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ABSTRACT 

Recently, many tools have emerged to manage sensor web data 

using Semantic Web technologies for effective heterogeneous 

data integration. However, a remaining challenge is how to 

manage the massive volumes of sensor data in their semantic 

form, i.e., Resource Description Framework (RDF) triples. Our 

survey revealed that most semantic tools either do not have 

geospatial support, or have severe limitations on providing full 

GeoSPARQL support and good performance for complex queries.  

In this paper, we present an open source Semantic Spatiotemporal 

Data Engine (SSTDE), which incorporates both semantic tools 

and Geographic Information System (GIS) systems under a hybrid 

architecture. Our main contribution includes 1) introducing the 

sub-graph index to substitute the single node index, which results 

in significant performance gain for a spatiotemporal query; 2) 

developing a query optimization algorithm based on graph 

matching; 3) proposing a benchmark test for spatiotemporal query 

over triple stores. The spatiotemporal SPARQL query is 

intelligently decomposed and executed on different systems, 

which significantly improves the query performance by more than 

a hundred times comparing to other solutions. 

Categories and Subject Descriptors 

H.3.4 [Information Storage and Retrieval]: Systems and 

Software – distributed systems, performance evaluation.  

General Terms 

Algorithms, Management, Performance. 

Keywords 

Spatiotemporal Query; GeoSPARQL; Sensor Web; Graph Index; 

Hybrid Architecture; Semantic Triple Store. 

1. INTRODUCTION 
The past few years have seen a paradigm shift of geospatial data 

production driven by the advances of sensor technologies. 

Heterogeneous sensor systems have been developed which make 

it difficult to describe them in a uniform way. Many standards and 

ontologies are proposed to formalize the semantics for all sensor 

systems and the observations made by them, such as those 

published by Open Geospatial Consortium (OGC) Sensor Web 

Enablement (SWE)1 . A recent release of the Semantic Sensor 

Network Ontology (SSNO) further aligns them to the semantic 

web [1]. Success stories can be found in multiple domains such as 

resource management, meteorology, environment, etc., where data 

discovery and integration have been shown to be much easier by 

following those standards and ontologies. In the recently released 

SWE 2.0 specification, the data components are able to reference 

a concept by simple links which provide their semantic definition 

[2].  

In the meantime, ubiquitous sensor networks lead to a new 

challenge, which is often referred to as “Big Data” in both 

scientific domains and business enterprises. Such data grow 

quickly in both size and complexity (e.g., various data structures, 

models, ontologies, etc.), while the solutions to them are usually 

contradictory, i.e., system performance is always improved by 

reducing the complexity and vice visa. To manage big data, one 

interesting technology is the NoSQL databases [3], which address 

the scalability from multiple perspectives using different data 

models, e.g., key-value, column family, graph model, etc.  

To address the challenge of data complexity, interest of managing 

and publishing large scale sensor data through semantic web is 

increasing. Sheth et al. propose a semantic sensor web where the 

sensor data are annotated with spatial, temporal and thematic 

semantic metadata [5]. Linked Open Data (LOD) [6] is the most 

famous initiative that has been followed by many practitioners. 

People are encouraged to share their data using the semantic 

triples and also link to each other. It becomes the driving force 

and an ideal environment for the sensor web community to follow 

the ontologies and publish their data in triples [7]. Government 

agencies such as the United States Geological Survey (USGS) are 

also joining the trend by republishing their archived datasets using 

triples [8]. Very recently, the supercomputing company Cray 

funded YarcData2 starts to push “Big Data” graph analytics using 

RDF and Simple Protocol and RDF Query Language (SPARQL) 3 

as the industry standard. Since RDF model is one kind of graph 

model, thus semantic triple stores can be seen as graph databases 

of NoSQL series. 

In particular, sensor data are always associated with 

spatiotemporal contexts, i.e., they are produced in specific 

locations and ordered by time. To process big sensor streams 

within a spatiotemporal context, traditional GIS functions are 

                                                                 
1 http://www.opengeospatial.org/ogc/markets-technologies/swe 

2 http://www.yarcdata.com/press-release-6-26-12.html 

3 http://www.w3.org/TR/rdf-sparql-query/ 
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coupled with new technologies such as stream processing and 

supercomputing to meet the performance requirement [4]. Our 

research interest is to manage big senor data in semantic triples to 

achieve an optimal balance between the data size and complexity, 

and provide full-fledged GIS functions with them. Several known 

challenges include: 1) selecting ontologies for spatiotemporal 

semantics; 2) providing GIS functions on top of triple stores; 3) 

improving performance for big spatiotemporal data. Existing tools 

often have very limited capabilities to manage the massive 

geospatial data streams generated by sensor systems and to 

perform efficient spatiotemporal queries over them. In this paper, 

we present an open source middleware which combines existing 

triple stores and GIS tools to collectively support semantic 

spatiotemporal data management. It provides a common SPARQL 

interface to users while synchronizing data writing across multiple 

systems and optimizing spatiotemporal SPARQL queries at run-

time. It extends our previous research on implementing a 

GeoSPARQL4  interface using the Tupelo 5  triple store [9]. Our 

goal is to provide an independent solution for most existing 

semantic systems. Our contributions are as follows: 

  1) We propose to use a sub-graph index instead of a node index 

for triple stores. A spatiotemporal query is known to be very slow 

on existing triple stores because each single query can only 

employ one index. Thus, the evaluation of a complex query does 

not benefit much from such index strategies. Our solution is to 

build the spatial and temporal index as a whole, which 

significantly improves the performance.   

  2) We develop a middleware to maintain a hybrid system and to 

optimize the SPARQL query on-the-fly. The spatiotemporal index 

is created and maintained externally and updated accordingly 

whenever the primary database is changed. Also, we optimize the 

SPARQL query using graph-matching algorithms and score-based 

evaluation to decide how to make use of an index.  

  3) We propose a benchmark for the spatiotemporal SPARQL 

queries. Five benchmark queries are proposed to measure how a 

system performs as a sensor web database. To the best of our 

knowledge, there is no other benchmark evaluation conducted in a 

similar way. 

2. BACKGROUND AND RELATED WORK 
In the sensor web research community, people are actively using 

sensor ontologies because of the importance of data integration, 

which is highlighted by the heterogeneous sensor networks. For 

sensor web practitioners, there are two major concerns for 

utilizing the ontologies to manage data, i.e., the performance and 

geospatial support. Both the commercial industry and open source 

communities have made steady progresses on improving the 

performance of their products, which are reported by many 

published benchmark evaluations [19–24]. Also, many extensions 

to triple stores have been developed to provide geospatial support 

as we will review in this section.  

2.1 Sensor Ontologies 
Many ontologies have been developed in the past decade, such as 

Sensor Data Ontology [10], OntoSensor [11], Coastal 

Environmental Sensor Networks (CESN) ontology [12], etc., to 

name a few. Each of them is developed within different contexts 

and targets at different sensor systems and functions, e.g., sensor 

                                                                 
4 http://portal.opengeospatial.org/files/?artifact_id=44722 
5 http://tupeloproject.ncsa.uiuc.edu/ 

centered or observation centered. The aforementioned SSNO, 

launched in 2005 by W3C incubator, has been continuously 

evolving and the latest version was published on 28th Jun, 2011. 

Shortly after its release, SSNO has been used in quite a few 

projects in the sensor web community, such as those described in 

[13], [14]. Sometimes sensor ontologies are not able to provide all 

the semantics needed by a scientific system and additional 

ontologies are often required. For example, the W3C Geo 

Ontology6 defines simple predicates for the WGS84 coordinates; 

W3C Time ontology7 is widely used when temporal contexts are 

needed; the recently discussed GeoSPARQL vocabulary is a 

milestone for standardizing the geospatial terms using ontology; 

Semantic Web for Earth and Environmental Terminology 

(SWEET) [15] ontology developed at NASA is very popular in 

earth science related research, which provides many domain 

specific concepts that sensor ontologies do not have.  

Even though those ontologies can conceptually formalize the 

semantics for sensor web, people have found difficulties when 

practically using them to develop applications. Managing 

semantic triples is very expensive and inefficient comparing to 

other traditional means [26]. The text based encoding and 

unrestricted structure of RDF data trade off the performance with 

flexibility. However, this problem is being alleviated by the 

continuous advances of triple store products.   

2.2 Triple Stores and Geospatial Support 
In the past few years, various semantic triple stores have been 

developed to store those ontologies as well as the data in RDF 

triples. Jena8 and Sesame9 are two leading open source semantic 

web projects, both of which provide high level APIs as well as 

backend data repositories. These two API families become 

predominant in this area. Even though there are other new 

repositories that are proved to perform much better than these two 

built-in repositories, these APIs still get widely supported due to 

their generality and flexibility.  

Many examples can be found on using those triple stores to 

manage sensor ontologies as well as triple data. Barnaghi et al. 

develop their sensor data model based on the SensorML, 

OntoSensor as well as SWEET ontology, which is managed in 

Jena and Sesame repositories [17]. Huang et al. proposes a 

Semantic Web Architecture for Sensor Networks (SWASN) and 

manages the data with Jena [27]. Patni el al. use Virtuoso to 

manage the RDF triples for both sensor and observation data, and 

then publish them as linked data. Also, the provenance 

information is captured using their Sensor Provenance ontology 

[18]. Battle et al. saw the GeoSPARQL as a forthcoming standard 

that could unify various vocabularies and query languages 

developed for spatial reasoning in the past decade, and 

implemented it with the Parliament repository [16]. 

One trend for the triple stores is the geospatial support. For 

example, OWLIM 10  supports geospatial index in its Standard 

Edition (SE), and Virtuoso11 also provides geospatial functions in 

its commercial edition. Several open source projects have tried to 

                                                                 
6 http://www.w3.org/2003/01/geo/wgs84_pos 

7 http://www.w3.org/TR/owl-time/ 

8 http://jena.apache.org/ 

9 http://www.openrdf.org/ 

10 http://www.ontotext.com/owlim 

11 http://virtuoso.openlinksw.com/ 



extend Jena to provide geospatial support, a recent one of which is 

the GeospatialWeb12. Neo4J13, a graph database belonging to the 

NoSQL category, has been extended to manage geospatial data 

and semantic triples respectively in two projects – Neo4J spatial 

and Blueprint14. Open SAHARA has published the uSeekM15 as a 

geospatial extension to the triples stores that support Sesame API. 

Different from others mentioned above, it does not provide 

underlying implementation for either geospatial functions or triple 

storage, but instead incorporates existing tools, e.g., external 

spatial index and triple stores, by taking advantage of the 

Sesame’s query evaluation framework. Our implementation in this 

paper is based on this uSeekM project.  We have also found some 

limitations on using it to manage the spatiotemporal sensor data, 

and improved it in several aspects as discussed in the later part of 

this paper.  

2.3 Benchmark Evaluations 
Evaluations on triples stores have been undertaken from different 

perspectives. Rohloff et al. conducted an evaluation for triples 

stores in 2007 [19], which include the Sesame OWLIM, and 

DAML DB16, Jena, AllegroGraph17, etc. Their conclusion and 

recommendation were that DAML DB and BigOWLIM had the 

best performance at that time. Paulson et al. did an evaluation for 

the provenance management purpose [20], for which both the 

APIs (i.e., Jena and Sesame API) and triple stores are evaluated. 

They chose Jena API due to its support for a wide variety of 

RDBMS backend since Sesame did not support at that time. There 

are more reports can be found in [21], [22], [23]. Also, Aquin et 

al. noticed that semantic web applications are expected to be 

running on small devices such as notebook, and then tested how 

different semantic tools (Jena, Sesame and Mulgara) can be used 

in a resource-limited environment [24].  

3. LIMITATIONS AND OUR SOLUTIONS 

3.1 Main Limitations 
  1) Most systems are reinventing the wheels for incomplete 

geospatial functions support. For example, Virtuoso provides 14 

geospatial functions which are much fewer than PostGIS and only 

available through its commercial version. The Neo4j spatial does 

not provide a complete set of topological operators and spatial 

reference systems. Other databases, such as MySQL and Mongo 

DB, also limit their geospatial functions to a small subset, which 

is far from sufficient for advanced geospatial applications. It is 

reasonable for those systems to have some limitations because 

none of them is intended to be a Geodatabase. However, for 

people who are working on interdisciplinary area such as sensor 

web, it is always difficult for them to manage the spatiotemporal 

data within a semantic context.  

  2) The performance for complex SPARQL query is not 

acceptable, e.g., a query with many graph pattern constraints and 

both geospatial and temporal filters. According to our test, a 

spatiotemporal query takes a very long time on those systems, due 

to the lack of index support. A sub-query is “selective” if most of 

the candidates it returns are finally selected by the overall query. 

                                                                 
12 http://code.google.com/p/geospatialweb/ 

13 http://neo4j.org/ 

14 https://github.com/tinkerpop/blueprints/wiki/ 

15 https://dev.opensahara.com/projects/useekm/ 

16 http://www.daml.org 

17 http://www.franz.com/agraph/allegrograph/ 

For a spatiotemporal query, if both the spatial and temporal sub-

queries are not “selective”, the overall query does not benefit 

much from single indexes. Most tripe stores only provide triple 

indexes rather than value indexes on each node. An important 

reason is that any single index is not selective for complex 

queries, which are usually the case for most of the SPARQL 

queries. 

3.2 Our Proposed Solutions 
  1) Adoption of a hybrid architecture. Rather than rebuilding 

GIS functions into any specific systems and using one of them as 

the only solution, we adopt a loosely coupled hybrid architecture, 

which includes different systems managed by a middleware 

named Semantic Spatiotemporal Data Engine (SSTDE). The 

architecture of its current implementation is shown in Figure 1. 

The core part of SSTDE is the “Hybrid Store”, which includes a 

“Manager” and a “Query Optimizer”. The hybrid store 

communicates with individual sub-systems through the “Notifier” 

and “Evaluator”, and provides standard RDF operations to end 

users, i.e., triple writing and SPARQL query, through a SPARQL 

endpoint. The “Manager” synchronizes both repositories and 

maintains the consistency between sub-systems by notifying all of 

them when adding or removing triples. The triple store manages 

the universal triple graph and the Geodatabase indexes the 

spatiotemporal data. The “Query Optimizer” analyzes the query 

request and creates the best query plan, which decomposes the 

query into segments, executes them on different subsystems 

through the individual “Evaluator”, and finally integrates the 

results. The “Notifier” for each system receives commands from 

the manager, i.e., adding or removing triples, and updates the 

local storage accordingly. For the triple store, it simply delegates 

the same commands to the local API, while for the Geodatabase, 

it usually needs to project the updated universal graph to its local 

view by running a SPARQL query. The “Evaluator” translates a 

sub-query request to a local query language, execute it and bind 

the results to the SPARQL model. The details of the functions for 

each of them will be discussed in the next section. Although 

similar architectures have been proposed in some other 

researches, our focus is to provide a geospatial support and 

optimize the spatiotemporal SPARQL query. 

  2) Use of Composite Index (Graph Index). Composite index is 

widely used in RDBMS systems, e.g., indexing two columns in a 

table to improve the performance of queries on both of them. 

However, it is hard to implement on triple stores due to the 

unstructured nature of the graph model. However, the triple data 

always use some ontologies as their schemas. Even though the 

whole graph universe is still open and unrestricted, there exist 

many small immutable patterns imposed by the ontologies, which 

 

Figure 1. The hybrid system managed by SSTDE 



are always used by SPARQL queries. Having considered this 

feature, we have found it highly feasible to index the sub-graphs 

that comply with certain patterns. When a SPARQL query is 

issued, the query optimizer finds out all the indexes that can be 

used and selects the best one. Part of the query is replaced by the 

index query thus the performance is improved. For a complex 

query, a proper composite index will be selected, which results in 

much more performance gain comparing to a single index.   

A graph pattern out of a bigger RDF graph can be found in our 

previous work [14]. It includes the location of a sensor and time 

of the observation, which could then be used as a composite index 

for such spatiotemporal queries. 

4. IMPLEMENTATION 
Our SSTDE implementation is based on the uSeekM project. This 

framework helps us quickly construct a hybrid system, while we 

further extend it to address the limitations discussed in the above 

section. The basic idea is to delegate more than one sub-query to 

graph index query, for which a graph pattern matching algorithm 

is developed to optimize the query plan. Also, SSTDE maintains 

consistency across sub-systems while updating triples. The 

communication with Geodatabase is orchestrated by an “Index 

Manager”,which is part of the “Manger” component as shown in 

Figure 1.   

4.1 Query Delegation Model 
A SPARQL query can be seen as a collection of evaluation nodes 

arranged in a binary tree, an example of which is shown in Figure 

2. There are two types of evaluations: triple pattern matching and 

value filtering. Also, the intermediate nodes “Join” and “Union” 

are used to specify the logic relations between any two nodes. The 

overall evaluation is a post-order traversal of the tree, during 

which the data are passed from the previous node to the next. 

Each evaluation can be conducted individually. The idea of a 

hybrid system is to delegate some of those evaluation nodes to 

different backend repositories, which can provide certain function 

sets, e.g., geospatial functions and achieve the best performance.  

Figure 3 shows an example of delegating a geospatial query to 

PostGIS. The uSeekM project builds on such a structure, which 

however can replace only one evaluation node each time. As we 

have discussed before, its performance for spatiotemporal query is 

not satisfying. Our approach is based on the graph pattern shown 

in SSNO, which continuously indexes the graphs when writing 

data, and optimizes the query based on graph matching algorithm.  

4.2 Graph Pattern and Graph Index 
In SPARQL specification, a graph pattern is described as a set of 

interconnected triple pattern. To use them in our algorithms, we 

formally describe these two concepts as follows: 

Definition 1 (Triple Pattern): A triple pattern is defined by 3 

elements: subject, predicate and object, i.e., tp = {s, p, o}. Each of 

the elements can be either a fixed value or a variable. They are also 

noted as s(tp), p(tp), o(tp). 

Definition 2 (Graph Pattern): A graph pattern consists of a set of 

interconnected triple patterns, gp = {tp1, tp2, … , tpn}. For each tpi, 

there must be one or more tpj (i ≠ j), where (s(tpi) = s(tpj))  (o(tpi) 

= o(tpj))  (s(tpi) = o(tpj))  (o(tpi) = s(tpj)). Each single triple 

pattern in a graph pattern is noted as gp[m], 1 ≤ m ≤ n, the number 

of triple patterns in a graph pattern g is also noted as num(g). 

Each graph pattern can be translated to a relational schema in the 

Geodatabase. Figure 4 shows how we translate a graph index 

configuration into a PostGIS table. The XML excerpt on the left 

side is customizable by users, where we can see the graph pattern 

is expressed by a set of triple patterns similar to a subset of a 

SPARQL query. Each variable is used to create a column in the 

table, while the constant values are still preserved by SSTDE as 

configurations for the latter graph matching process. The “Literal” 

definition is used to map the literal data types to those supported by 

the specific databases. Currently the SSTDE supports the mapping 

from XSD data types and OGC WKT types to PostGIS data types. 

As Figure 4 shows, the “coord” and “timevalue” are assigned with 

proper data types. Also, indexes are created for each column when 

creating the tables. 

4.3 Optimization for SPARQL Query 
Assuming that we have built up the graph index, Figure 5 shows 

the workflow for optimizing a SPARQL query. 

4.3.1 Match Graph Index  
Each graph index is associated with a graph pattern, so is a 

SPARQL query. The query optimizer needs to find out which 

index can be used to optimize the SPARQL query. We introduce 

an “inclusion” predicate to represent such a relation between two 

graph patterns. 

Definition 3 (Element Inclusion): For each element e in a triple 

 

Figure 4. Creating a Table in PostGIS for a Graph Index 

 

Figure 2. A SPARQL evaluation tree 

 

 

Figure 3. Delegating the evaluation nodes to different 

backend repositories 



pattern tp, i.e., e{s(tp), p(tp), o(tp)}, if ei is a variable, or ei = ej, 

then ei includes ej, noted as ei ≥ ej. 

Definition 4 (Pattern Inclusion): A triple pattern tpi includes tpj, 

noted as tpi ≥ tpj, if (s(tpi) ≥ s(tpj)) (p(tpi) ≥ p(tpj))  (o(tpi) ≥ 

o(tpj)). 

Definition 5 (Sub-Graph Pattern): If the collection of triple 

patterns of graph pattern gpi is a subset of that of gpj, then gpi is a 

subset pattern of gpj, noted as gpi  gpj. 

Definition 6 (Graph Inclusion): A graph pattern gpi includes gpj, 

noted as gpi ≥ gpj, if there exists one or more graph gpk  gpj, 

num(gpk) = num(gpj) = n, and for each 1 ≤ m ≤ n, gpj[m] ≥ gpk[m], 

then gpj includes gpk, noted as gpj ≥ gpk. Also, gpj ≥ gpi. 

Definition 7 (Graph Algebra): For graph pattern gpi and gpj, gpi – 

gpj removes every triple pattern in gpj from gpi. 

According to definition 6, the essence of the graph matching 

algorithm is to find out one or more sub-graph pattern from the 

SPARQL that is included by the indexed graph pattern. The 

evaluation of the selected sub-graph pattern will be replaced by an 

index query. Figure 6 shows an excerpt of the pseudo code that 

selects all the possible sub-graph patterns from the first input that 

is included by the second input. The “matchGraph” method 

returns a set of matched subset patterns from the input graph1 that 

are included by graph2. It iterates all the possible combinations of 

triple patterns in graph1 that form the required subset patterns. 

The “removePattern” method is used by “matchGraph” to 

remove a triple pattern that has already been matched from the 

candidate graph pattern it belongs to. 

To save the space, the pseudo code does not show the name 

mapping process, which maps the variable names used in graph1 

and graph2 for each matched subset pattern. It is used to create an 

actual SQL query clause when one index is finally selected for 

optimization. 

4.3.2 Select Index 
The “matchGraph” method returns a set of matched graph 

patterns. A further selection is needed to decide which one is the 

best. Most triple stores provide triple indexes, thus the essential 

purpose of the graph index is to optimize the filters, which in 

general, can be classified into three categories: numeric filter, text 

comparison and function call. If a graph pattern contains variables 

used in a filter, we associate that filter to it. For each matched 

graph pattern, the numbers of the filters of each of the above types 

are denoted as nfn, nft, nff. Each filter type is assigned with 

different weight values, i.e., wfn, wft, wff, and the score can be 

calculated as follows: 

s = nfn  wfn + nft  wft + nff  wff 

This score is used to select the best matched graph pattern from the 

collection returned by the matchGraph method. Further, if there is 

more than one index defined in the configuration file, the 

matchGraph will be invoked multiple times with each index graph 

as its second input. The best pattern will then be selected from all 

the returned sets. Currently, we focus on the spatiotemporal query, 

so that the spatial functions, e.g., within, contains, etc., are usually 

the most selective. We then assign the weight values as: wfn = 100, 

wft =10, wff=10. 

4.3.3 Rebuild Query  
If there is no available index for a query, it will be executed in a 

default manner, i.e., evaluating the graph patterns on the triple 

store and filtering each of the candidates. Otherwise the best index 

will be used to optimize the query as follows: 

  1) Generate an index evaluation object, which translates the 

query on the indexed graph pattern to a SQL. The filters are 

translated to local functions, e.g., regular expression, PostGIS 

spatial functions, etc. The modifiers, i.e., “limit”, “order by” are 

also carried to the SQL. As aforementioned, the translation is 

based on the name mapping process.  

  2) Substitute the matched graph pattern in the SPARQL as well 

as its associated filters with the index evaluation object. All the 

filters and matched triple patterns are removed from the 

evaluation tree. In terms of Sesame API, the filters are replaced 

with a constant Boolean value “true”, while the triple patterns are 

removed by replacing their parent nodes with their sibling nodes. 

  3) Move the index evaluation node to the most left-bottom 

position, to make it the first one to be visited in a post-order 

traversal process.  

The execution of the query will be conducted by the Sesame API, 

which visits the evaluation nodes in a post-order, and pass the data 

from one node to the next. The indexer needs to bind the data 

back to the variables in the SPARQL, where the name mapping is 

used again.  

4.4 Synchronization of Data Update  
SSTDE dynamically creates tables in the PostGIS for each graph 

index as shown in Figure 4. Each field is indexed according to 

their types. To update the index database while writing triples, a 

decision should be made on whether adding or deleting a triple 

leads to any changes to the indexed data. This is performed by the 

“Notifier” in Figure 1. 

Set<Graph> matchGraph(GraphPattern graph1, GraphPattern 
graph2){ 
   Initialize colGraph as a set of graph patterns; 
   Add graph1 to colGraph 
   FOR EACH triple pattern tp in graph2  
      Initialize colGraphT as a temporary graph pattern set; 
      FOR EACH gCand in colGraph  
         Collection<Graph> candArray = removePattern(gCand, 
tp); 
         Add all elements of candArray to colGraphT; 
      END FOR 
      Replace colGraph with colGraphT; 
   END FOR 
   FOR EACH graph g in colGraph 
      replace g with (graph1-g); 
   END FOR 
   RETURN colGraph; 
} 
Set<Graph> removePattern(GraphPattern g, TriplePattern tp){ 

Initialize colGraph to be a collection of graph 
FOR EACH triple pattern tpg in g and tpg ≥ tp 

produce gc as a copy of g 
remove tpg from gc and add it the 
colGraph; 

END FOR 
RETURN colGraph; 

} 

 

Figure 6. Pseudo code for finding sub-graphs 

 

 

Figure 5. Workflow of SPARQL Query Optimization 



  1) If the indexed graph pattern contains only one single triple 

pattern, the updated triple is compared with this triple pattern and 

then the index data is updated accordingly.   

  2) If the graph pattern contains more than one triple pattern, a 

SPARQL query will be executed to find out if there is an instance 

of the graph pattern to be added or removed. 

The SPARQL query is built by the graph pattern, but some 

variables are replaced by the concrete values in the updated triple. 

The query result will be either added or removed from the index. 

An example is shown in Figure 7, which uses the graph index 

defined in Figure 4. The graph pattern is simply wrapped into a 

SPARQL query clause, and the variables “sensor” and “loc” are 

replaced with the values from the updated triple.  

4.5 Index Manager  
The index manager is the essential part of the “Manager” in 

Figure 1. Its main functions include: 

  1) Notifying different index to update its local data. The 

maintenance of the hybrid system is expensive, which needs to 

run several queries when writing a single triple. The index 

manager optimizes this by indexing the indexes with the 

predicates in their triple patterns. It quickly identifies if an 

updated triple would probably lead to new graph instances.   

  2) Selecting the best index for a query from the index list. If 

multiple indexes are matched for a query, the index manager 

selects the one that has the highest score and uses it for 

optimization.  

  3) Updating the index in a batch mode. In a transaction mode, 

batch processing significantly improves the performance.  

  4) Supporting various vocabularies. It is very easy to change the 

literal type “ogc:wkt” to another proprietary URI created by 

individual persons or companies. Also, the GeoSPARQL 

predicates are also very easy to be replaced.  

5. BENCHMARK EVALUATION 
Before developing the SSTDE, we have conducted a review and 

hands-on testing on some existing triple stores in terms of 

spatiotemporal query support and performance. We then narrowed 

down to a few candidates that support the spatial data type and 

spatial index. We focus on the open source community so that 

commercial products are not considered. The final comparison list 

includes three candidates: OpenRDF + uSeekM, Neo4j + 

Blueprint + uSeekM, and Parliament. In theory, uSeekM supports 

any triple stores that provide Sesame API implementations, but 

there are some problems with specific products. For example, 

Virtuoso does not support a query evaluation using external data 

binding in its Sesame API, and Bigdata has a limitation on the 

length of each triple element, which makes it impossible to store a 

long geospatial coordinate string. Through our testing, we have 

found that the current uSeekM implementation does not optimize 

the Neo4J + Blueprint, i.e., the spatial triple pattern is not the first 

one to be evaluated, so that we modify the source code 

accordingly and add it to the solution list. The testing data 

includes both sensor and observation data, which are converted to 

RDF triples according to the SSN ontology and GeoSPARQL 

vocabulary. The testing data include national maps from USGS, 

event data from National Oceanic and Atmospheric 

Administration (NOAA), sensor data from CUAHSI 

WaterOneFlow Web service, etc., as listed in [14]. Table 1 lists 

the statistical information of the testing data. 

We use five testing queries with different GeoSPARQL predicates 

and graph patterns, which are listed as follows: 

1) A query to find the geometries within a polygon. 

SELECT ?geometry ?wkt WHERE { 
?geometry geo:asWKT ?wkt. 
FILTER(geo:within(?wkt, "POLYGON((-91 33, -75 33, -75 
42, -91 42, -91 33))"^^geo:wkt))} 

2) A query to find the sensors within the Illinois state. It uses the 

real coordinate string converted from USGS National Map. 

SELECT ?sensor ?coord WHERE { 
?sensor rdf:type ssn:Sensor. 
?sensor dul:hasLocation ?loc. 
?loc geo:asWKT ?coord. 
FILTER(geo:within(?coord, "POLYGON((-90.6415100097656 
42.5092811584473,-90.6359710693359 
42.5093994140625,...))"^^ogc:wktLiteral))} 

3) A query to find the tornados that intersects with the Illinois 

state. 

SELECT ?tornado ?path WHERE { 
?tornado rdf:type phe:Tornado. 
?tornado spa:hasGeometricalObject ?pathobj. 
?pathobj geo:asWKT ?path. 
FILTER(geo:intersects(?path, "POLYGON((-
90.6415100097656 42.5092811584473,-
90.6359710693359....))"^^ogc:wktLiteral))} 

 

Figure 7. SPARQL query for updating the index 

Table 1. Statistics of the testing data 

Item Count 

Total triples 6,828,735 

Total geometries 45,832 

Polygons 14,380 

Line 27,727 

Point 3,725 

 



4) A query to find all the watersheds that are contained by Illinois 

State. 

SELECT ?watershed ?boundary WHERE { 
?watershed rdf:type flu:Watershed. 
?watershed spa:hasGeometricalObject ?bdobj. 
?bdobj geo:asWKT ?boundary. 
FILTER(geo:contains("POLYGON((-90.6415100097656 
42.5092811584473,-
90.6359710693359.....))"^^ogc:wktLiteral, ?boundary))} 

5) A query to find all the observations made by all the sensors 

within Illinois and ordered by the observation time.  

SELECT ?observation ?timevalue ?coord ?property ?value 
?sensor WHERE { 
?observation rdf:type ssn:Observation. 
?observation ssn:observedProperty ?property. 
?observation ssn:observationResult ?result. 
?observation ssn:observationResultTime ?time. 
?time time:inXSDDateTime ?timevalue. 
?result ssn:hasValue ?value. 
?value dul:hasDataValue ?datavalue. 
?observation ssn:observedBy ?sensor. 
?sensor rdf:type ssn:Sensor. 
?sensor dul:hasLocation ?loc. 
?loc geo:asWKT ?coord. 
FILTER(?timevalue >= "2011-05-15T23:30:00.000-
06:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>) 
FILTER(geo:within(?coord, "POLYGON((-90.6415100097656 
42.5092811584473,-90.6359710693359 42.5093994140625,-
90.6353530883789 ....))"^^ogc:wktLiteral))} order by 
desc(?timevalue) 

The coordinate string for Illinois State is shortened in the query 

examples. Table 3 shows the testing results in terms of running 

time (milliseconds) for different solutions. All the queries are 

executed 10 times and the results are averaged. It is apparent that 

uSeekM performs much better than the other three candidate 

solutions, while the SSTDE further improves it significantly for 

the queries 2 to 5. Query 1 is very simple as SSTDE and uSeekM 

optimize it in a similar way. SSTDE performs better for Queries 2 

to 4 because it replaces both the triple pattern evaluations and 

filters with the index query, while the uSeekM only replaces the 

filters. The query 5 is a spatiotemporal query and shows the most 

distinct results. uSeekM stands on the second place, which is 

almost 200 times slower than SSTDE.  

6. DISCUSSION 
SSTDE achieves significant performance gain for spatiotemporal 

SPARQL query. However, there are still some limitations which 

were found during the evaluation and need to be addressed:  

  1) The size of the hybrid store grows fast. The size of the testing 

data is about 5G in OpenRDF but only 1G in JSON files. A 

further evaluation on the balance between data size and data 

access performance for existing triple stores is needed. On the 

other hand, the graph index is sometimes redundant, e.g., the 

sensor locations are recorded multiple times for each observation. 

It is reasonable to allow users to optimize the index data structure. 

  2) Maintaining the consistency in the hybrid system introduces 

additional overhead. Comparing to direct writing to triple stores, 

the performance is reduced due to the additional index. 

Synchronizing the data writing over multiple systems is 

expensive. Asynchronous and batch processing could be possible 

solutions, which would cause the “transient inconsistency” for the 

overall system, but the goal is to keep it in an acceptable range. 

  3) The performance of PostGIS reduces when the data size 

increases. This is reasonable but an interesting observation is that 

a Solid State Drive (SSD) provides much better performance than 

a common hard disk. The performance of SSD is close to a 

constant value while that of a common hard disk decreases 

rapidly. Thus, more effort should be put on optimizing the 

PostGIS, e.g., clustered database.  

  4) The scalability is limited by both triple stores and 

Geodatabase. SSTDE frequently issues SPARQL queries to 

synchronize the data writing, for which high performance triple 

indexes are essential. Despite the advances of triple stores on 

managing billions of triples, the limitation will still be easily 

reached for a single tripe store. Distributed triple stores, as well as 

distributed spatial indexes are the promising solution. 

7. CONCLUSION AND FUTURE WORK 
This paper presents our recent effort on leveraging the semantic 

tools to manage the sensor data and building applications on top 

of them. The current implementation is available at [25]. Since 

existing systems are not able to handle complex spatiotemporal 

queries in an acceptable turn-around time, we develop the SSTDE 

as a middleware that incorporates the semantic repositories and a 

traditional Geodatabase under a hybrid framework.  

As more and more people have realized that no single solution 

could meet all the requirements in terms of the data size, 

complexity and real time performance, we expect to investigate a 

much larger scale system, where multiple types of backend 

repositories are leveraged, and the data engine should be 

Table 3. Execution time (millisecond) for 5 queries by different solutions 

Solution Q1 Q2 Q3 Q4 Q5 

OpenRDF + uSeekM 493 2109 408 540 40942 

Neo4j+BluePrint+uSeekM 220493 755412 376825 1307944 N/A 

Parliament 28363 12556 3752 22479 44879 

Neo4j+BluePrint+ Optimized uSeekM 4418 7346 6804 6652 2065644 

SSTDE 445 73 35 43 221 

 

Table 2. Ontology prefixes used in the queries  

Prefix URI 

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# 

time http://www.w3.org/2006/time# 

ssn http://purl.oclc.org/NET/ssnx/ssn 

dul http://www.loa-cnr.it/ontologies/DUL.owl 

geo http://www.opengis.net/ont/OGC-GeoSPARQL/1.0/ 

ogc http://www.opengis.net/ 

flu http://sweet.jpl.nasa.gov/2.2/realmLandFluvial.owl# 

spa http://sweet.jpl.nasa.gov/2.0/spaceObject.owl 

phe http://sweet.jpl.nasa.gov/2.2/phenAtmoPrecipitation 

 



intelligent enough to know how to maintain the system and 

optimize the query through a simple SPARQL endpoint. The 

experiences we have gained in this research are very valuable for 

handling the future Big Data challenge. 
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