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Abstract—With the advancement of both computer vision and
natural language processing, there is growing interest in incorpo-
rating Vision Language Models (VLMs) into the classroom to em-
power students and educators. Despite the VLMs’ sophisticated
abilities in context-aware emotion recognition, their effective-
ness in detecting classroom-specific emotions, e.g., engagement,
distraction, and absent-mindedness, remains underexplored. As
such, this paper aims to investigate the capabilities of two state-of-
the-art VLMs in this domain through an empirical study, focusing
on two research questions: 1) Is learning engagement detection
more challenging for VLMs compared to conventional emotion
detection? 2) What are the key difficulties faced by VLMs in
processing learning engagement detection tasks? To address these
questions, we perform a series of evaluation experiments by
utilizing a classroom behavior detection dataset and an emotion
recognition dataset. We conclude that VLMs that perform well
on basic emotion recognition struggle with in-context engagement
detection, due to the nuanced and context-dependent nature of
the task. Specifically, experiments show that VLMs have difficulty
distinguishing engaged and distracted classroom behavior, e.g.,
reading versus bowing the head. It suggests that VLMs still
have significant room for improvement in engagement analy-
sis. This issue can potentially be addressed by incorporating
more classroom-specific training data or commonsense reasoning
frameworks.

Index Terms—vision language models, emotion recognition,
learning engagement detection, multimodal learning.

I. INTRODUCTION

With the monumental development of Large Language
Models (LLM), Vision Language Models (VLMs), which
extend the LLMs by integrating visual inputs, have gained
popularity in a variety of application fields. One of such
scenarios is pedagogy [1]. There are a number of works
that utilize computer vision models in the classroom setting
to detect students’ behaviour [2], [3]. With their promising
visual understanding abilities, VLMs can be implemented
to automatically monitor the mental and cognitive states of
students in the classroom, providing support for students’
engagement and well-being.

However, despite the recent advancement in multimodal
emotion recognition [4]–[7], current VLMs might not be adept
at recognizing emotion states relevant to the classroom setting,
e.g., engagement, distraction, absent-mindedness, etc. This is
because such emotional states are more contextual, requiring
the machine to understand not only facial expressions, but also
body language and classroom-related activities.

To the best of our knowledge, existing works have not
extensively studied whether the prevalent VLMs are compe-
tent at detecting classroom-related emotion states, which we
define as the learning engagement detection task in this paper.
Therefore, the objective of the paper is to conduct an empirical
study to answer the following two research questions:

1) Compared to conventional visual emotion detection
tasks, are learning engagement detection tasks more
difficult for VLMs?

2) What are the most challenging factors for VLMs to
process learning engagement detection tasks?

To this end, we conduct a set of evaluation experiments,
utilizing a classroom behavior detection dataset [8] and an
emotion recognition dataset [9], [10]. We repurpose these
datasets into binary classification tasks, i.e., engaged and
non-engaged, positive and negative, to evaluate the abilities
of two publicly available VLMs to detect engagement and
conventional emotions. We further conduct multi-class classi-
fication evaluations on the original dataset labels to analyze
what VLMs find challenging to identify (Fig. 1). Through the
experiments, we find that learning engagement detection tasks
pose greater challenges for VLMs as they require interpreting
the interaction between individuals and their surrounding en-
vironment, unlike emotion detection, which primarily focuses
on the individual. The limited availability of relevant examples
for analyzing learning engagement in real world, unlabeled
corpora likely contribute to the inconsistent performance of
VLMs across different engagement label classes. This is be-
cause, unlike emotions, engagement analysis depends largely
on commonsense reasoning rather than visual and textual
cues [11]. However, humans often omit explicit mention of
commonsense knowledge when it appears too obvious. The
contribution of this work can be summarized as two-fold:

1) We provide a systematic empirical evaluation of two
state-of-the-art VLMs in the context of detecting learn-
ing engagement, addressing a gap in the existing liter-
ature regarding their effectiveness in classroom-specific
emotion recognition tasks.

2) We identify and discuss the specific challenges that
VLMs face when processing learning engagement de-
tection tasks compared to conventional emotion detec-
tion, and suggest potential avenues for improving VLM
performance in learning engagement analysis.
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Fig. 1. Workflow of our evaluations.

II. RELATED WORK

A. Emotion Recognition

Emotion recognition encompasses a variety of task settings,
each with its own set of challenges [12]. For text-based
emotion recognition, the research community is concerned
with sophisticated problems such as bias [13], [14], com-
monsense [15], cognition [16]–[18], ambiguity [19], [20],
crosslingual and multilingual [21], few-shot instances [22],
and multitask settings [23], discourse relations [24], domain-
adaptation [25], etc. Speech-based emotion recognition deals
with intonation, stress, speaking speed, and accent [26]–[28].
In image-based emotion recognition, some of the challenges
include contextual understanding [4], [7], [29], and cultural
differences [30].

In multimodal emotion recognition, there are various combi-
nations of modalities, including text-image, text-audio, video-
audio, text-video, etc [31], [32]. Research in this field mainly
focuses on the fusion of features from different modalities,
e.g., tensor fusion [33], [34], hierarchical fusion [35], [36],
bi-modal fusion [37], [38], attention-based fusion [39]–[41],
etc. As VLMs are making impressive progress, the research
focus of text-image emotion recognition has shifted to more
complex scenarios, emotion recognition in context [9], [42],
[43] being one of the challenging tasks.

B. Vision Language Model

VLMs can be divided into three categories based on train-
ing paradigm, namely, contrastive-based, masking-based [44],
and pretrained-backbone-based. The most commonly used
contrastive-based method is Contrastive Language–Image Pre-
training (CLIP) [45], by which the model learns to map vision
and language in a shared vector space. Due to its robustness,
this approach has been extended by a variety of studies, e.g.,
BLIP [46], SigLIP [47], and Llip [48].

Masking, on the other hand, takes inspiration from masked
language modeling [49] and learns image representations by
reconstructing masked image patches given some unmasked
text, and vice versa for text representations [50]. With the ad-
vancement of LLMs, however, it is also possible to forgo such
expensive training, and learn a mapping between a pretrained
image encoder and an open-source LLM instead. Such an ap-
proach is much less computationally demanding than training
from scratch. VLMs of this type includes Frozen [51], Mini-
GPT [52], GPT-4 [53], Gemini [54], and LLaVA [55]. VLMs
have been widely used in the field of affective computing [56]–
[59]. Specifically, many existing works leverage VLM for fa-
cial emotion recognition [60], [61], demonstrating impressive
generalization and zero-shot abilities. However, the application
of VLMs for in-context emotion recognition is relatively
under-explored. Zhang et al. [4] propose EmotionCLIP, which
extends CLIPby extracting emotion representations from ver-
bal and nonverbal communication. Xenos et al. [7] leverage
the generative capabilities of LLaVA [55] for context-aware
emotion recognition by employing a two-stage approach to
make use of its commonsense reasoning knowledge, achieving
impressive zero-shot performance. However, to the best of
our knowledge, existing studies have not explored VLMs’
ability to recognize classroom-specific emotions, i.e., learning
engagement detection.

III. METHODOLOGY

In this section, we will introduce how we prompt the
VLMs for our evaluations on three datasets (introduced in
Section IV-A). The prompts are constructed by following
common practices in the field of prompt engineering for
VLMs [62]. For the binary classification experiments (shown
in Table II), we use the following prompts to evaluate the
VLMs’ performance on the different tasks, i.e., learning
engagement detection, sentiment polarity classification, and
general engagement detection.



Task: Learning engagement detection
Prompt: Suppose you are a teacher. Given the following
image, identify if the student is concentrating on the
studies or not. Answer in ’yes’ or ’no’ only, ’yes’ if
the student is concentrating.

Task: Sentiment polarity classification
Prompt: Suppose you are an emotional analyst. Given the
following image, identify its only label from the label
set - [‘positive’, ‘negative’].Answer by only giving
the label classification and nothing else.

Task: General engagement detection
Prompt: Suppose you are an emotional analyst. Given the
following image, identify its only label from the label
set - [‘disconnection’, ‘engagement’].Answer by only
giving the label classification and nothing else.

For the multiclass classification experiments (shown in
Section V-B), we use the following prompts to evaluate the
VLMs’ performance on the different tasks, i.e., classroom
behaviour classification and emotion recognition.

Task: Learning behavior recognition
Prompt: Suppose you are a teacher in a classroom. Given
the following image, classify the image based on
whether the student is showing one of the following
behaviour - [‘writing’, ‘reading’, ‘using phone in
the class’, ‘bowing down the head’, ‘leaning over the
table’]. Answer using the given classification labels
only and no other words and use only one label for each
image.

Task: Emotion recognition
Prompt: Suppose you are an emotional analyst. Given
the following image, identify its only emotion label
from the label set [‘affection’, ‘pleasure’, ‘anger’,
‘sadness’, ‘fear’]. Answer by only giving the label
classification and nothing else.

IV. EXPERIMENT

To evaluate VLMs ability to handle conventional and
classroom-related emotion states, we first compare the perfor-
mance of two VLMs, i.e., LLaVA and GPT, on the binary
classification tasks of sentiment polarity detection, general
engagement detection, and learning engagement detection.
Furthermore, we evaluate the two VLMs’ performance on
basic emotion recognition and learning behavior recognition
to analyze what are the challenging factors in learning en-
gagement detection.

A. Datasets

As shown in Fig. 2, we conducted our experiments by
repurposing two benchmark datasets into the following three
datasets for different evaluation scenarios. Details of the
datasets can be found in Table IV-A.

1) The SCB-C dataset originates from the validation set of
SCB-dataset3 [8], containing images with 5 categories of
classroom behaviors, including reading, writing, using
phone, bowing the head, and leaning over the table.
For the learning engagement detection task, we combine
the labels reading and writing into engaged, and using
phone, bowing the head, and leaning over the table as
non-engaged.
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Fig. 2. Illustration of the repurposed datasets.

TABLE I
NUMBER OF EVALUATION SAMPLES IN EACH DATASET USED IN THIS

PAPER. BLUE DENOTES POSITIVE/ENGAGED; RED DENOTES
NEGATIVE/NON-ENGAGED.

SCB-C EMOTIC-C EMOTIC-E
# reading 782 - -
# writing 329 - -
# using phone 631 - -
# bowing head 94 - -
# leaning over table 99 - -
# affection - 253 -
# pleasure - 982 -
# anger - 76 -
# sadness - 168 -
# fear - 84 -
# engagement - - 738
# disconnection - - 272
# total 1,935 1,563 1,010

2) The EMOTIC-C dataset originates from the testing set
of the EMOTIC dataset [9], which contains images with
people in real environments, annotated with their appar-
ent emotions. To make the comparison fair, we select
samples from 5 out of 26 the emotion categories, i.e.,
pleasure, affection, sadness, fear, and anger, to form the
EMOTIC-C dataset for multiclass classification, which
contains 1,563 images in total. For the sentiment polarity
classification task, we regard pleasure and affection as
positive, and sadness, fear, and anger as negative.

3) The EMOTIC-E dataset also originates from the testing
set of the EMOTIC dataset. We select samples from 2 of
the emotion categories, engagement and disconnection,
to form the EMOTIC-E dataset, which contains 1,010
images in total.

Note that the original datasets, i.e., SCB-dataset3 and
EMOTIC, have multiple targets in a single image. For the
purpose of fair evaluation in our experiments, we utilize
bounding boxes given by the datasets and convert all included
samples into single-target images for classification.



B. VLM Setup

In this paper, we conduct our evaluations on two VLMs,
namely, LLaVA-v1.51 and GPT-4o mini2. For each experiment,
the images are resized to 128x128. The inference for GPT was
done using the online GPT-4o-mini API, while LLaVA-v1.5
was implemented offline on Nvidia A100 GPU.

V. RESULTS

A. Binary Classification

We first compare the VLMs’ binary classification perfor-
mance on sentiment polarity (EMOTIC-C), general engage-
ment (EMOTIC-E), and learning engagement (SCB-C). As
seen in Table II, both VLMs are well capable of understanding
the sentiment polarities from visual data, achieving higher
accuracy than the other two engagement evaluation tasks.
Specifically, the GPT model yields 99.48% accuracy, showing
that GPT-4o mini’s visual-linguistic understanding is well-
developed in common sentimental analysis scenarios. On the
other hand, we can also observe that the performance of both
VLMs drops sharply on the engagement analysis tasks. Accu-
racy gaps larger than 15% can be observed when comparing
the two models on sentiment and engagement analysis tasks,
respectively. It indicates that VLMs have difficulties in under-
standing these images in an engagement context. Considering
the nearly perfect performance of the GPT model (99.48%
on EMOTIC-C), such a big drop suggests that engagement
analysis may involve the understanding of more abstract,
context-dependent, and nuanced human behaviors. Engage-
ment analysis extends beyond merely interpreting affective
signals from individuals, as seen in sentiment analysis. It
requires an understanding of the dynamic interaction between
individuals and their surroundings, e.g., if someone is focused
on their phone, it may indicate high engagement with the de-
vice. However, in contexts such as a classroom or meeting, the
same behavior could suggest disengagement, as the individual
is expected to focus on the speaker or presentation.

Therefore, engagement analysis necessitates a more ad-
vanced level of contextual reasoning, one that can assess
the appropriateness of an individual’s behavior relative to
the specific environment, social expectations, and situational
dynamics. This added complexity often proves challenging for
models designed primarily for simpler tasks like sentiment
detection. Furthermore, engagement is inherently multifaceted,
shaped by factors that may not be directly observable, such as
cognitive states, personal interests, or underlying motivations.
For example, a neutral expression in a professional context
could signify intense focus or, alternatively, boredom, depend-
ing on the situation and the individual’s engagement with the
task [63]. This highlights the need for models to integrate
not only visual data but also contextual information, temporal
patterns, and external factors such as task relevance or social
interactions, in order to provide a more accurate assessment
of engagement [64].

1https://llava-vl.github.io
2https://platform.openai.com/docs/models/gpt-4o-mini

TABLE II
BINARY EVALUATION RESULTS, EVALUATED BY ACCURACY.

Model LLaVA GPT
SCB-C 67.23% 72.65%
EMOTIC-C 82.79% 99.48%
EMOTIC-E 40.59% 71.38%

B. Categorical Analysis

TABLE III
BEHAVIOR CLASSIFICATION RESULTS ON SCB-C, EVALUATED BY

ACCURACY.

Label LLaVA GPT
reading 11.13% 18.49%
writing 95.44% 90.58%
using phone 39.30% 57.89%
bowing the head 0.00% 28.72%
leaning over the table 0.00% 56.56%
average 29.17% 50.45%

TABLE IV
EMOTION CLASSIFICATION RESULTS ON EMOTIC-C, EVALUATED BY

ACCURACY.

Label LLaVA GPT
affection 22.53% 47.43%
pleasure 37.47% 62.73%
anger 23.68% 40.79%
sadness 93.45% 51.19%
fear 17.86% 20.23%
average 39.00% 44.48%

By investigating the results on specific label classes, VLM
performance varies widely in their ability to understand images
with different types of labels. First, as seen in Table III,
both LLaVA and GPT yield the highest accuracy in “writing”
on the SCB-C dataset, exceeding the performance on other
classes significantly. However, LLaVA utterly fails to correctly
identify “bowing the head” and “leaning over the table”. On
the other hand, “reading” and “bowing the head” classes are
challenging for GPT-4o mini. Such results imply that learning
these labels from real-world unlabeled data by pre-training
is still challenging. This is likely because the actions of
“bowing the head”, “leaning over the table”, and “reading”
are highly dependent on their environmental and situational
context, which may be difficult for a VLM to accurately
interpret. For example, “bowing the head” could take place
while reading, but without explicit contextual indicators, such
as holding and focusing on a book, the model may struggle
to correctly classify the action.

Compared to the behavior classification results on SCB-C
in Table III, the performance gaps between the highest and
lowest accuracy labels in the EMOTIC-C dataset (emotion
classification) appear to be narrower (see Table IV). This is
likely due to the greater number of learning instances for
emotion detection during the pre-training phase compared to
those available for in-class behavior classification.



VLMs have more opportunities to learn the connection
between textual descriptions of emotions and their corre-
sponding visual representations from the pre-training corpora,
e.g., a person says “I am feeling sad” with a sad face in
a video, making their performance on traditional emotion
classification tasks relatively robust. In contrast, text describing
in-class behaviors is less common in real-world training data,
contributing to the wider performance gaps in behavior clas-
sification. The learning of rare cases is a significant challenge
for pre-trained models [65].

C. Summary

Compared to conventional visual emotion detection
tasks, learning engagement detection tasks are more diffi-
cult for VLMs. This is primarily because engagement analysis
relies on interpreting the interaction between individuals and
their surrounding environment, whereas emotion detection is
largely focused on the individual alone. Consequently, for
effective engagement detection, VLMs must capture a wider
array of contextual signals that extend beyond the person’s
emotional state.

The most challenging factor for VLMs to process learn-
ing engagement detection tasks arises from the scarcity
of relevant examples in real-world, unlabeled corpora.
Unlike emotions, which are often expressed through both
visual and textual cues, engagement analysis relies heavily
on commonsense understanding. Since humans tend to omit
commonsense information when it is perceived as obvious,
e.g., “I am bowing the head” or “he is leaning over the table”,
it is rare to find parallel examples indicating engagement in
unlabeled data. This lack of explicit training instances may
contribute to the underperformance of VLMs in detecting
learning engagement.

VI. CONCLUSION

In this work, we evaluated two publicly available VLMs for
their ability to handle the learning engagement detection tasks.
We repurposed an in-context emotion recognition dataset and
a classroom behavior dataset to perform polarity classification
and engagement classification, drawing the conclusion that
the engagement analysis is more difficult than conventional
emotion detection tasks for VLMs. Furthermore, we conduct
multiclass classification using the emotion and behavior labels
of these datasets respectively. From the experiment results, we
find that the performance of VLMs is more robust on emotion
detection tasks than the performance on detecting in-classroom
behaviors, indicating a research gap for classroom engagement
detection.

Future research could take multiple directions to enhance
VLM performance in engagement detection tasks. One promis-
ing approach is to introduce more diverse and contextually
rich datasets specifically designed for engagement analysis.
Expanding the training data with instances that represent a
wider variety of behaviors and environmental interactions may
help reduce the current performance gap.

Additionally, incorporating commonsense reasoning frame-
works and external knowledge sources could improve VLMs’
ability to infer engagement by compensating for the absence
of explicit contextual details in real-world data. Future studies
should also focus on refining model architectures and devel-
oping specialized systems capable of addressing the complex
relationship between individuals and their environments across
various learning contexts.

REFERENCES

[1] H. Singh and S. J. Miah, “Smart education literature: A theoretical
analysis,” Education and Information Technologies, vol. 25, no. 4, pp.
3299–3328, 2020.

[2] H. Chen, G. Zhou, and H. Jiang, “Student behavior detection in the
classroom based on improved yolov8,” Sensors, vol. 23, no. 20, p. 8385,
2023.

[3] D. Zhang, C. Chen, F. Tan, B. Qian, W. Li, X. He, and S. Lei, “Multi-
view and multi-scale behavior recognition algorithm based on attention
mechanism,” Frontiers in Neurorobotics, vol. 17, p. 1276208, 2023.

[4] S. Zhang, Y. Pan, and J. Z. Wang, “Learning emotion representations
from verbal and nonverbal communication,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 18 993–19 004.

[5] N. Wagner, F. Mätzler, S. R. Vossberg, H. Schneider, S. Pavlitska, and
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