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Abstract—Recent progress in AI tools and systems has been significant, especially
in their reasoning and efficiency. Notable examples include Generative AI-based
large language models (LLMs) like GPT-3.5, GPT-4, Gemini, among others. These
foundation models are versatile and effective in handling tasks including code
generation, poem writing, itinerary planning etc. based on text input. Moreover,
they can manage multi-modal inputs also including text, images, and audio.
In our work, we evaluate the effectiveness of fine-tuned deep-learning models
compared to general-purpose LLMs in moderating image-based content. We used
deep learning models such as CNN, ResNet50, and VGG-16, trained them for
violence detection on an image dataset, and tested them on a separate dataset.
The same test dataset was also evaluated using LLaVa and GPT-4, two LLMs that
can process images. Results demonstrate that VGG-16 model had the highest
accuracy at 0.94, while LLaVa had the lowest at 0.66. GPT-4 showed superiority
over Llava with an accuracy value of 0.9242. LLaVa recorded the highest
precision of all models. Interestingly, GPT-4 showed better results compared
to deep learning models when trained on smaller datasets which highlights
the usefulness of foundational LLMs for applications having limited training data.

A rtificial intelligence (AI) has advanced signifi-
cantly in recent years with the development of
large language models (LLMs) such as GPT-

3.5 and GPT-4 from OpenAI, Gemini from Google,
and Llama from Meta. Other notable LLMs include
BlenderBot, Galactica, LLaMA from FAIR, Alpaca from
Stanford, BloombergGPT, Chinchilla from DeepMind,
and Palm. LLMs can process various types of data
including video, images and text which makes them
significant language processors [1]. They are also
revolutionizing the way machines interact with and
comprehend human-generated content.
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The amount of research analyzing different facets
of AI technologies has increased dramatically since
ChatGPT’s launch As investigated in [2], a common
pattern in the existing research is to identify how
well LLM works in comparison to the state-of-the-
art approaches on several issues including finance,
medicine, healthcare, sustainability, education, and de-
cision makingIn addition, LLMs are being used to eval-
uate their performance on prediction tasks. For exam-
ple, Patrinos et al. [3] used ChatGPT to anticipate the
future of personalized medicine. LLMs exhibit human-
like language creation and understanding abilities due
to their deep neural network based architectures and
extensive internet text training. ChatGPT is widely
used for tasks requiring contextual comprehension and
excels at catching subtleties in the context of language.
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Advancements in LLMs have improved their capac-
ity to handle many forms of input data, such as text,
picture, audio, and video. The increase in LLM capa-
bilities raises questions about their efficacy in vision-
based applications. This research gap prompted us
to look beyond language processing and analyze the
proficiency of foundation models on image recognition
tasks. Social media platforms allow people to connect
globally, share opinions, and publish information. Their
use has grown significantly due to the quick and easy
access to information and the freedom to express in
various formats. However, social media is witnessing
an increase in harmful content. It includes hate speech,
fake news, obscene and violent images, cyberbullying,
child abuse content, etc. [4]. Therefore, it has become
crucial to detect and moderate harmful content. It is
also noteworthy that moderated content is not always
provocative and inflammatory. If the content does not
meet the platform’s rules and policies, it is also flagged
as inappropriate (for example, LinkedIn is not a plat-
form for sharing personal pictures and gossip). Overall,
content moderation involves systematically screening
content on websites and online networks to decide if
it is suitable for a specific site, location, or jurisdiction.

Deep learning, known for its hierarchical represen-
tation learning, has been instrumental in managing
complicated patterns inside enormous datasets that
has led us to advances in image analysis, recognition,
and comprehension. Therefore, it has become vital to
automatically detect harmful content on social media
platforms and help human moderators flag problematic
content. In the case of image-based violent detection,
the deep learning algorithms excel in extracting fea-
tures and recognizing patterns to facilitate automatic
identification of violent behaviors using body language
and nonverbal. However, incorporating large language
models brings an interesting perspective since they
have intrinsic language comprehension skills which
might augment the contextual understanding of im-
ages [5]. While both LLMs and deep learning are quite
competent at identifying content moderation tasks
based on images, a full evaluation of their relative per-
formances is necessary. An analysis of the available
literature finds a significant gap in essential research
into LLM performance on image datasets. As a result,
we conducted a thorough study of the performance of
two LLMs, Llava and ChatGPT-4, for detecting violent
scenarios inside image datasets. We also performed
comparative analysis with deep learning algorithms
such as CNN, VGG16, and ResNet-50. Our study’s key
contribution is testing LLMs for content moderation and
comparing fine-tuned models comprehensively with
general-purpose LLMs.

Our study also provides significant insights into
their strengths and shortcomings, allowing researchers
to choose the best approach for specific tasks. More-
over, understanding the trade-offs between LLMs and
deep learning models is critical for improving their
performance and successfully incorporating them into
real-world applications.

In this regard, our main contributions to the study
can be summarised as follows:

• Conducted a comparative analysis of deep
learning models and LLMs for content moder-
ation.

• We investigated how smaller training dataset
sizes affected model performance.

• Investigated the interpretability of responses
generated by LLMs.

The rest of the paper is organized as follows: Sec-
tion 2 discusses the background of the study; Section 3
discusses all the models employed in the study, includ-
ing fine-tuned deep-learning models and foundation
models; Section 4 describes the methodology followed
to generate and compare the results of LLMs and
deep-learning models; Section 5 presents the results
and discussion of the current work; finally, Section 6
presents the concluding remarks and future directions.

BACKGROUND
The proliferation of social media platforms and an
increasing number of users necessitates the use of au-
tomated systems for content moderation to ensure that
harmful materials such as hate speech, misinforma-
tion, and violent content are effectively identified and
addressed. Therefore, to maintain the integrity of posts
and adhere to legal standards, content moderation
has attracted researchers and policymakers greatly. A
number of works in this direction have been reported
in the literature. Primarily, we are aimed at focusing
a) technology used and b) issues addressed in the
reported studies. Up until recently, it has been all hands
on deck for human moderators, who’ve been the go-to
folks for dealing with harmful content. In [6], authors
have argued that for effectively handling social media
content for adequate moderation, human moderation
is better as humans can better deal with the require-
ments of contextual understanding and its challenges.
However, the sheer volume of content uploaded daily
makes human moderation a highly labor-intensive and
resource-consuming task. Additionally, human moder-
ators are susceptible to biases, inconsistencies, and
challenges keeping pace with the ever-evolving nature
of online content.
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To overcome these shortcomings, researchers
have actively explored automating content moderation
using artificial intelligence (AI). Traditional machine
learning and deep learning models have emerged as
powerful tools, particularly adept at image and video
classification tasks valuable for content moderation.
These models are trained on massive datasets labeled
as containing harmful or safe content. Once trained,
they can then be used to automatically identify and
flag potentially harmful content for further review by
human moderators. Authors have achieved [7] state-of-
the-art performance in detecting inappropriate content
on platforms like YouTube using EfficientNet-BiLSTM
architecture. Additionally, Moustafa [8] has used con-
volutional neural networks for tasks like pornography
detection. These works set a benchmark to compare
the effectiveness of specialized deep learning models
against any other models.

However, deep learning models also have limita-
tions. They often require vast amounts of labeled data
for effective training, which can be expensive and time-
consuming to acquire. Additionally, these models may
struggle to generalize to new types of content not
included in their training data. This limitation paves the
way for large language models (LLMs). LLMs can learn
complex relationships between words and concepts,
allowing them to perform various tasks such as gen-
erating text [2], translating languages [9], and writing
different kinds of creative content. Advances in LLMs
have made them more versatile as they can handle not
just text but also multi-modal input.

The increasing interest in LLMs for social media
content moderation is fueled by research demonstrat-
ing their potential in various aspects of this task.
Research has indicated their potential effectiveness
in several moderation roles. For example, LLMs have
been shown to accelerate and enhance the accu-
racy of creating content for adult learning. They also
show promise in rule-based community moderation
with noteworthy accuracy and precision. Moreover,
LLMs can improve the interaction between users and
platforms, aiding in clearer communication [10]. LLMs
show promise in altering webpages when given ex-
plicit directives, but they struggle with vague inputs
and complex web structures, highlighting the need for
further enhancements.

Research indicates that while LLM-based strate-
gies are promising for content moderation, additional
research and detailed implementation are necessary
to refine these models for specific moderation tasks.
LLMs also perform well in analyzing social media
sentiment, though ethical issues must be carefully
considered.

Transitioning from basic capabilities to targeted ap-
plications, various studies have examined how LLMs
can be integrated into the content moderation frame-
work. For example, a study by [11] explores an initial
approach to rule-based community moderation with
LLMs, achieving median accuracy and precision rates
of 64% and 83%, respectively. Their work highlights
both the potential and the challenges of LLMs in com-
prehending and applying community standards. This
study marks a significant point, illustrating the potential
and limitations of LLMs in understanding and enforcing
community guidelines.

Deep learning models have become valuable tools
for content moderation, but their limitations necessitate
exploring new approaches. Large language models
(LLMs) offer exciting possibilities for the next gener-
ation due to their ability to handle complex text and
potentially multi-modal data. However, concerns exist
regarding the fairness of current LLM-based systems
for vulnerable groups and minorities [3]. additionally,
LLMs show promise, challenges such as handling
complex requests and the need for meticulous data en-
gineering for effective fine-tuning are major conerns to
be dealt with [12]. A comprehensive study directly com-
paring the performance of fine-tuned deep learning
models and general-purpose LLM models for image-
based classification, and consequently image content
moderation, remains unexplored. To that end, we have
conducted this study to address this gap by comparing
the performance of fine-tuned deep learning models
with general-purpose LLM models for image-based
content moderation.

MODELS EMPLOYED
In this study, we used three deep-learning models and
two LLMs. Each of them is discussed briefly in the next
section.

Fine-tuned deep learning models
Out of the fine-tuned models, ResNet50 and VGG16
were pre-trained models. We also considered a simple
CNN baseline model.

ResNet50 model ResNet50 is a popular pre-trained
network that was developed in 2016 to overcome the
problematic behavior of deep networks when gradients
for the earlier layers become very small (the problem of
vanishing gradients) [13]. In our research, we utilized
the ResNet-50 model, which was pre-trained using
the ImageNet dataset. We applied transfer learning to
leverage the ResNet-50 model’s capability for feature
extraction which it had acquired from training on a
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diverse large dataset. The pre-trained models primarily
work as feature extractors, and their final fully con-
nected layers are replaced with new layers. First, a
global average pooling layer was added to the network
to reduce the spatial dimensions and allow for a denser
representation of the features. Next, a dense layer
with one neuron and ’sigmoid’ activation function was
included for the final classification task. The model
employed the Adam optimizer and a binary cross-
entropy loss function for training. We trained the model
with 100 epochs and batch size of 32.

VGG16 The VGG16 architecture, developed in 2014,
is a well-known deep convolutional neural network
design [14]. It employs a composition rule in which
numerous identical convolutional layers are stacked
sequentially, followed by a maximum pooling layer to
reduce the input dimensions. In our study, we used
the pre-trained VGG16 model and excluded its top
layers. We froze the basic model’s layers to keep
their weights constant during training. The ’sigmoid’
activation function was used in the last layer with one
neuron, preceded by a flattened layer. For training,
we used specific hyperparamter settings including the
’Adam’ optimizer, a binary cross-entropy loss function,
a batch size of 32, and an epoch value of 100.

CNN Convolutional neural networks (CNNs) are
widely used for image classification due to their ef-
fective structure, which includes convolutional layer
followed by pooling layer. At the end of the network,
flattened and fully connected layers are used. We used
a basic CNN model which was composed of a total
of nine layers. First convolutional layer took images of
dimension 128x128x3 as input and processed them
with the help of 32. It is followed by a second layer with
64 filters and a third layer with 128 filters. All convolu-
tional layers use a 3x3 filter size and a ReLU activation
function, and are each followed by a Max Pooling layer
with a 2x2 pool size. Subsequently, the extracted fea-
tures were transformed into a one-dimensional vector
using a flattening layer. Lastly, two dense layers were
added into the network. The first one had 128 neurons
with ReLU activation, and the final layer contained
one neuron with a sigmoid activation function. The
architectural setup of CNN model is outlined in Table 1.

Foundation Models
For this study, we sought multi-modal LLMs that can
interpret images and text (for query purposes). Consid-
ering the prerequisites, we included LLava and GPT-4
LLMs in the present work.

TABLE 1. Architectural setup of CNN model
Layer (type) Output Shape #Parameters
Conv2D_0 (None, 126, 126, 32) 896
MaxPooling2D_0 (None, 63, 63, 32) 0
Conv2D_1 (None, 61, 61, 64) 18,496
MaxPooling2D_1 (None, 30, 30, 64) 0
Conv2D_2 (None, 28, 28, 128) 73,856
MaxPooling2D_2 (None, 14, 14, 128) 0
Flatten_0 (None, 25088) 0
Dense_0 (None, 128) 3,211,392
Dense_1 (None, 2) 258
Total parameters: 3,304,898
Trainable parameters: 3,304,898
Non-trainable parameters: 0

LLava LLaVA (Large Language and Vision Assis-
tant) is an advanced multi-modal model published in
December 2023 [15]. It combines visual processing
features with a large language model (LLM) that results
in model capable of handling textual and visual input.
It combines the visual encoding ability of CLIP with
language processing ability of Vicuna’s. The model has
been fine-tuned with the help of a proprietary dataset.
Llava has showcased decent performance on complex
datasets in multi-modal conversations when presented
with novel visuals or instructions.

GPT-4 Generative Pre-trained Transformer 4, often
known as GPT-4, is the most recent model in OpenAI’s
GPT family comprised of foundation models [16]. It is
a flexible multi-modal model capable of handling both
textual and visual inputs. GPT-4 produces a wide range
of outputs, including both images and text. Though
internal architecture of GPT-4 is unknown, one may
expect improvements in areas such as model size,
training data, training processes, and fine-tuning ap-
proaches. In comparison to previous versions, notable
improvements are observed while using GPT-4 across
a wide range of benchmarks and applications.

PROPOSED METHODOLOGY
This section presents the overall approach used to
analyze general-purpose LLMs and specific deep-
learning models. It includes several steps, as detailed
below.

Dataset
In the current study, we have used real-life violence sit-
uations dataset. The original dataset comprises 1000
videos each of violence and non-violence taken from
YouTube. The violent videos feature a variety of real
street fights in diverse environments and conditions.
Similarly, non-violent videos are a collection of various
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FIGURE 1. Overall flow diagram of the adopted methodology

human activities, including sports, eating, walking, and
more, and are also collected from YouTube. How-
ever, we have considered an image dataset of violent
and non-violent scenarios for the study. This dataset
consists of images taken from the video frames of
the previously mentioned video data [17]. It includes
11,063 images divided into two categories: Violence
(1) and Non-Violence (0). A sample of the two classes
is given in Figure 2.

Initial processing of images

From the overall set of images (11,063), we took out its
0.5% as the test set (554 images). From the remaining
images (10,509 images), 90% were kept for training
(9,458) and the rest (1051 images) for validation. For
testing, we have to pass each image one by one to
Llava and GPT-4, which requires a significant amount
of human effort. Therefore, we considered the test
size to be 554 images (262 images for the ’Non-
violence’ class and 292 for the ’Violence’). We used
the same test dataset of 554 images to test all LLMs
and deep-learning models. Moreover, the images had
different resolutions and were brought to the same
pixel resolution (128x128x3) before being passed to
models.

Response generation from LLMs
The process of inputting images into Large Language
Models, obtaining their outputs, and then analyzing the
results involves several phases as discussed next.

Query preparation A direct query was devised for
LLMs to instruct them to choose the most appropriate
category for the provided image. Initially, we included
Gemini LLM (developed by Google) in our experiments.
However, it did not generate an appropriate answer as
it could not process the images of people yet. After
testing with many prompts, we opted for the question
"In which category will you put this image? Violent or
Non-violent. Make a guess and don’t supply further
information." We found that large language models
(LLMs) sometimes provided additional information, like
the reasoning for choosing a specific category. To keep
responses consistent, we tried to restrict the LLMs with
their answers to the category name only.

Response collection Once the query was finalized as
described earlier, we supplied LLMs with the images
one by one. To address potential memory retention
concerns with particular LLMs when confronted with
similar images, a new window was opened after pro-
cessing 10 images inside one window. The specified
text prompt was presented to both LLMs for each
image, and the LLM’s resultant categorization was
carefully documented.
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(a) Violent scene 1 (b) Violent scene 2 (c) Violent scene 3

(d) Non-violent scene 1 (e) Non-violent scene 2 (f) Non-violent scene 3

FIGURE 2. Samples taken from the dataset for both categories

Response cleaning The LLM outputs require post-
processing due to possible differences in answer pat-
terns for each query. Despite being instructed to of-
fer replies only in the form of a category, the tools
frequently attached additional descriptions or remarks
to the response. Thus, post-processing actions were
required to segregate the class from the answers
of LLMs. The complete mechanism to generate re-
sponses from LLMs is outlined in Algorithm 1.

Algorithm 1 Response collection process
1: for each image m in test set do
2: for each LLM L do
3: Supply m to L.
4: Ask L through prompt to identify class of m.
5: Store the output of L.
6: end for
7: end for
8: Post-process the output, if necessary.

Using Algorithm 1, we successfully determined cat-
egories of all images in the test set for Llava and GPT-

4. The outputs were recorded and then analyzed with
the outcomes from fine-tuned deep-learning models for
comparison.

Overall Algorithm
In this part, we have encapsulated all the described
components into an algorithmic framework (see Al-
gorithm 2). It starts with developing deep learning
models, which are then trained and evaluated on a
test dataset. The same test dataset is then fed into
each LLM, and the results are noted. The performance
measures are then generated for both the specialized
deep-learning models and the general-purpose LLMs.
Finally, the results of these models are put forward for
comparison.

Figure 1 provides a comprehensive understanding
of the adopted methodology. The performance of each
model was measured by comparing its responses to
the true categories. For each model, a confusion matrix
was created to check if the predictions corresponded
with the actual labels. Furthermore, we calculated four
key evaluation metrics: recall, precision, F1 score and
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Algorithm 2 LLMs and deep learning models compar-
ison
1: Create train (Tr ), validation (V ), and test (TS) sets

by splitting overall violence detection dataset D.
2: for each general-purpose LLM (Gl ) do
3: Use Algorithm 1 to record Output Ol .
4: Compute evaluation metrics El from Ol .
5: end for
6: for each fine-tuned deep model (Fd ) do
7: Pre-process Tr , V and TS , if necessary.
8: Design the architecture Fd .
9: Supply Tr and V to train Fd .

10: Run trained Fd on TS to calculate evaluation
metrics Ed .

11: end for
12: Compare Ed and El .

accuracy as they are standard measures for evalu-
ating classification problems. We could not compute
the AUC score because the LLMs provided specific
category names rather than probability scores.

FINDINGS
This section outlines the results obtained form fine-
tuned deep learning models and foundational LLMs.

Deep learning models vs LLMs
Table 2 shows the results obtained from both the deep
learning models and LLMs and Figure 3 contains the
corresponding confusion matrices.

The results showed notable differences among the
models’ performance. VGG16 model surpassed the
rest of the models in terms of accuracy (0.9422), while
Llava had the lowest accuracy at 0.6657. Among the
large language models, GPT-4 had the best accuracy
value of 0.9242. ResNet50 outperformed both the CNN
and Llava models in accuracy. Although Llava LLM
ranked lowest in accuracy, it achieved the highest pre-
cision rate of 0.9818 which was better than GPT-4 and
all the deep learning models. It demonstrates LLava’s
capability to minimize false positives. On the other
hand, the CNN model had the lowest precision with
a value of 0.8996. Interestingly, both LLMs’ precision
scores were significantly higher than those of fine-
tuned models.

The recall (sensitivity) metric evaluates model’s
efficiency in identifying the true positive instances.
ResNet50 led in recall with a value of 0.9692, followed
closely by VGG16 at 0.9589. Conversely, Llava had the
lowest recall at 0.3699 which shows a higher likelihood
of missing true positives. For the F1-score, VGG16

performed best with a value of 0.9459. Between LLMs,
GPT-4 surpassed Llava with a F1-score of 0.9242.

It is significant to note that while GPT-4 didn’t
surpass deep learning on all measures, it exhibited a
decent performance. Additionally, even LLava demon-
strated better precision. In summary, the Large Lan-
guage Model (LLM) GPT-4 surpassed the baseline
deep-learning model but did not reach the accuracy
levels of more specialized VGG16 and ResNet50 mod-
els. However, with future improvements and more com-
prehensive training, future LLMs could potentially per-
form comparable to specialized deep learning models.

Reduced dataset
Deep learning models rely heavily on training data vol-
ume, affecting their functionality, generalizability, and
flexibility. Larger and more diverse datasets allow the
model to recognize and analyze complex patterns and
make them capable of performing well on unseen data.
Furthermore, the scalability of deep learning models
is strongly correlated with data size. To optimize the
model’s huge parameter space, a large dataset is
required as inadequate data may result in insufficient
information for the model to calibrate them effectively.
On the other hand, LLMs have become popular as they
provide meaningful replies across several applications
without the need for special fine-tuning or targeted
training [18]. They are pre-trained on large, diversified
datasets covering a wide range of images, topics and
languages. The versatility of LLMs also makes them
extremely adaptable.

Therefore, it is plausible to analyze if specialized
deep learning models continue to outperform in our
scenario, even with less training data. For this analysis,
we conducted two sets of experiments. In the first
scenario, we reduced the original dataset to 50%, and
in the second, to 25%. The dataset at 50% included
5,254 images, with 4,728 for training and 526 for
validation. When the dataset was reduced to 25%,
the train set contained 2,364 instances and validation
set 263. We used the original test set of 554 images
for both cases. The same methodology as described
in Algorithm 2 was followed. Table 3 contains the
corresponding results obtained from reduced datasets.

As anticipated, the performance of deep learning
models declines which underscores their dependence
on the size of the dataset (see Table 3). Furthermore,
the drop in performance is significant across all evalua-
tion metrics, as shown in Figure 4. For example, the ac-
curacy of the VGG16 model fell from 0.9422 to 0.9241
and then to 0.9097 in the two scenarios. A similar
pattern is seen with other deep-learning models. The
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(a) LLava (b) GPT-4

(c) ResNet50 (d) VGG16

(e) CNN

FIGURE 3. Confusion matrix of all LLMs and deep learning models

8 November/December 2024



AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS

TABLE 2. Deep learning models vs LLMs on various evaluation measures

Class Model Evaluation measures
Accuracy Precision Recall F1 Score

Generel purpose LLM
LLava 0.6657 0.9818 0.3699 0.5373
GPT-4 0.9242 0.9771 0.8767 0.9242

Fine-tuned DLM
ResNet50 0.9242 0.8955 0.9692 0.9309
VGG16 0.9422 0.9333 0.9589 0.9459
CNN 0.8754 0.8996 0.8595 0.8791

TABLE 3. Results obtained from deep learning models with smaller training set

Dataset Portion Model Evaluation measures
Accuracy Precision Recall F1 Score

50 %
(Training dataset size = 4,728)
(Validation dataset size = 526)

ResNet50 0.9205 0.9 0.9554 0.9269
VGG16 0.9241 0.9401 0.9143 0.9270
CNN 0.8790 0.8975 0.8698 0.8834

25 %
(Training dataset size = 2,364)
(Validation dataset size = 263)

ResNet50 0.7021 0.7953 0.5856 0.6745
VGG16 0.9097 0.9260 0.9006 0.9131
CNN 0.8104 0.8191 0.8219 0.8205

need for extensive training highlights the advantage
of LLMs over deep learning models, particularly when
available training data is limited.

Explainability
In recent times, researchers have been concentrating
on explainable artificial intelligence (XAI) [19]. The
interpretability and explainability of models’ decisions
have become crucial in comprehending the reasoning
process, especially in sensitive areas like distinguish-
ing between violent and non-violent scenarios. Imple-
menting explainability in the deep learning models is
a difficult process and often, methods like attention
scores are utilized for the same [20].

On the other hand, LLMs explain their results
clearly when asked to predict the class of events
depicted in images. For example, when we supplied
Figure 2 (a) (a ’Violence’ class image) to GPT-4, it
provided the following explanation: The image you’ve
uploaded depicts a woman lying on the street with peo-
ple standing around her, some of whom are recording
the scene on their phones. This scene could be inter-
preted as potentially distressing or violent depending
on the context, which isn’t entirely clear just from the
image. Therefore, it could be placed in the "violent"
category as a cautious classification, especially if the
circumstances imply harm or distress. Moreover, we
got the following response when we uploaded Figure 2
(d):I categorize the image as non-violent based on its
content. The image shows two individuals playing a
game of chess, which is a strategic and non-physical
board game. The surroundings and the expressions
of people in the image are calm and focused on
the game, indicating a peaceful setting. There are no
elements of physical aggression, conflict, or anything

that suggests violence. Chess is typically recognized
as a game of mental skill and strategy, not physical
confrontation. Thus, the context and activity depicted
in the photo are inherently non-violent.

We also analyzed the explanations supplied by
Llava and GPT-4 and observed that they use distinct
ways of reasoning. When asked to explain their re-
sponses, Llava responds concisely, such as "Violent"
or "Non-Violent," without providing additional details. It
provides explanations for its responses when specifi-
cally asked. GPT-4, on the other hand, provides more
complex responses that justify the category it chooses.
Furthermore, we note that Llava only provides thor-
ough explanations when explicitly requested, but GPT-
4 does so on a constant basis. GPT-4’s openness is
critical in developing user confidence and comprehen-
sion of its conclusions and reducing response biases.
We also recommend conducting more research on
this topic to compare LLMs and their future use in
situational assessments.

Overall, easy and text-based explanations by LLMs
give them a definite advantage over deep learning
models, especially for applications where the inter-
pretability of results is critical.

Limitations
The proposed study has the following shortcomings.
First, we used a small test set of 554 images, which
limits the generalizability of the results. It does not
adequately cover the scenarios indicative of violent and
non-violent events. Using several datasets focused on
violence detection might provide a more thorough foun-
dation for comparing specialized deep-learning models
against LLMs. Furthermore, as LLMs are upgraded
and new variations are available, the conclusions of

November/December 2024 9



AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS

(a) Accuracy (b) Precision

(c) Recall (d) F1-score

FIGURE 4. Change in performance for deep learning models and LLMs

the study may become obsolete. The assessment is
limited to violence detection only. Another limitation is
the restricted amount of assessment metrics available
due to the nature of the LLM responses. Since LLMs do
not generate probabilistic predictions, measures such
as the AUC score are not applicable.

CONCLUSION
The current study presents an approach for compar-
ing the efficacy of fine-tuned deep-learning models to
foundation models in image-based content moderation.
Three deep-learning models were built and compared
to two LLMs. The results show that LLMs perform well
on the dataset used for content moderation across a
variety of assessment measures without specialized
training. GPT-4 outperformed Llava and other deep
learning models, but the VGG16 model demonstrated
the most superior overall performance. Notably, when
the dataset size decreased, the performance of deep

learning models decreased relative to LLMs. However,
when plenty of data is available, fine-tuned models
outperform LLMs. It is important to note that future
variations of LLMs, which are trained on broader and
diverse data, could surpass specialized models in ef-
ficacy.

There are various approaches for extending the
scope of the current study. Future research might focus
on assessing the utility of suggested technique with
more sophisticated multi-modal tasks. Furthermore,
it should be applied in a variety of areas, such as
natural language processing, computer vision, and
audio recognition, to understand its significance and
adaptability better.
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