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Abstract—Affect detection from wearables in the “real” wild where people go about their daily
routines in heterogeneous contexts is a different problem than affect detection in the lab or in
the “quasi” wild (e.g., curated or restricted contexts). The U.S. government recently supported a
program to develop and evaluate the performance of contemporary affect detection systems in
the real-wild along dimensions of accuracy, robustness, and generalizability. Evaluations by an
independent testing team revealed that none of the performing teams met the aspirational
performance metrics. Alarmingly, performance was near zero for several cases. This paper is the
result of soul searching to reconcile the chasm between expected and achieved performance in
light of past successes of the field.

THE ABILITY to autonomously, ubiquitously,
accurately, and robustly infer affect as people go
about their daily lives is one of the holy grails
of affective computing. This vision was largely
a fantasy in the early days of the field (roughly
1995 to 2010), when researchers were grappling
with foundational theoretical (e.g., what is an
emotion?), technical (e.g., how to measure facial
expressions?), and methodological (e.g., how to
represent ground truth?) issues. Consequently,
early affect detection systems mainly focused on
detecting acted affect (i.e., posed expressions),
which was followed by efforts to detect spon-

taneous affect (i.e., non-acted but elicited in re-
sponse to a stimulus). This research was mainly
conducted in the lab but would occasionally oc-
cur in quasi (e.g., YouTube videos) or restricted
(e.g., classrooms) real-world settings [1]. Smart-
phones and wearable sensing ushered forth by
fitness trackers changed everything. Suddenly,
researchers were able to record various aspects of
human behavior and physiology (e.g., heart rate,
activity, locations visited, phone use, social media
use) as it unfolded in the real-world and across
a variety of contexts, which we refer to as the
real-wild.
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When combined with cost-effective comput-
ing and advances in deep learning, the vision
of real-world affect detection from wearables
was suddenly within reach. Accordingly, the past
decade (2010 and beyond) has yielded numerous
efforts towards fully automated affect detection in
the real-wild. Literature surveys suggest impres-
sive accuracies, such as 65% to 97% [2], 60% to
99% [3], and 78% to 97% [4] for stress detection
and 65% to 81% for other affective states (anx-
iety, positive affect, etc). Notwithstanding that a
lack of standardized approaches to validate sys-
tems and report results complicates independent
verification and comparison, the promising results
have garnered significant attention beyond the
affective computing community - who would not
be excited by a 97% accuracy of stress detec-
tion? For example, the smart health community is
interested in being able to track a persons emo-
tions because this can have profound implications
for diagnosis and treatment of numerous mental
health conditions including depression, anxiety,
and bipolar disorder. Whereas wearable devices
can provide continuous monitoring of physio-
logical signals, converting these raw values into
emotion estimates is a game changer. Similarly,
industrial and organizational psychologists, who
study methods to improve occupational outcomes
(e.g., decreasing absenteeism and improving task
performance) are keenly interested in automati-
cally tracking stress and early warning indicators
of burnout. And then there is the military, where
automatic measurement of workload, trust, and
other affect-related constructs are important com-
ponents for next-generation teams of humans and
intelligent machines.

But a nagging issue persists in the midst of
this enthusiasm. The ability to detect a com-
plex psychological construct like affect from
commodity sensors as people engage in every-
day activities (e.g., working, sleeping, leisure,
commuting) without restriction (i.e., people are
moving, dancing, laughing), in varied physical
(e.g., while skiing, meditating, dancing) and so-
cial (e.g., along, with friends, work colleagues)
contexts with high (or even moderate) accuracies
seems too good to be true. It is also incon-
sistent with psychological research questioning
the strength of the link between expressing and

experiencing affect and on the influence of social,
environmental, and cultural factors on affective
states [5]. The major inconsistency between the
promising published results given the immense
complexity of the problem leads us to ask whether
affect detection from wearables in the real-wild is
fact or fantasy or somewhere inbetween? In 2017,
the U.S. Intelligent Advanced Research Project
Agency (IARPA) provided a unique opportunity
to address this question. IARPAs Multimodal Ob-
jective Sensing to Assess Individuals with Con-
text (MOSAIC) program aimed to “to develop
and validate unobtrusive, passive, and persistent
sensor-based methods to assess stable and dy-
namic psychological, cognitive, and physiological
aspects of an individual.1” In addition to accuracy,
which is the main performance measure used in
the field, MOSAIC emphasized robustness (esti-
mates/predictions had to be provided even with
noisy/missing data) and generalizability (model-
ing approaches had to be user-independent and
reflect real-world experiences). How did the affect
detection systems fare when put to this rigorous
test? The short answer not very well indeed,
none of the three teams came close to meeting
the target metrics. Even more concerning, the
results were null (zero) in several cases. In an
attempt to reconcile these sobering results with
the aforementioned past successes, we, who were
performers on two separate teams, reflect on our
experiences by asking: what worked, what went
wrong, why, and where do we go from here?

OVERVIEW OF MOSAIC
MOSAIC was structured such that participat-

ing teams collected their own data using different
suites of sensors and modeling approaches. How-
ever, the evaluation methods and metrics were
standardized and conducted by an independent
testing and evaluation team.

Key Aspects of the MOSAIC Challenge
Participants and context. Because IARPA
focuses on the intelligence community, the par-
ticipants had to be employed in occupations that
resemble the demands on the intelligence work-
force. For this reason, relying on convenience
samples (i.e., students/faculty) was not permitted;

1p.6 of the request for proposals available at https://www.iarpa.
gov/research-programs/mosaic and https://osf.io/ax6yg/
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this component itself reflects a major deviation
from past affect detection studies. Further, data
collection had to occur as participants engaged
in their normal, everyday routines, which in pre-
pandemic times entailed commuting into the of-
fice (though remote work was also permitted) and
work-related travel.

Constructs and ground truth. The con-
structs to be measured included physical health,
mental health and well-being, intelligence, per-
sonality, and job performance. Here, we focus
on measurement of four affect-related constructs:
positive and negative affect, stress, and anxiety.
All “ground truth” measures consisted of vali-
dated self-report questionnaires. Each construct
was assessed as both a stable “trait” once at
the start of the study and also as a contextually
varying “state” once per day (including week-
ends) for at least two months. Daily measurement
frequency varied by construct, but affect was
measured once per day at some predetermined
time (e.g., at either 8am, 12pm, or 4pm local
time) using ecological momentary assessments
or EMAs (i.e., participants received a text to
complete a 3-5 min survey). Positive and negative
affect were measured with the 60-item PANAS-X
(trait) and 10-item PANAS-Short (state) measure.
Anxiety was measured with the 20-item STAI
(trait) and with single omnibus item (state). Stress
was only measured as a state, also with a single
omnibus item (i.e., “Overall, how would you rate
your current level of stress?”). Details on scoring
and assessment are discussed in [6].

Modeling constraints and assessing per-
formance. Ground truth data from a subset
(20% to 40%) of participants was withheld (i.e.,
blinded) from the teams either pseudorandomly or
from a separate cohort. Teams could train and in-
ternally validate their models on the non-blinded
data. They submitted predictions on the blinded
data, which were used to assess performance.

Teams could use any modeling approach but
could only rely on automatically sensed informa-
tion to generate predictions. Even demographic
information could not be used unless it was
automatically detected and location coordinates
were not permitted. These criteria, along with the
blinding, were established to assess generalizabil-

ity to new (unseen) participants. A prediction was
scored if there was a corresponding ground truth
measure irrespective of whether any sensor data
was recorded. This is an important component of
robustness. Further, all code and data were inde-
pendently verified by the testing and evaluation
team. Scoring focused on predicting between-
individual differences (trait measures) and within-
individual differences (state/daily measures). For
trait measures, the target metric was a correlation
of 0.5 or higher between sensor-based predicted
and the self-reported ground-truth score. Scoring
for state measures was a bit more involved [6],
but essentially the target was an R2 (proportion of
variance explained) of 0.25, which corresponds to
a correlation of 0.5. The 0.5 metric corresponds to
a Cohens d of about 1.2 sigma (a “large” effect)
or an area under the curve (AUC) of 0.8.

Overview of Team Tesserae and TILES Team
We discuss the methods and results of two

of the three participating teams called Tesserae2

and TILES3. Both were multidisciplinary, multi-
organizational teams encompassing more than 30
individuals each.

Team Tesserae. Key ideas of team Tesserae
were to: (1) collect a large, geographically diverse
dataset over an entire year to improve generaliz-
ability and understand seasonal effects; (2) jointly
model physiology, behavior, social interactions,
and context by leveraging sensors that people
already use; and (3) develop novel computa-
tional approaches to robustly integrate hetero-
geneous data streams. Accordingly, the Tesserae
team collected longitudinal, year-long data from
757 information workers (e.g., engineers, con-
sultants, managers) from five cohorts distributed
across the United States. The sensors included
a wearable fitness tracker (Garmin Vivosmart
3.0 to collect physical activity, sleep, and heart
rate), a smartphone application (to collect com-
munication metadata [not content]), Bluetooth
beacons (to track relative location), and social
media (Facebook posts). Modeling approaches
ranged from top-down methods (i.e., theoreti-
cally driven features (e.g., time spent commut-
ing) and standard machine learning [Random

2https://tesserae.nd.edu/
3https://tiles-data.isi.edu/, https://sail.usc.edu/tiles/

78 IEEE Intelligent Systems 38(1)

https://tesserae.nd.edu/
https://tiles-data.isi.edu/
https://sail.usc.edu/tiles/


Forests]) to more bottom-up approaches including
higher-order networks and sequential deep learn-
ing. An ensemble approach, where models were
trained/optimized on individual modalities (and
combinations thereof) and selectively deployed
based on available sensor data, was used to ad-
dress missing data; see [7] for details.

Team TILES. The key aims of the TILES
(Tracking IndividuaL PerformancE with Sensors)
project were to: (1) collect data from a working
demographic which experiences high levels of
stress, fatigue, and burnout; (2) jointly model
physiology, behavior, social interactions, and con-
text using commercially available and unobtru-
sive sensing technologies; and (3) develop novel
multimodal modeling techniques for uncovering
the main factors contributing to daily changes in
well-being. The TILES team gathered 10 weeks
of sensor data from 212 hospital workers (e.g.,
nurses, technicians, therapists) working in differ-
ent units (e.g., intensive care, step-down). The
suite of passive and wearable sensors included
a wrist-worn fitness tracker (Fitbit Charge 2 to
gather physical activity, sleep, and heart rate), a
fitness garment (OMSignal shirt for high-fidelity
heart rate, breathing rate, body movement), a
portable vocal audio tracker (Unihertz Jelly Pro
phone to capture personal speech patterns [not
content]), Bluetooth hubs and beacons (to track
relative location, ambient temperature, humidity,
light), and a smartphone application (to collect
social media). A range of modeling approaches
were investigated, including top-down traditional
and deep machine learning as well as bottom-
up motif analysis, signal-aware sequential data
imputation, and low-level featurization; see [8]
for details.

Summary of Results
The results (Table 1) support three main con-

clusions. First, neither team met the program
metrics for either trait (r of 0.5) or state (R2 of
0.25) affect detection. Second, performance for
trait detection was higher than that for state de-
tection. Third, state detection accuracies were es-
sentially zero with the exception of stress, where
automated methods explained 1% to 3% of the
variance in self-reported daily stress. Further, the
accuracies reported in Table 1 were representative

Figure 1. Sources of error in affective ground truth

of the other non-affective constructs. Specifically,
Tesserae achieved a mean r of 0.14 (SD = 0.12)
across 14 traits and a mean R2 of 1% (SD = 3%)
for 17 states. Equivalent results for TILES were
a mean of .10 (SD = 0.17) for traits and a mean
R2 of 1% (SD = 4%) for states.

POSTMORTEM: SIX CHALLENGES
Whereas it was unsurprising that none of the

teams met the aspirational program metrics, the
null results for affective state detection were espe-
cially concerning. The following challenges arose
in response to a request from the government
(IARPA) to opine as to why the program metrics
were not achieved. Here, we focus on affective
state detection since this is the primary focus of
the community and where results were the lowest.

Table 1. Results from the MOSAIC challenge on blinded
set

Trait
(Criteria: r of 0.5)

State
(Criteria: R2 of 0.25)

Construct Tesserae TILES Tesserae TILES

Positive Affect .16 < .01 < .01 .01
Negative Affect < .01 .14 < .01 < .01

Anxiety .14 .13 < .01 < .01

Stress - - .01 .03

Challenge 1: The mythical experience-
expression link. Affect detection has histor-
ically been rooted on a myth that there are exist
robust and generalizable mappings between affec-
tive expression (e.g., a big smile) and experience
(e.g., feeling happy). Instead, research indicates
that the expression-experience link is weak and
modulated by numerous factors (e.g., context,
culture, individual traits) [5]. Thus outside of
carefully controlled, homogeneous, lab studies,
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a more realistic expectation is that the link is
“above-chance probabilistic” i.e., better than
guessing [9]. Unfortunately, this myth appears to
be persistent and is now embodied in commercial
products, with occasional caveats in the fine print.

Challenge 2: Deficiency in ground truth
measurement. MOSAIC, like many other
real-world affect detection studies, used self-
reports as the sole ground truth measure. Whereas
self-reports are often eschewed as being subjec-
tive, and consequently not reliable and valid, this
is a major misconception, since the field of psy-
chometrics has demonstrated that despite being
subjected to several biases, self-reports can yield
reliable and valid data. The issue is that a singu-
lar measurement instrument (e.g., a self-report)
is inadequate to measure a complex construct.
As noted in Fig. 1, construct deficiency occurs
when a measure only targets a subset of the
construct (e.g., self-reports cannot access subcon-
scious information), whereas construct contami-
nation occurs when a measure targets irrelevant
information (e.g., self-reports can be subject to
social desirability bias). The obvious solution is
to incorporate a diversity of methods (e.g., ob-
server/informant reports/annotations, biomarkers
such as cortisol) to maximize capture of construct
relevant variance. However, this is difficult to
implement in the wild especially for large-scale
longitudinal studies as in the MOSAIC program.

Challenge 3: Temporal granularity and
temporal misalignment of ground truth.
Affective computing methods require fine-grained
ground-truth annotations to be precisely aligned
to the sensed signals, which is common for stud-
ies in the lab or quasi-wild, where measurement
frequencies range from milliseconds (frame-level
annotation) to a few minutes. However, ground
truth sampling rates in MOSAIC were coarse
grained (1/day) compared to the sensors (about
1/sec), so as to not be disruptive to busy individ-
uals where achieving a modicum of EMA compli-
ance was a major concern. A related problem is
that of misalignment in that there can be signifi-
cant delays between experiencing an emotional
episode and reporting it (e.g., participants are
handling a stressful event rather than responding
to the EMA). For example, there was a median

Figure 2. Temporal granularity and temporal mis-
alignment between affective responses and measure-
ment of ground truth via ecologically momentary as-
sessments (EMA)

2-hour delay between the onset of an EMA and
the subsequent response in the Tesserae data. In
general, there is the challenge of achieving pre-
cise temporal alignment between the sensor data,
onset of the affective events, and collection of
ground truth for studies in the real-wild (Fig. 2).

Challenge 4: Low-intensity affective re-
sponses. High-intensity affective responses
can be elicited in the lab, for example, by
inducing pain from heat or stress via public
speaking. In contrast, affective responses in non-
clinical samples largely consist of low-intensity
baseline affect (e.g., neutral, mild relaxation, or
mild anxiety), which are occasionally punctuated
by strong emotional responses to events/triggers.
For example, participants in the Tesserae study
reported considerable stress (i.e., 4 or 5 on a 1-5
scale) only 5% of the time. This yielded limited
training samples of high-intensity responses and
complicated machine learning due to the class
imbalance problem.

Challenge 5: Low-fidelity commodity sen-
sors. Scalable long-term affect detection en-
tails using commodity sensors that people already
use, a key principle of Tesserae and somewhat of
TILES, which did include a higher-fidelity phys-
iological sensor (OMSignal shirt) but was still
subjected to considerable motion artefacts [10].
The convenience of ambulatory monitoring with
wearable sensors incurs a tradeoff with respect to
the fidelity of the sensors, such as which com-
ponents of physiology can be sensed, sampling
rate, susceptibility to motion artefacts, and other
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factors. To this point, a recent survey [11] of
18 studies comparing wearable photoplethysmog-
raphy (PPG) with gold-standard electrocardiog-
raphy (ECG) to measure heart rate variability
(HRV) found excellent alignment between the
signals at rest, but progressively declining corre-
lations as activity increased. Thus, a major caveat
is that the sensors were of lower fidelity than the
research-grade sensors used in the lab.

Challenge 6: Heterogeneity of contexts.
Context can be broadly defined as the physical
and social environment surrounding a measure-
ment. Unlike studies in the lab or quasi-wild, data
collection unfolded across a range of heteroge-
neous contexts. Indeed, the MOSA(IC) program
aimed for assessments of “individuals with con-
text.” However, ground truth data on a person in
their real-world context was only collected once
a day, making it difficult to determine how to
integrate context into the models. Thus, like much
of affect detection research, both the Tesserae and
TILES teams adopted context-general approaches
(i.e., a single model was trained across all con-
texts), which may be a fatal design decision if
the affect expression-experience link is context-
dependent as most emotion theories would sug-
gest [5], [9]. This might also explain why results
were higher for trait assessment which aggregates
across contexts than the context-dependent state
assessments.

IMPLICATIONS: THREE
CONJECTURES

We discuss implications of the aforemen-
tioned challenges as three conjectures opinions
based on incomplete information.

Conjecture 1. Affect detection in the lab
and quasi wild might be a different prob-
lem than detection in the “real” wild. Two
salient aspects of current affect detection research
make it particularly alien from affect detection in
the real-wild. First, current work occurs in homo-
geneous contexts i.e., it exists within a particular
configuration of time, space, and environment
(e.g., undergraduates silently viewing 20-minutes
of videos designed to elicit sadness in a lab).
This is irrespective of whether affect is acted,
experimentally elicited, or occurs naturally, and it

also applies when experimental control is relaxed
as in the quasi wild. For example, detecting
affect from diverse videos of automotive reviews
(i.e, the MuSE-CaR dataset [12]) reflects an ex-
panded but still homogeneous context. Second,
most current affect detection approaches require
the underlying signals (video, audio, physiology,
etc.) to be aligned with fine-grained, temporally
precise annotations (i.e., ground truth affect; e.g.,
annotating each frame in a video or collecting
self-reports of affect every 15-secs).

Conversely, affect detection in the real-
wild must operate across heterogeneous contexts
which include multiple activities (work, rest,
leisure, housework), locations (home, office, etc),
social interactions (along, peers, friends, family,
etc.), and timescales with unique rhythms (e.g.,
diurnal cycles, seasonal effects). It must also
handle coarse-grained, misaligned annotations be-
cause it is implausible to expect people to self-
report affect every few minutes or to have ob-
servers provide fine-grained annotations without
resorting to mass surveillance. Thus, research in
the real-wild must contend with challenges posed
by heterogeneous contexts and temporal granular-
ity/misalignment of annotations and signals, two
features which do not pose major complications
in the lab or quasi wild.

Conjecture 2. Published results on wear-
able sensing in the wild might not reflect
robust, generalizable performance. Why
were the current results completely at odds with
studies reporting impressive accuracies for affect
detection from wearables in the wild (60% to
99% [2], [3], [4])? One possibility might be
factors specific to the MOSAIC program, such
as the target populations, the infrequent (1/day)
and exclusive use of self-reports to measure
ground truth, and the specific survey instruments
themselves. Further, the expedited timescale of
17-20 months from inception, data collection,
modeling, to evaluation might not have promoted
a creative, discovery-oriented approach, instead
requiring teams to rapidly adapt and apply exist-
ing affect detection methods which might have
been ill-suited for the real-wild (see Conjecture
1). We must also acknowledge that our teams
might not have been sufficiently skilled, and other
teams would have been more successful (although

January/February 2023 81



Affective Computing and Sentiment Analysis

similar results were obtained by a third team4).
Alternatively, there might be cause to ques-

tion the veracity of the impressive accuracies
reported in published studies on affect detection
from wearables in the wild. As we have recently
argued [13], there is a tendency to simplify the
problem to optimize accuracy at the expense of
robustness and generalizability. Table S15 tabu-
lates a set of design decisions from published
studies that pose threats to robustness and gen-
eralizability. Briefly, these include: (1) quantiz-
ing continuously measured affect into discrete
low vs. high categories, while disregarding the
more difficult medium category; (2) avoiding the
data imbalance problem by balancing class labels
(including testing data); (3) discarding missing
data by only generating estimates (predictions)
for cases with high sensing fidelity; (4) overfitting
due to a lack of strict person-level independence
in training and testing sets; (5) reporting accuracy
metrics which do not adjust for baseline perfor-
mance (i.e., when there is class imbalance) or
not considering counterfactual comparison mod-
els (e.g., shuffling labels); and (6) adopting ar-
bitrary criteria for several decisions including
cutoffs used for quantization, number of folds,
treatment of missing data, and so on. To be clear,
we are not implying any nefarious intent, as we
have also published studies that are susceptible
to these threats. Instead, we suggest that the field
values/rewards the false idol of accuracy at the
expense of robustness and generalizability.

Conjecture 3. Expectations for high ac-
curacy in low signal to noise conditions
might be implausible in the real-wild. It
is worth considering why the field expects high
or even moderate accuracies in the real-wild.
We argue that these expectations arise from a
tendency to overly extrapolate findings from so
called “biomarkers” (measurable indicators) of
mental states and from conflating a statistically
significant effect with the size of the effect. To il-
lustrate, consider the strength of the biologically-
plausible and empirically-supported inverse rela-
tionship between heart rate variability (HRV) and

4We cannot disclose specifics due to confidentiality require-
ments since IARPA does not make the results public (personal
communication 01/12/2022).

5Supplementary materials available at https://osf.io/ax6yg/

stress [14]. A meta-analysis [14] of 43 studies
comparing differences in HRV for individuals
diagnosed with post-traumatic stress disorder and
healthy controls at baseline (i.e., without a stres-
sor) revealed effects (i.e., |Hedges’ g|) ranging
from .23 to .66 (depending on HRV measure).
The average |g| of .43 corresponds to an R2

of 4.4%, which can be considered a medium-
sized effect (i.e., Cohens d around 0.43). The vast
majority of studies investigating this relationship
occurred in controlled lab conditions (e.g., 77%
in [14]) using research-grade sensing (electro-
cardiography) while restricting movement. These
study constraints increased the signal to noise
ratio (SNR), yet effects were still moderate (i.e.,
HRV explains < 5% of the variance).

Conversely, many factors inherent to ambula-
tory (in situ) real-world studies on the HRV-stress
relationship diminish SNR, (see review in [15]),
such as the use of commodity sensing (e.g., pho-
toplethysmography) which have lower accuracy
(see Challenge 5), unrestrained movement, lack of
clearly defined/measurable stressors, and lower-
intensity responses which cannot be precisely
aligned with the onset of the stressor (Challenges
3 and 4). Thus, expectations of accuracy must
be calibrated with respect to the SNR ratio,
with lab studies involving biomarkers providing
upper-bounds. To this point, regression models
predicting self-reported stress from several HRV
measures in the Tesserae study yielded an R2

of about 1% [15], a small effect (Cohens d of
0.2) and only 25% of the above average meta-
analytic effect of 4.4%. Similar results have been
reported for facial expressions [5], where data is
lacking on other bimarkers such as speech and
body movements.

THE WAY FORWARD: FIVE
SUGGESTIONS

We end with some suggestions for the way
forward.

Suggestion 1. Embrace the potential of
wearable sensors. At the risk of throwing
the proverbial baby out with the bathwater, we
emphasize that wearable sensors are a game
changer because they enable the study of human
behavior in situ. Although we have argued that
these sensors have yet to demonstrate their po-

82 IEEE Intelligent Systems 38(1)

https://osf.io/ax6yg/


tential for affect detection in the real-wild, the
challenges are not exclusive to the sensors them-
selves, but are more systematic of the complexity
of the problem. Beyond affect detection, wearable
sensors can provide insights into human behavior
and experiences as it unfolds in the real-world,
finally enabling an escape from the confines of
the lab.

Suggestion 2. Focus on heterogeneous
contexts. Researchers tend to focus on the lab-
to-real-world continuum but overlook whether the
underlying context is homogeneous or heteroge-
neous. Table 2 provides a 2 × 3 framework to
integrate both dimensions. Whereas there are an
abundance of lab studies and some quasi-wild
studies in homogeneous contexts, but heteroge-
neous contexts are rarely considered. We suggest
that affect detection research in heterogeneous
contexts, but in controlled settings of the lab or
quasi-wild, might provide stepping stones towards
affect detection in the real-wild (i.e., heteroge-
neous contexts in the real-world).

Table 2. Two dimensional framework for affect detection
studies

Environmental Realism
Contextual
Variability Lab Quasi-wild Real-world

Homogeneous
Contexts

e.g.,
eliciting
stress in
the lab

e.g., annotating
stress in videos
of public
speaking
events

e.g.,
naturalistic
stress while
taking
standardized
tests

Heterogeneous
Contexts

e.g., eliciting
stress via
multiple
stimuli
(memory
recall, social
interactions,
etc.)

e.g., annotating
stress from
videos of
stressful events
(public
speaking,
sporting
events, etc)

e.g.,
naturalistic
stress during
unconstrained
daily activities
(home, work,
commute,
sport, etc)

Suggestion 3: Recognize that we cant sim-
ply “deep learn” a solution. Modern affect
detection systems have harnessed the power of
deep learning with some success (e.g., [16]). Al-
though there is usually insufficient data for end-
to-end training, fine tuning pre-trained models is
a promising approach. However, the major suc-
cesses of deep learning in object recognition and

language understanding might not be replicated
for affect detection, which focuses on ill-defined
conceptual entities (feelings and emotions) rather
than well-defined physical attributes (e.g., object
detection and speech recognition). Thus, in addi-
tion to improvements in deep learning methods,
we need complementary advances in how data
are collected and annotated and an increased
scientific understanding of emotion expression
and experience to achieve breakthrough results on
affect detection in the real-wild.

Suggestion 4: Leverage alternate methods
to collect ground truth. There is a need for
alternate approaches to collect ground truth in
cases where affective responses are muted and
there are a limited number of opportunities for
self-reports via EMAs. Potential strategies in-
clude triggering EMAs based on the sensed sig-
nals (e.g., when heart rate is elevated), stratifying
EMAs based on automatically sensed context,
scheduling EMAs to align with specific affect-
elicitation events, and adopting human-in-the-
loop machine learning techniques (e.g., active
learning). EMAs can also be complemented by
alternate methods such as day reconstruction,
where participants use structured questionnaires
to reconstruct activities and experiences of the
previous day.

Suggestion 5: Adopt a multidimensional
value and reward system. In addition to
the current overemphasis on accuracy, the field
should also consider robustness and generaliz-
ability in its value and reward structures. And
given that deep learning methods are increas-
ingly black-box, explainability and bias/fairness
should also be important considerations. A binary
categorization (i.e., low vs. high) of these five
factors yields 32 combinations, and a given affect
detection system can be evaluated with respect to
this multidimensional space. Researchers can also
develop validity arguments systematic evidence-
based arguments on the validity of an assessment
tool for a particular context. This is an important
first step to change the conversation from how
accurate? to how valid for what purpose?
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The MOSAIC program provided the inspiration to think

big and the means to do so. It resulted in integration of
large multi-organizational, multidisciplinary research teams,
collection of massive longitudinal, in-the-wild datasets from
working professionals (which are available for research pur-
poses - see footnotes 2 and 3), new ways to integrate
multimodal sensing streams, and numerous scientific find-
ings about human behavior, cognition, emotion, and social
interactions in real-world contexts. By these standards, the
program was a resounding success, despite none of the teams
achieving the deliberately challenging program metrics. So,
where do we go from here? Whereas it is tempting to
disregard the poor affective state detection results by adopting
the position that the problem of assessing self-reported affect
from sensor streams was ill-defined to begin with, there is also
an opportunity for reflection. More broadly, do the lack luster
results reported here, mounting critiques of affect detection
from affect scientists [5], poor performance of commercial
systems for non-posed expressions [17], and philosophical
debates on the feasibility and ethics of affect detection [18]
suggest a looming crisis for the field?

A parallel can be drawn to the replication crisis in the
psychological sciences, where more than 60% of high-impact
studies failed to replicate [19]. Although there are several
debates as to the extent of the crisis, the general consensus
was that there was a problem with the status quo. This re-
sulted confronting several methodological shortcomings and
adopting reforms aimed at developing a more rigorous science
(e.g., the new statistics [20]. But methodological reforms can
only go so far values and reward structures need to be
reexamined. In the psychological sciences, statistical signifi-
cance (i.e., detecting an effect) at the expense of robustness
and generalizability were rewarded because null findings
were mostly unpublishable. Similarly, affect detection values
accuracy and technical novelty, at the expense of robustness,
generalizability, explainability, and bias/fairness. As the field
of affective computing turns 30 years old, it might also benefit
from reflection and reformation so as to come closer to
realizing its awesome promise and potential.
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