy and knowledge dis-
tillation strategy, which are represented as “RP” and “KD,”
respectively. As shown in Table V, both of these strategies
can improve performance in terms of the u, s, and H met-
rics on the three datasets. The improvement resulting from
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(a) (b) (c)

Fig. 6. Mean accuracies of competitors and our method for seen classes in five steps on three datasets. (a) CUB. (b) FLO. (c) SUN.

TABLE V
ABLATION STUDY: CLASSIFICATION ACCURACY (%) WITH DIFFERENT MODULES, “RP” AND “KD,” RESPECTIVELY,

INDICATE GENERATIVE REPLAY AND KNOWLEDGE DISTILLATION

(a) (b) (c)

(d) (e) (f)

Fig. 7. (a)–(c) Parameter analysis of β on CUB, FLO, and SUN datasets. (d)–(f) Parameter analysis of λ on CUB, FLO, and SUN datasets.

adding RP indicates that the generative replay strategy can
transfer the knowledge of the seen classes from previous train-
ing steps to the current training step. Moreover, the benefit
accorded by generative replay is that the last training step can
be viewed as JL. In addition, after adding KD to the base
model, better results are obtained for the u, s, and H metrics,
meaning that the knowledge distillation strategy effectively
preserves the discriminative features of classes when trans-
ferring the knowledge from seen to unseen classes. On the
FLO dataset, the generative replay strategy brings about more
improvement when compared to the knowledge distillation

strategy, indicating that the generative replay strategy can
accumulate more historical knowledge when semantic embed-
dings are more fine-grained. When all modules are combined,
our method achieves the best performance.

We select CACD-VAE [64] and TF-VAEGAN [65] as the
basic generative-ZSL models to apply with our method, whose
results on the CUB dataset under the IZSL setting are shown
in Table VI. It is obvious that these methods also suffer from
Catastrophic Forgetting and obtain unsatisfied recognition
performance. When CACD-VAE and TF-VAEGAN are com-
bined with our method, these methods significantly alleviate
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(a) (b) (c)

(d) (e) (f)

Fig. 8. (a)–(c) Results for H evaluation metric on CUB, FLO, and SUN datasets when increasing the numbers of generative replays nre. (d)–(f) Results for
H evaluation metrics on CUB, FLO and SUN datasets when increasing the numbers of classifications ncls.

TABLE VI
ABLATION STUDY: THE RESULTS WHEN OTHER ZSL METHODS ARE

APPLIED WITH OUR METHOD

Catastrophic Forgetting and achieve better performance on all
three evaluation metrics, which proves the flexibility of our
method.

The analyses of hyperparameters are presented in Fig. 7. It is
obvious that the proposed method obtains the best performance
on three datasets when β and λ are set to 0.1 and 20, respec-
tively. When β is set to 0.1, the generated features can obtain
more discriminative and robust information. When λ is set to
20, the proposed method balances the knowledge of previous
steps and the current step.

We further perform an experiment to discuss the numbers
of generative replays nre and generated samples for classi-
fication ncls per class, the results of which are shown in
Fig. 8. We select the H metric to evaluate the performance
of our method. The number of classes is different for dif-
ferent datasets: specifically, 59 for CUB, 20 for SUN, and
80 for FLO. It is thus better to set a smaller number of nre

and ncls for SUN. Therefore, the best performance is achieved
when nre and ncls are set to 100 and 300 for CUB, to 100
and 300 for FLO, and 30 and 100 for SUN. Obviously, we
find that H increases as nre increases before achieving the
peak performance of H. After the peak, H decreases with the

increase of nre. This phenomenon indicates that balanced train-
ing datasets for all seen classes are better for transferring the
knowledge from previous steps to the current step, which leads
to an impressive performance in terms of the H metric. In addi-
tion, we note that H increases with the increase of ncls for
classification, which is essential for knowledge transfer from
seen classes to unseen classes. Finally, the performance of
the IZSL method is sensitive to these hyperparameters, which
means that a balanced dataset is important to facilitate this
knowledge transfer.

V. CONCLUSION

To the best of our knowledge, this article represented
the first attempt to introduce and tackle IZSL, which better
bridges the gap between real-world requirements and com-
puter vision building blocks. A generative replay strategy was
employed to accumulate historical knowledge of previously
seen classes, which converts IZSL into traditional ZSL. In
addition, a knowledge distillation strategy was leveraged to
distill the information from the former model to the current
model and regularize the current training process, an approach
that alleviates Catastrophic Forgetting and facilitates satis-
factory recognition performance of seen classes and unseen
classes. In addition, our method can be flexibly applied to most
generative-based ZSL methods to tackle the IZSL problem.
Experiments showed that our method outperforms previous
methods by a large margin on three benchmark datasets. An
ablation study was also performed to verify that the proposed
two strategies are both important to the achievement of good
performance.

From the ablation study, we can further note that a bal-
anced dataset can transfer more historical knowledge of seen
classes between different steps. An IZSL method with adaptive
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generative replay numbers should be proposed in future work
to obtain better performance. Moreover, shifting the embed-
dings between different steps is also a solution to tackling the
problem of IZSL and, thus, also represents a promising future
research direction.
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