
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

This paper might be a pre-copy-editing or a post-print author-produced .pdf of an article accepted for publication. For the

definitive publisher-authenticated version, please refer directly to publishing house’s archive system.

SSTDE: An Open Source Semantic Spatiotemporal
Data Engine for Sensor Web

Liang Yu
SENSEable City Lab, Singapore-MIT
Alliance for Research and Technology

1 CREATE Way, #09-01/02,
CREATE Tower, 138602, Singapore

yuliang@smart.mit.edu

Yong Liu
Microsoft Corporation

One Microsoft Way, Redmond, WA
98052-6399, USA

yong.liu@microsoft.com

Jong Lee
National Center for Supercomputing

Applications (NCSA)
University of Illinois at Urbana-

Champaign Urbana, IL, 61801, USA

jonglee@ncsa.illinois.edu

ABSTRACT

Recently, many tools have emerged to manage sensor web data

using Semantic Web technologies for effective heterogeneous

data integration. However, a remaining challenge is how to

manage the massive volumes of sensor data in their semantic

form, i.e., Resource Description Framework (RDF) triples. Our

survey revealed that most semantic tools either do not have

geospatial support, or have severe limitations on providing full

GeoSPARQL support and good performance for complex queries.

In this paper, we present an open source Semantic Spatiotemporal

Data Engine (SSTDE), which incorporates both semantic tools

and Geographic Information System (GIS) systems under a hybrid

architecture. Our main contribution includes 1) introducing the

sub-graph index to substitute the single node index, which results

in significant performance gain for a spatiotemporal query; 2)

developing a query optimization algorithm based on graph

matching; 3) proposing a benchmark test for spatiotemporal query

over triple stores. The spatiotemporal SPARQL query is

intelligently decomposed and executed on different systems,

which significantly improves the query performance by more than

a hundred times comparing to other solutions.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and

Software – distributed systems, performance evaluation.

General Terms

Algorithms, Management, Performance.

Keywords

Spatiotemporal Query; GeoSPARQL; Sensor Web; Graph Index;

Hybrid Architecture; Semantic Triple Store.

1. INTRODUCTION
The past few years have seen a paradigm shift of geospatial data

production driven by the advances of sensor technologies.

Heterogeneous sensor systems have been developed which make

it difficult to describe them in a uniform way. Many standards and

ontologies are proposed to formalize the semantics for all sensor

systems and the observations made by them, such as those

published by Open Geospatial Consortium (OGC) Sensor Web

Enablement (SWE)1 . A recent release of the Semantic Sensor

Network Ontology (SSNO) further aligns them to the semantic

web [1]. Success stories can be found in multiple domains such as

resource management, meteorology, environment, etc., where data

discovery and integration have been shown to be much easier by

following those standards and ontologies. In the recently released

SWE 2.0 specification, the data components are able to reference

a concept by simple links which provide their semantic definition

[2].

In the meantime, ubiquitous sensor networks lead to a new

challenge, which is often referred to as “Big Data” in both

scientific domains and business enterprises. Such data grow

quickly in both size and complexity (e.g., various data structures,

models, ontologies, etc.), while the solutions to them are usually

contradictory, i.e., system performance is always improved by

reducing the complexity and vice visa. To manage big data, one

interesting technology is the NoSQL databases [3], which address

the scalability from multiple perspectives using different data

models, e.g., key-value, column family, graph model, etc.

To address the challenge of data complexity, interest of managing

and publishing large scale sensor data through semantic web is

increasing. Sheth et al. propose a semantic sensor web where the

sensor data are annotated with spatial, temporal and thematic

semantic metadata [5]. Linked Open Data (LOD) [6] is the most

famous initiative that has been followed by many practitioners.

People are encouraged to share their data using the semantic

triples and also link to each other. It becomes the driving force

and an ideal environment for the sensor web community to follow

the ontologies and publish their data in triples [7]. Government

agencies such as the United States Geological Survey (USGS) are

also joining the trend by republishing their archived datasets using

triples [8]. Very recently, the supercomputing company Cray

funded YarcData2 starts to push “Big Data” graph analytics using

RDF and Simple Protocol and RDF Query Language (SPARQL) 3

as the industry standard. Since RDF model is one kind of graph

model, thus semantic triple stores can be seen as graph databases

of NoSQL series.

In particular, sensor data are always associated with

spatiotemporal contexts, i.e., they are produced in specific

locations and ordered by time. To process big sensor streams

within a spatiotemporal context, traditional GIS functions are

1 http://www.opengeospatial.org/ogc/markets-technologies/swe

2 http://www.yarcdata.com/press-release-6-26-12.html

3 http://www.w3.org/TR/rdf-sparql-query/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
The First ACM SIGSPATIAL International Workshop on Sensor Web

Enablement (SWE 2012) 2012, November 6, 2012. Redondo Beach, CA,

USA. Copyright(c) 2012 ACM ISBN 978-1-4503-1701-6/12/11...$15.00

mailto:yuliang@smart.mit.edu

coupled with new technologies such as stream processing and

supercomputing to meet the performance requirement [4]. Our

research interest is to manage big senor data in semantic triples to

achieve an optimal balance between the data size and complexity,

and provide full-fledged GIS functions with them. Several known

challenges include: 1) selecting ontologies for spatiotemporal

semantics; 2) providing GIS functions on top of triple stores; 3)

improving performance for big spatiotemporal data. Existing tools

often have very limited capabilities to manage the massive

geospatial data streams generated by sensor systems and to

perform efficient spatiotemporal queries over them. In this paper,

we present an open source middleware which combines existing

triple stores and GIS tools to collectively support semantic

spatiotemporal data management. It provides a common SPARQL

interface to users while synchronizing data writing across multiple

systems and optimizing spatiotemporal SPARQL queries at run-

time. It extends our previous research on implementing a

GeoSPARQL4 interface using the Tupelo 5 triple store [9]. Our

goal is to provide an independent solution for most existing

semantic systems. Our contributions are as follows:

 1) We propose to use a sub-graph index instead of a node index

for triple stores. A spatiotemporal query is known to be very slow

on existing triple stores because each single query can only

employ one index. Thus, the evaluation of a complex query does

not benefit much from such index strategies. Our solution is to

build the spatial and temporal index as a whole, which

significantly improves the performance.

 2) We develop a middleware to maintain a hybrid system and to

optimize the SPARQL query on-the-fly. The spatiotemporal index

is created and maintained externally and updated accordingly

whenever the primary database is changed. Also, we optimize the

SPARQL query using graph-matching algorithms and score-based

evaluation to decide how to make use of an index.

 3) We propose a benchmark for the spatiotemporal SPARQL

queries. Five benchmark queries are proposed to measure how a

system performs as a sensor web database. To the best of our

knowledge, there is no other benchmark evaluation conducted in a

similar way.

2. BACKGROUND AND RELATED WORK
In the sensor web research community, people are actively using

sensor ontologies because of the importance of data integration,

which is highlighted by the heterogeneous sensor networks. For

sensor web practitioners, there are two major concerns for

utilizing the ontologies to manage data, i.e., the performance and

geospatial support. Both the commercial industry and open source

communities have made steady progresses on improving the

performance of their products, which are reported by many

published benchmark evaluations [19–24]. Also, many extensions

to triple stores have been developed to provide geospatial support

as we will review in this section.

2.1 Sensor Ontologies
Many ontologies have been developed in the past decade, such as

Sensor Data Ontology [10], OntoSensor [11], Coastal

Environmental Sensor Networks (CESN) ontology [12], etc., to

name a few. Each of them is developed within different contexts

and targets at different sensor systems and functions, e.g., sensor

4 http://portal.opengeospatial.org/files/?artifact_id=44722
5 http://tupeloproject.ncsa.uiuc.edu/

centered or observation centered. The aforementioned SSNO,

launched in 2005 by W3C incubator, has been continuously

evolving and the latest version was published on 28th Jun, 2011.

Shortly after its release, SSNO has been used in quite a few

projects in the sensor web community, such as those described in

[13], [14]. Sometimes sensor ontologies are not able to provide all

the semantics needed by a scientific system and additional

ontologies are often required. For example, the W3C Geo

Ontology6 defines simple predicates for the WGS84 coordinates;

W3C Time ontology7 is widely used when temporal contexts are

needed; the recently discussed GeoSPARQL vocabulary is a

milestone for standardizing the geospatial terms using ontology;

Semantic Web for Earth and Environmental Terminology

(SWEET) [15] ontology developed at NASA is very popular in

earth science related research, which provides many domain

specific concepts that sensor ontologies do not have.

Even though those ontologies can conceptually formalize the

semantics for sensor web, people have found difficulties when

practically using them to develop applications. Managing

semantic triples is very expensive and inefficient comparing to

other traditional means [26]. The text based encoding and

unrestricted structure of RDF data trade off the performance with

flexibility. However, this problem is being alleviated by the

continuous advances of triple store products.

2.2 Triple Stores and Geospatial Support
In the past few years, various semantic triple stores have been

developed to store those ontologies as well as the data in RDF

triples. Jena8 and Sesame9 are two leading open source semantic

web projects, both of which provide high level APIs as well as

backend data repositories. These two API families become

predominant in this area. Even though there are other new

repositories that are proved to perform much better than these two

built-in repositories, these APIs still get widely supported due to

their generality and flexibility.

Many examples can be found on using those triple stores to

manage sensor ontologies as well as triple data. Barnaghi et al.

develop their sensor data model based on the SensorML,

OntoSensor as well as SWEET ontology, which is managed in

Jena and Sesame repositories [17]. Huang et al. proposes a

Semantic Web Architecture for Sensor Networks (SWASN) and

manages the data with Jena [27]. Patni el al. use Virtuoso to

manage the RDF triples for both sensor and observation data, and

then publish them as linked data. Also, the provenance

information is captured using their Sensor Provenance ontology

[18]. Battle et al. saw the GeoSPARQL as a forthcoming standard

that could unify various vocabularies and query languages

developed for spatial reasoning in the past decade, and

implemented it with the Parliament repository [16].

One trend for the triple stores is the geospatial support. For

example, OWLIM 10 supports geospatial index in its Standard

Edition (SE), and Virtuoso11 also provides geospatial functions in

its commercial edition. Several open source projects have tried to

6 http://www.w3.org/2003/01/geo/wgs84_pos

7 http://www.w3.org/TR/owl-time/

8 http://jena.apache.org/

9 http://www.openrdf.org/

10 http://www.ontotext.com/owlim

11 http://virtuoso.openlinksw.com/

extend Jena to provide geospatial support, a recent one of which is

the GeospatialWeb12. Neo4J13, a graph database belonging to the

NoSQL category, has been extended to manage geospatial data

and semantic triples respectively in two projects – Neo4J spatial

and Blueprint14. Open SAHARA has published the uSeekM15 as a

geospatial extension to the triples stores that support Sesame API.

Different from others mentioned above, it does not provide

underlying implementation for either geospatial functions or triple

storage, but instead incorporates existing tools, e.g., external

spatial index and triple stores, by taking advantage of the

Sesame’s query evaluation framework. Our implementation in this

paper is based on this uSeekM project. We have also found some

limitations on using it to manage the spatiotemporal sensor data,

and improved it in several aspects as discussed in the later part of

this paper.

2.3 Benchmark Evaluations
Evaluations on triples stores have been undertaken from different

perspectives. Rohloff et al. conducted an evaluation for triples

stores in 2007 [19], which include the Sesame OWLIM, and

DAML DB16, Jena, AllegroGraph17, etc. Their conclusion and

recommendation were that DAML DB and BigOWLIM had the

best performance at that time. Paulson et al. did an evaluation for

the provenance management purpose [20], for which both the

APIs (i.e., Jena and Sesame API) and triple stores are evaluated.

They chose Jena API due to its support for a wide variety of

RDBMS backend since Sesame did not support at that time. There

are more reports can be found in [21], [22], [23]. Also, Aquin et

al. noticed that semantic web applications are expected to be

running on small devices such as notebook, and then tested how

different semantic tools (Jena, Sesame and Mulgara) can be used

in a resource-limited environment [24].

3. LIMITATIONS AND OUR SOLUTIONS

3.1 Main Limitations
 1) Most systems are reinventing the wheels for incomplete

geospatial functions support. For example, Virtuoso provides 14

geospatial functions which are much fewer than PostGIS and only

available through its commercial version. The Neo4j spatial does

not provide a complete set of topological operators and spatial

reference systems. Other databases, such as MySQL and Mongo

DB, also limit their geospatial functions to a small subset, which

is far from sufficient for advanced geospatial applications. It is

reasonable for those systems to have some limitations because

none of them is intended to be a Geodatabase. However, for

people who are working on interdisciplinary area such as sensor

web, it is always difficult for them to manage the spatiotemporal

data within a semantic context.

 2) The performance for complex SPARQL query is not

acceptable, e.g., a query with many graph pattern constraints and

both geospatial and temporal filters. According to our test, a

spatiotemporal query takes a very long time on those systems, due

to the lack of index support. A sub-query is “selective” if most of

the candidates it returns are finally selected by the overall query.

12 http://code.google.com/p/geospatialweb/

13 http://neo4j.org/

14 https://github.com/tinkerpop/blueprints/wiki/

15 https://dev.opensahara.com/projects/useekm/

16 http://www.daml.org

17 http://www.franz.com/agraph/allegrograph/

For a spatiotemporal query, if both the spatial and temporal sub-

queries are not “selective”, the overall query does not benefit

much from single indexes. Most tripe stores only provide triple

indexes rather than value indexes on each node. An important

reason is that any single index is not selective for complex

queries, which are usually the case for most of the SPARQL

queries.

3.2 Our Proposed Solutions
 1) Adoption of a hybrid architecture. Rather than rebuilding

GIS functions into any specific systems and using one of them as

the only solution, we adopt a loosely coupled hybrid architecture,

which includes different systems managed by a middleware

named Semantic Spatiotemporal Data Engine (SSTDE). The

architecture of its current implementation is shown in Figure 1.

The core part of SSTDE is the “Hybrid Store”, which includes a

“Manager” and a “Query Optimizer”. The hybrid store

communicates with individual sub-systems through the “Notifier”

and “Evaluator”, and provides standard RDF operations to end

users, i.e., triple writing and SPARQL query, through a SPARQL

endpoint. The “Manager” synchronizes both repositories and

maintains the consistency between sub-systems by notifying all of

them when adding or removing triples. The triple store manages

the universal triple graph and the Geodatabase indexes the

spatiotemporal data. The “Query Optimizer” analyzes the query

request and creates the best query plan, which decomposes the

query into segments, executes them on different subsystems

through the individual “Evaluator”, and finally integrates the

results. The “Notifier” for each system receives commands from

the manager, i.e., adding or removing triples, and updates the

local storage accordingly. For the triple store, it simply delegates

the same commands to the local API, while for the Geodatabase,

it usually needs to project the updated universal graph to its local

view by running a SPARQL query. The “Evaluator” translates a

sub-query request to a local query language, execute it and bind

the results to the SPARQL model. The details of the functions for

each of them will be discussed in the next section. Although

similar architectures have been proposed in some other

researches, our focus is to provide a geospatial support and

optimize the spatiotemporal SPARQL query.

 2) Use of Composite Index (Graph Index). Composite index is

widely used in RDBMS systems, e.g., indexing two columns in a

table to improve the performance of queries on both of them.

However, it is hard to implement on triple stores due to the

unstructured nature of the graph model. However, the triple data

always use some ontologies as their schemas. Even though the

whole graph universe is still open and unrestricted, there exist

many small immutable patterns imposed by the ontologies, which

Figure 1. The hybrid system managed by SSTDE

are always used by SPARQL queries. Having considered this

feature, we have found it highly feasible to index the sub-graphs

that comply with certain patterns. When a SPARQL query is

issued, the query optimizer finds out all the indexes that can be

used and selects the best one. Part of the query is replaced by the

index query thus the performance is improved. For a complex

query, a proper composite index will be selected, which results in

much more performance gain comparing to a single index.

A graph pattern out of a bigger RDF graph can be found in our

previous work [14]. It includes the location of a sensor and time

of the observation, which could then be used as a composite index

for such spatiotemporal queries.

4. IMPLEMENTATION
Our SSTDE implementation is based on the uSeekM project. This

framework helps us quickly construct a hybrid system, while we

further extend it to address the limitations discussed in the above

section. The basic idea is to delegate more than one sub-query to

graph index query, for which a graph pattern matching algorithm

is developed to optimize the query plan. Also, SSTDE maintains

consistency across sub-systems while updating triples. The

communication with Geodatabase is orchestrated by an “Index

Manager”,which is part of the “Manger” component as shown in

Figure 1.

4.1 Query Delegation Model
A SPARQL query can be seen as a collection of evaluation nodes

arranged in a binary tree, an example of which is shown in Figure

2. There are two types of evaluations: triple pattern matching and

value filtering. Also, the intermediate nodes “Join” and “Union”

are used to specify the logic relations between any two nodes. The

overall evaluation is a post-order traversal of the tree, during

which the data are passed from the previous node to the next.

Each evaluation can be conducted individually. The idea of a

hybrid system is to delegate some of those evaluation nodes to

different backend repositories, which can provide certain function

sets, e.g., geospatial functions and achieve the best performance.

Figure 3 shows an example of delegating a geospatial query to

PostGIS. The uSeekM project builds on such a structure, which

however can replace only one evaluation node each time. As we

have discussed before, its performance for spatiotemporal query is

not satisfying. Our approach is based on the graph pattern shown

in SSNO, which continuously indexes the graphs when writing

data, and optimizes the query based on graph matching algorithm.

4.2 Graph Pattern and Graph Index
In SPARQL specification, a graph pattern is described as a set of

interconnected triple pattern. To use them in our algorithms, we

formally describe these two concepts as follows:

Definition 1 (Triple Pattern): A triple pattern is defined by 3

elements: subject, predicate and object, i.e., tp = {s, p, o}. Each of

the elements can be either a fixed value or a variable. They are also

noted as s(tp), p(tp), o(tp).

Definition 2 (Graph Pattern): A graph pattern consists of a set of

interconnected triple patterns, gp = {tp1, tp2, … , tpn}. For each tpi,

there must be one or more tpj (i ≠ j), where (s(tpi) = s(tpj))  (o(tpi)

= o(tpj))  (s(tpi) = o(tpj))  (o(tpi) = s(tpj)). Each single triple

pattern in a graph pattern is noted as gp[m], 1 ≤ m ≤ n, the number

of triple patterns in a graph pattern g is also noted as num(g).

Each graph pattern can be translated to a relational schema in the

Geodatabase. Figure 4 shows how we translate a graph index

configuration into a PostGIS table. The XML excerpt on the left

side is customizable by users, where we can see the graph pattern

is expressed by a set of triple patterns similar to a subset of a

SPARQL query. Each variable is used to create a column in the

table, while the constant values are still preserved by SSTDE as

configurations for the latter graph matching process. The “Literal”

definition is used to map the literal data types to those supported by

the specific databases. Currently the SSTDE supports the mapping

from XSD data types and OGC WKT types to PostGIS data types.

As Figure 4 shows, the “coord” and “timevalue” are assigned with

proper data types. Also, indexes are created for each column when

creating the tables.

4.3 Optimization for SPARQL Query
Assuming that we have built up the graph index, Figure 5 shows

the workflow for optimizing a SPARQL query.

4.3.1 Match Graph Index
Each graph index is associated with a graph pattern, so is a

SPARQL query. The query optimizer needs to find out which

index can be used to optimize the SPARQL query. We introduce

an “inclusion” predicate to represent such a relation between two

graph patterns.

Definition 3 (Element Inclusion): For each element e in a triple

Figure 4. Creating a Table in PostGIS for a Graph Index

Figure 2. A SPARQL evaluation tree

Figure 3. Delegating the evaluation nodes to different

backend repositories

pattern tp, i.e., e{s(tp), p(tp), o(tp)}, if ei is a variable, or ei = ej,

then ei includes ej, noted as ei ≥ ej.

Definition 4 (Pattern Inclusion): A triple pattern tpi includes tpj,

noted as tpi ≥ tpj, if (s(tpi) ≥ s(tpj)) (p(tpi) ≥ p(tpj))  (o(tpi) ≥

o(tpj)).

Definition 5 (Sub-Graph Pattern): If the collection of triple

patterns of graph pattern gpi is a subset of that of gpj, then gpi is a

subset pattern of gpj, noted as gpi  gpj.

Definition 6 (Graph Inclusion): A graph pattern gpi includes gpj,

noted as gpi ≥ gpj, if there exists one or more graph gpk  gpj,

num(gpk) = num(gpj) = n, and for each 1 ≤ m ≤ n, gpj[m] ≥ gpk[m],

then gpj includes gpk, noted as gpj ≥ gpk. Also, gpj ≥ gpi.

Definition 7 (Graph Algebra): For graph pattern gpi and gpj, gpi –

gpj removes every triple pattern in gpj from gpi.

According to definition 6, the essence of the graph matching

algorithm is to find out one or more sub-graph pattern from the

SPARQL that is included by the indexed graph pattern. The

evaluation of the selected sub-graph pattern will be replaced by an

index query. Figure 6 shows an excerpt of the pseudo code that

selects all the possible sub-graph patterns from the first input that

is included by the second input. The “matchGraph” method

returns a set of matched subset patterns from the input graph1 that

are included by graph2. It iterates all the possible combinations of

triple patterns in graph1 that form the required subset patterns.

The “removePattern” method is used by “matchGraph” to

remove a triple pattern that has already been matched from the

candidate graph pattern it belongs to.

To save the space, the pseudo code does not show the name

mapping process, which maps the variable names used in graph1

and graph2 for each matched subset pattern. It is used to create an

actual SQL query clause when one index is finally selected for

optimization.

4.3.2 Select Index
The “matchGraph” method returns a set of matched graph

patterns. A further selection is needed to decide which one is the

best. Most triple stores provide triple indexes, thus the essential

purpose of the graph index is to optimize the filters, which in

general, can be classified into three categories: numeric filter, text

comparison and function call. If a graph pattern contains variables

used in a filter, we associate that filter to it. For each matched

graph pattern, the numbers of the filters of each of the above types

are denoted as nfn, nft, nff. Each filter type is assigned with

different weight values, i.e., wfn, wft, wff, and the score can be

calculated as follows:

s = nfn  wfn + nft  wft + nff  wff

This score is used to select the best matched graph pattern from the

collection returned by the matchGraph method. Further, if there is

more than one index defined in the configuration file, the

matchGraph will be invoked multiple times with each index graph

as its second input. The best pattern will then be selected from all

the returned sets. Currently, we focus on the spatiotemporal query,

so that the spatial functions, e.g., within, contains, etc., are usually

the most selective. We then assign the weight values as: wfn = 100,

wft =10, wff=10.

4.3.3 Rebuild Query
If there is no available index for a query, it will be executed in a

default manner, i.e., evaluating the graph patterns on the triple

store and filtering each of the candidates. Otherwise the best index

will be used to optimize the query as follows:

 1) Generate an index evaluation object, which translates the

query on the indexed graph pattern to a SQL. The filters are

translated to local functions, e.g., regular expression, PostGIS

spatial functions, etc. The modifiers, i.e., “limit”, “order by” are

also carried to the SQL. As aforementioned, the translation is

based on the name mapping process.

 2) Substitute the matched graph pattern in the SPARQL as well

as its associated filters with the index evaluation object. All the

filters and matched triple patterns are removed from the

evaluation tree. In terms of Sesame API, the filters are replaced

with a constant Boolean value “true”, while the triple patterns are

removed by replacing their parent nodes with their sibling nodes.

 3) Move the index evaluation node to the most left-bottom

position, to make it the first one to be visited in a post-order

traversal process.

The execution of the query will be conducted by the Sesame API,

which visits the evaluation nodes in a post-order, and pass the data

from one node to the next. The indexer needs to bind the data

back to the variables in the SPARQL, where the name mapping is

used again.

4.4 Synchronization of Data Update
SSTDE dynamically creates tables in the PostGIS for each graph

index as shown in Figure 4. Each field is indexed according to

their types. To update the index database while writing triples, a

decision should be made on whether adding or deleting a triple

leads to any changes to the indexed data. This is performed by the

“Notifier” in Figure 1.

Set<Graph> matchGraph(GraphPattern graph1, GraphPattern
graph2){
 Initialize colGraph as a set of graph patterns;
 Add graph1 to colGraph
 FOR EACH triple pattern tp in graph2
 Initialize colGraphT as a temporary graph pattern set;
 FOR EACH gCand in colGraph
 Collection<Graph> candArray = removePattern(gCand,
tp);
 Add all elements of candArray to colGraphT;
 END FOR
 Replace colGraph with colGraphT;
 END FOR
 FOR EACH graph g in colGraph
 replace g with (graph1-g);
 END FOR
 RETURN colGraph;
}
Set<Graph> removePattern(GraphPattern g, TriplePattern tp){

Initialize colGraph to be a collection of graph
FOR EACH triple pattern tpg in g and tpg ≥ tp

produce gc as a copy of g
remove tpg from gc and add it the
colGraph;

END FOR
RETURN colGraph;

}

Figure 6. Pseudo code for finding sub-graphs

Figure 5. Workflow of SPARQL Query Optimization

 1) If the indexed graph pattern contains only one single triple

pattern, the updated triple is compared with this triple pattern and

then the index data is updated accordingly.

 2) If the graph pattern contains more than one triple pattern, a

SPARQL query will be executed to find out if there is an instance

of the graph pattern to be added or removed.

The SPARQL query is built by the graph pattern, but some

variables are replaced by the concrete values in the updated triple.

The query result will be either added or removed from the index.

An example is shown in Figure 7, which uses the graph index

defined in Figure 4. The graph pattern is simply wrapped into a

SPARQL query clause, and the variables “sensor” and “loc” are

replaced with the values from the updated triple.

4.5 Index Manager
The index manager is the essential part of the “Manager” in

Figure 1. Its main functions include:

 1) Notifying different index to update its local data. The

maintenance of the hybrid system is expensive, which needs to

run several queries when writing a single triple. The index

manager optimizes this by indexing the indexes with the

predicates in their triple patterns. It quickly identifies if an

updated triple would probably lead to new graph instances.

 2) Selecting the best index for a query from the index list. If

multiple indexes are matched for a query, the index manager

selects the one that has the highest score and uses it for

optimization.

 3) Updating the index in a batch mode. In a transaction mode,

batch processing significantly improves the performance.

 4) Supporting various vocabularies. It is very easy to change the

literal type “ogc:wkt” to another proprietary URI created by

individual persons or companies. Also, the GeoSPARQL

predicates are also very easy to be replaced.

5. BENCHMARK EVALUATION
Before developing the SSTDE, we have conducted a review and

hands-on testing on some existing triple stores in terms of

spatiotemporal query support and performance. We then narrowed

down to a few candidates that support the spatial data type and

spatial index. We focus on the open source community so that

commercial products are not considered. The final comparison list

includes three candidates: OpenRDF + uSeekM, Neo4j +

Blueprint + uSeekM, and Parliament. In theory, uSeekM supports

any triple stores that provide Sesame API implementations, but

there are some problems with specific products. For example,

Virtuoso does not support a query evaluation using external data

binding in its Sesame API, and Bigdata has a limitation on the

length of each triple element, which makes it impossible to store a

long geospatial coordinate string. Through our testing, we have

found that the current uSeekM implementation does not optimize

the Neo4J + Blueprint, i.e., the spatial triple pattern is not the first

one to be evaluated, so that we modify the source code

accordingly and add it to the solution list. The testing data

includes both sensor and observation data, which are converted to

RDF triples according to the SSN ontology and GeoSPARQL

vocabulary. The testing data include national maps from USGS,

event data from National Oceanic and Atmospheric

Administration (NOAA), sensor data from CUAHSI

WaterOneFlow Web service, etc., as listed in [14]. Table 1 lists

the statistical information of the testing data.

We use five testing queries with different GeoSPARQL predicates

and graph patterns, which are listed as follows:

1) A query to find the geometries within a polygon.

SELECT ?geometry ?wkt WHERE {
?geometry geo:asWKT ?wkt.
FILTER(geo:within(?wkt, "POLYGON((-91 33, -75 33, -75
42, -91 42, -91 33))"^^geo:wkt))}

2) A query to find the sensors within the Illinois state. It uses the

real coordinate string converted from USGS National Map.

SELECT ?sensor ?coord WHERE {
?sensor rdf:type ssn:Sensor.
?sensor dul:hasLocation ?loc.
?loc geo:asWKT ?coord.
FILTER(geo:within(?coord, "POLYGON((-90.6415100097656
42.5092811584473,-90.6359710693359
42.5093994140625,...))"^^ogc:wktLiteral))}

3) A query to find the tornados that intersects with the Illinois

state.

SELECT ?tornado ?path WHERE {
?tornado rdf:type phe:Tornado.
?tornado spa:hasGeometricalObject ?pathobj.
?pathobj geo:asWKT ?path.
FILTER(geo:intersects(?path, "POLYGON((-
90.6415100097656 42.5092811584473,-
90.6359710693359....))"^^ogc:wktLiteral))}

Figure 7. SPARQL query for updating the index

Table 1. Statistics of the testing data

Item Count

Total triples 6,828,735

Total geometries 45,832

Polygons 14,380

Line 27,727

Point 3,725

4) A query to find all the watersheds that are contained by Illinois

State.

SELECT ?watershed ?boundary WHERE {
?watershed rdf:type flu:Watershed.
?watershed spa:hasGeometricalObject ?bdobj.
?bdobj geo:asWKT ?boundary.
FILTER(geo:contains("POLYGON((-90.6415100097656
42.5092811584473,-
90.6359710693359.....))"^^ogc:wktLiteral, ?boundary))}

5) A query to find all the observations made by all the sensors

within Illinois and ordered by the observation time.

SELECT ?observation ?timevalue ?coord ?property ?value
?sensor WHERE {
?observation rdf:type ssn:Observation.
?observation ssn:observedProperty ?property.
?observation ssn:observationResult ?result.
?observation ssn:observationResultTime ?time.
?time time:inXSDDateTime ?timevalue.
?result ssn:hasValue ?value.
?value dul:hasDataValue ?datavalue.
?observation ssn:observedBy ?sensor.
?sensor rdf:type ssn:Sensor.
?sensor dul:hasLocation ?loc.
?loc geo:asWKT ?coord.
FILTER(?timevalue >= "2011-05-15T23:30:00.000-
06:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>)
FILTER(geo:within(?coord, "POLYGON((-90.6415100097656
42.5092811584473,-90.6359710693359 42.5093994140625,-
90.6353530883789))"^^ogc:wktLiteral))} order by
desc(?timevalue)

The coordinate string for Illinois State is shortened in the query

examples. Table 3 shows the testing results in terms of running

time (milliseconds) for different solutions. All the queries are

executed 10 times and the results are averaged. It is apparent that

uSeekM performs much better than the other three candidate

solutions, while the SSTDE further improves it significantly for

the queries 2 to 5. Query 1 is very simple as SSTDE and uSeekM

optimize it in a similar way. SSTDE performs better for Queries 2

to 4 because it replaces both the triple pattern evaluations and

filters with the index query, while the uSeekM only replaces the

filters. The query 5 is a spatiotemporal query and shows the most

distinct results. uSeekM stands on the second place, which is

almost 200 times slower than SSTDE.

6. DISCUSSION
SSTDE achieves significant performance gain for spatiotemporal

SPARQL query. However, there are still some limitations which

were found during the evaluation and need to be addressed:

 1) The size of the hybrid store grows fast. The size of the testing

data is about 5G in OpenRDF but only 1G in JSON files. A

further evaluation on the balance between data size and data

access performance for existing triple stores is needed. On the

other hand, the graph index is sometimes redundant, e.g., the

sensor locations are recorded multiple times for each observation.

It is reasonable to allow users to optimize the index data structure.

 2) Maintaining the consistency in the hybrid system introduces

additional overhead. Comparing to direct writing to triple stores,

the performance is reduced due to the additional index.

Synchronizing the data writing over multiple systems is

expensive. Asynchronous and batch processing could be possible

solutions, which would cause the “transient inconsistency” for the

overall system, but the goal is to keep it in an acceptable range.

 3) The performance of PostGIS reduces when the data size

increases. This is reasonable but an interesting observation is that

a Solid State Drive (SSD) provides much better performance than

a common hard disk. The performance of SSD is close to a

constant value while that of a common hard disk decreases

rapidly. Thus, more effort should be put on optimizing the

PostGIS, e.g., clustered database.

 4) The scalability is limited by both triple stores and

Geodatabase. SSTDE frequently issues SPARQL queries to

synchronize the data writing, for which high performance triple

indexes are essential. Despite the advances of triple stores on

managing billions of triples, the limitation will still be easily

reached for a single tripe store. Distributed triple stores, as well as

distributed spatial indexes are the promising solution.

7. CONCLUSION AND FUTURE WORK
This paper presents our recent effort on leveraging the semantic

tools to manage the sensor data and building applications on top

of them. The current implementation is available at [25]. Since

existing systems are not able to handle complex spatiotemporal

queries in an acceptable turn-around time, we develop the SSTDE

as a middleware that incorporates the semantic repositories and a

traditional Geodatabase under a hybrid framework.

As more and more people have realized that no single solution

could meet all the requirements in terms of the data size,

complexity and real time performance, we expect to investigate a

much larger scale system, where multiple types of backend

repositories are leveraged, and the data engine should be

Table 3. Execution time (millisecond) for 5 queries by different solutions

Solution Q1 Q2 Q3 Q4 Q5

OpenRDF + uSeekM 493 2109 408 540 40942

Neo4j+BluePrint+uSeekM 220493 755412 376825 1307944 N/A

Parliament 28363 12556 3752 22479 44879

Neo4j+BluePrint+ Optimized uSeekM 4418 7346 6804 6652 2065644

SSTDE 445 73 35 43 221

Table 2. Ontology prefixes used in the queries

Prefix URI

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

time http://www.w3.org/2006/time#

ssn http://purl.oclc.org/NET/ssnx/ssn

dul http://www.loa-cnr.it/ontologies/DUL.owl

geo http://www.opengis.net/ont/OGC-GeoSPARQL/1.0/

ogc http://www.opengis.net/

flu http://sweet.jpl.nasa.gov/2.2/realmLandFluvial.owl#

spa http://sweet.jpl.nasa.gov/2.0/spaceObject.owl

phe http://sweet.jpl.nasa.gov/2.2/phenAtmoPrecipitation

intelligent enough to know how to maintain the system and

optimize the query through a simple SPARQL endpoint. The

experiences we have gained in this research are very valuable for

handling the future Big Data challenge.

8. ACKNOWLEDGMENTS
The authors thank Microsoft Research and the Institute for

Advanced Computing Applications and Technologies at the

University of Illinois at Urbana-Champaign for partially funding

this work, as well as National Research Foundation Singapore

through Singapore-MIT Alliance for Research and Technology’s

Future Urban Mobility group for the support for writing this

paper.

9. REFERENCES
[1] Compton, M., et al., “The SSN Ontology of the W3C

Semantic Sensor Network Incubator Group”, Journal of Web

Semantics, 2012.

[2] Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding,

T., Stasch, C., Liang, S., and Lemmens, R., "New generation

Sensor Web Enablement," Sensors, vol. 11, pp. 2652-2699,

2011.

[3] Leavitt, N. Will NoSQL Databases Live Up to Their

Promise? Computer, 2010, 43:12–14.

[4] Kazemitabar, S.J., Banaei-Kashani, F., McLeod, D.

Geostreaming in cloud. (2011) Proceedings of the 2nd ACM

SIGSPATIAL International Workshop on GeoStreaming,

IWGS 2011, pp. 3-9.

[5] Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web.

Internet Computing, IEEE 12(4) (2008) 78–83

[6] Phuoc, D.L., Hauswirth, M.: Linked Open Data in Sensor

Data Mashups. In Kerry Taylor, Arun Ayyagari, D.D.R., ed.:

Proceedings of the 2nd International Workshop on Semantic

Sensor Networks (SSN09) in conjunction with ISWC 2009.

Volume Vol-522., CEUR (2009)

[7] Kessler, C. and Janowicz, K. (2010), Linking Sensor Data -

Why, to What, and How?. In Kerry Taylor, Arun Ayyagari,

David De Roure (Eds.): The 3rd International workshop on

Semantic Sensor Networks 2010 (SSN10).

[8] Wei, M., Zhao, T., Usery, E.L., and Varanka, D. A

Conceptual Design Towards Semantic Geospatial Data

Access GIScience, September, 2008

[9] Lee, J., Liu, Y., Yu, L. SGST: An Open Source Semantic

Geostreaming Toolkit. IWGS '11 Proceedings of the 2nd

ACM SIGSPATIAL International Workshop on

GeoStreaming, 2011. pp. 17-20

[10] Eid, M., Liscano, R. and Saddik, A.E. A Universal Ontology

for Sensor Networks Data. In 2007 IEEE International

Conference on Computational Intelligence for Measurement

Systems and Applications, pp. 59-62, 2007.

[11] Goodwin, J.C, Russomanno, D.J., Qualls, J. Survey of

semantic extensions to UDDI: implications for sensor

services. In Proceedings of the International Conference on

Semantic Web and Web Services, pp. 16-22, 2007.

[12] Calder, M., Morris, R.A., Peri, F. Machine reasoning about

anomalous sensor data. In Ecological Informatics 5(1), pp. 9-

18, 2010.

[13] Calbimonte, J.P, Jeung, H, Corcho, O., Aberer, K. Semantic

Sensor Data Search in a Large-Scale Federated Sensor

Network. In Proceedings: 4th International Workshop on

Semantic Sensor Networks 2011. 23 October, 2011. Bonn,

Germany.

[14] Yu, L and Liu, Y. Using Linked Data in a Heterogeneous

Sensor Web: Challenges, Experiments and Lessons Learned.

Workshop on Sensor Web Enablement 2011. October 6th

and 7th. Banff, Alberta, Canada.

[15] Raskin, R. and Pan, M.J. Knowledge representation in the

Semantic Web for Earth and Environmental Terminology

(SWEET). Computers & Geosciences 31, pp:1119-1125.

[16] Battle, R., Kolas, D. Enabling the geospatial Semantic Web

with Parliament and GeoSPARQL. Accepted by Semantic

Web – Interoperability, Usability, Applicability an IOS Press

Journal. Accessed at http://www.semantic-web-

journal.net/sites/default/files/swj176_3.pdf

[17] Barnaghi, P., Meissner, S, Presser, M., Moessner, K. Sense

and sens'ability:semantic data modelling for sensor networks.

In ICT Mobile Summit, 2009.

[18] Patni, H., Sahoo, S.S., Henson, C., Sheth, A.: Provenance

Aware Linked SensorData. In Kärger, P., Olmedilla, D.,

Passant, A., Polleres, A., eds.: Proceedings of the 2nd

Workshop on Trust and Privacy on the Social and Semantic

Web, Heraklion, Greece, May 31, 2010.

[19] Rohloff, K., et al. An evaluation of triple-store technologies

for large data stores. In: On the Move to Meaningful Internet

Systems 2007: OTM 2007 Workshops, 1105-1114.

[20] Paulson, P., Gibson, T., Schuchardt, K., Stephan, E.

Provenance Store Evaluation. 2008. accessed at

http://www.pnl.gov/main/publications/external/technical_rep

orts/PNNL-17237.pdf

[21] The National Center for Biomedical Ontology. Comparison

of Triple Stores. 2009. Accessed at

http://www.bioontology.org/wiki/images/6/6a/Triple_Stores.

pdf

[22] Revelytix, Inc. Triple Store Evaluation Performance Testing

Methodology. Accessed at

http://www.revelytix.com/sites/default/files/TripleStoreEvalu

ationAnalysisResults.pdf

[23] Berlin Free University, Berlin SPARQL Benchmark (V3

Results). 2011. Accessed at http://www4.wiwiss.fu-

berlin.de/bizer/BerlinSPARQLBenchmark/results/V6/Vincen

t

[24] D’Aquin, M., Nikolov, A., Motta, E. How much Semantic

Data on Small Devices?. In: EKAW 2010 Conference -

Knowledge Engineering and Knowledge Management by the

Masses, 2010.

[25] SSTDE source base. https://github.com/SSTDE/0.1.

[26] Schmidt, M. et al. An Experimental Comparison of RDF

Data Management Approaches in a SPARQL Benchmark

Scenario. In Proceedings of the International Semantic Web

Conference (ISWC 2008), 2008

[27] Huang, V., and Javed, M.K. Semantic sensor information

description and processing. In 2nd International Conference

on Sensor Technologies and Applications, 2008.

http://dx.doi.org/10.1109/CIMSA.2007.4362539
http://dx.doi.org/10.1109/CIMSA.2007.4362539
http://www.memphis.edu/eece/cas/docs/SWW3785.pdf
http://www.memphis.edu/eece/cas/docs/SWW3785.pdf
http://www.memphis.edu/eece/cas/docs/SWW3785.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1574954109000715
http://linkinghub.elsevier.com/retrieve/pii/S1574954109000715
http://www.semantic-web-journal.net/sites/default/files/swj176_3.pdf
http://www.semantic-web-journal.net/sites/default/files/swj176_3.pdf
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-17237.pdf
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-17237.pdf
http://www.bioontology.org/wiki/images/6/6a/Triple_Stores.pdf
http://www.bioontology.org/wiki/images/6/6a/Triple_Stores.pdf
http://www.revelytix.com/sites/default/files/TripleStoreEvaluationAnalysisResults.pdf
http://www.revelytix.com/sites/default/files/TripleStoreEvaluationAnalysisResults.pdf
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V6/
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V6/
https://github.com/SSTDE/0.1

