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Sentiment analysis in conversations has gained increasing attention in recent years for the growing
amount of applications it can serve, e.g., sentiment analysis, recommender systems, and human-robot
interaction. The main difference between conversational sentiment analysis and single sentence senti-
ment analysis is the existence of context information that may influence the sentiment of an utterance
in a dialogue. How to effectively encode contextual information in dialogues, however, remains a chal-
lenge. Existing approaches employ complicated deep learning structures to distinguish different parties
in a conversation and then model the context information. In this paper, we propose a fast, compact and
parameter-efficient party-ignorant framework named bidirectional emotional recurrent unit for conver-
sational sentiment analysis. In our system, a generalized neural tensor block followed by a two-channel
classifier is designed to perform context compositionality and sentiment classification, respectively.
Extensive experiments on three standard datasets demonstrate that our model outperforms the state
of the art in most cases.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Sentiment analysis and emotion recognition are of vital impor-
tance in dialogue systems and have recently gained increasing
attention [1]. They can be applied to a lot of scenarios such as min-
ing the opinions of speakers in conversations and improving the
feedback of robot agents. Moreover, sentiment analysis in live con-
versations can be used in generating talks with certain sentiments
to improve human-machine interaction. Existing approaches to
conversational sentiment analysis can be divided into party-
dependent approaches, like DialogueRNN [2], and party-ignorant
approaches, such as AGHMN [3]. Party-dependent methods distin-
guish different parties in a conversation while party-ignorant
methods do not. Both party-dependent and party-ignorant models
are not limited to dyadic conversations. Nevertheless, party-
ignorant models can be easily applied to multi-party scenarios
without any adjustment. In this paper, we propose a fast, compact
and parameter-efficient party-ignorant framework based on the
emotional recurrent unit (ERU), a recurrent neural network that
contains a generalized neural tensor block (GNTB) and a two-
channel feature extractor (TFE) to tackle conversational sentiment
analysis.

Context information is the main difference between dialogue
sentiment analysis and single sentence sentiment analysis tasks.
It sometimes enhances, weakens, or reverses the raw sentiment
of an utterance (Fig. 1). There are three main steps for sentiment
analysis in a conversation: obtaining the context information, cap-
turing the influence of the context information for an utterance,
and extracting emotional features for classification. Existing dia-
logue sentiment analysis methods like c-LSTM [4], CMN [5], Dia-
logueRNN [2], and DialogueGCN [6] make use of complicated
deep neural network structures to capture context information
and describe the influence of context information for an utterance.

We redefine the formulation of conversational sentiment anal-
ysis and provide a compact structure to better encode the context
information, capture the influence of context information for an
utterance, and extract features for sentiment classification. Accord-
ing to Mitchell and Lapata [7], the meaning of a complete sentence
must be explained in terms of the meanings of its subsentential
parts, including those of its singular elements. Compositionality
allows language to construct complicated meanings from its sim-
pler terms. This property is often expressed in a manner of princi-
ple: the meaning of a whole is a function of the meaning of the
components [8]. For conversation, the context of an utterance is
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Fig. 1. Illustration of dialogue system and the interaction between talkers.
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composed of its historical utterances information. Similarly, con-
text is a function of the meaning of its historical utterances. There-
fore, inspired by the composition function in [8], we design GNTB
to perform context compositionality in conversation, which
obtains context information and incorporates the context into
utterance representation simultaneously, then employ TFE to
extract emotional features. In this case, we convert the previous
three-step task into a two-step task. Meanwhile, the compact
structure reduces the computational cost. To the best of our knowl-
edge, our proposed model is the first to perform context composi-
tionality in conversational sentiment analysis.

The GNTB takes the context and current utterance as inputs and
is capable of modeling conversations with arbitrary turns. It out-
puts a new representation of current utterance with context infor-
mation incorporated (named ‘contextual utterance vector’ in this
paper). Then, the contextual utterance vector is further fed into
TFE to extract emotional features. Here, we employ a simple
two-channel model for emotion feature extraction.

The long short-term memory (LSTM) unit [9] and one-
dimensional convolutional neural network (CNN) [10] are utilized
for extracting features from the contextual utterance vector. Exten-
sive experiments on three standard datasets demonstrate that our
model outperforms state-of-the-art methods with fewer parame-
ters. To summarize, the main contributions of this paper are as
follows:

� We propose a fast, compact and parameter-efficient party-
ignorant framework based on ERU.

� We design GNTB which is suitable for different structures, to
perform context compositionality.

� Experiments on three standard benchmarks indicate that our
model outperforms the state of the art with fewer parameters.

The remainder of the paper is organized as follows: related
work is introduced in Section 2; the mechanism of our model is
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explained in Section 3; results of the experiments are discussed
in Section 4; finally, concluding remarks are provided in Section 5.
2. Related work

Sentiment analysis is one of the key natural language process-
ing tasks that has drawn great attention from the research commu-
nity in the last decade [11]. Besides the basic task of binary polarity
classification [12], sentiment analysis research has been carried
out in many other related topics such as multimodal sentiment
analysis [13,14], multilingual sentiment analysis [15], aspect-
based sentiment analysis [16], domain adaptation [17,18], rumors
and fake news detection [19,20], gender-specific sentiment analy-
sis [21,22], and multitask learning [23], including also applications
of sentiment analysis in domains like healthcare [24,25], political
forecasting [26], tourism [27], customer relationship management
[28], stance classification [29], and dialogue systems [30,31].
Recently, some sophisticated deep learning techniques like capsule
networks [32], deep belief networks [33], and hybrid AI [34] are
applied to the research of sentiment analysis and aspect-based
sentiment analysis.

Sentiment analysis in dialogues, in particular, has become a
new trend recently. Poria et al. [4] proposed context-dependent
LSTM networks to capture contextual information for identifying
sentiment over video sequences, and Ragheb et al. [35] utilized
self-attention to prioritize important utterances. Memory net-
works [36], which introduce an external memory module, was
applied to modeling historical utterances in conversations. For
example, CMN [5] modeled dialogue histories into memory cells,
ICON [37] proposed global memories for bridging self- and
inter-speaker emotional influences, and AGHMN [3] proposed
hierarchical memory network as utterance reader. Ghosal et al.
[38] incorporated commonsense knowledge to enhance emotion
recognition. Recent advances in deep learning were also
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introduced to conversational sentiment analysis like attentive RNN
[2], adversarial training [39], and graph convolutional networks
[6]. Another emerging direction is to incorporate Transformer-
based contextual embedding. Zhong et al. [40] leveraged common-
sense knowledge from external knowledge bases to enrich trans-
former encoder. Qin et al. [41] built a co-interactive relation
network to model feature interaction from bidirectional encoder
representations from transformers (BERT) for joint dialogue act
recognition and sentiment analysis.

Neural Tensor Networks (NTN) [42] first proposed for reasoning
over relational data are also related to our work. Socher et al. [43]
further extended NTN to capture semantic compositionality for
sentiment analysis. The authors proposed a tensor-based composi-
tion function to learn sentence representation recursively, which
solves the issue when words function as operators that change
the meaning of another word.

3. Method

3.1. Problem definition

Given a multiple turns conversation C, the task is to predict the
sentiment labels or sentiment intensities of the constituent utter-
ances U1;U2; . . . ;UN . Taking the interactive emotional database
IEMOCAP [44] as an example, emotion labels include frustrated,
excited, angry, neutral, sad, and happy.

In general, the task is formulated as a multi-class classification
problem over sequential utterances while in some scenarios, it is
regarded as a regression problem given continuous sentiment
intensity. In this paper, utterances are pre-processed and repre-
sented as ut using feature extractors described below.

3.2. Textual feature extraction

Following the tradition of DialogueRNN [2], utterances are first
embedded into vector space and then fed into CNN [10] for feature
extraction. N-gram features are obtained from each utterance by
applying three different convolution filters of sizes 3, 4, and 5,
Fig. 2. (a) Architecture of BiERU with global context. (b) Architecture of BiERU with loca
GNTB, respectively. pb

t and ERUb stand for backward contextual utterance vector and ER
textual modality in this paper. In our model, we only focus on textual modality. The de
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respectively. Each filter has 50 features-maps. Majumder et al.
[2] then uses max-pooling followed by rectified linear unit (ReLU)
activation [45] to process the outputs of the convolution operation.

These activation values are concatenated and fed to a 100
dimensional fully connected layer whose outputs serve as the tex-
tual utterance representation. This CNN-based feature extraction
network is trained at utterance level supervised by the sentiment
labels.
3.3. Our model

Our ERU is illustrated in Note 1 of Fig. 2, which consists of two
components GNTB and TFE. As mentioned in the introduction,
there are three main steps for conversational sentiment analysis,
namely obtaining the context representation, incorporating the
influence of the context information into an utterance, and extract-
ing emotional features for classification. In this paper, the ERU is
employed in a bidirectional manner (BiERU) to conduct the above
sentiment analysis task, reducing some expensive computations
and converting the previous three-step task into a two-step task
as shown in Fig. 2.

Similar to bidirectional LSTM (BiLSTM) [46], two ERUs are uti-
lized for forward and backward passing the input utterances. Out-
puts from the forward and backward ERUs are concatenated for
sentiment classification or regression. More concretely, the GNTB
is applied to encoding the context information and incorporating
it into an utterance simultaneously; while TFE takes the output
of GNTB as input and is used to obtain emotional features for clas-
sification or regression.
3.3.1. Generalized neural tensor block

The utterance vector ut 2 Rd with the context information incor-

porated is named as contextual utterance vector pt 2 Rdin this
paper, where d is the dimension of ut and pt . At time t, GNTB
(Fig. 3: (a)) takes ut and pt�1 as inputs and then outputs pt , a con-
textual utterance vector. In this process, GNTB first extracts the
context information from pt�1; it then incorporates the context
l context. Here pf
t ; TFEf , and GNTBf are forward contextual utterance vector, TFE, and

U, respectively. ŷt is the predicted possibility vector of sentiment labels. T refers to
tailed structures of GNTB and TFE are shown in Fig. 3.



Fig. 3. (a) GNTB when ut 2 R2. (b) TFE. The input of LSTM and CNN is context
utterance vector pt , and output is emotion features et .
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information into ut; finally, contextual utterance vector pt is
obtained. The first step is to capture the context information and
the second step is to integrate the context information into current
utterance. The combination of these two steps is regarded as con-
text compositionality in this paper. To the best of our knowledge,
this is the first work to perform context compositionality in con-
versational sentiment analysis. GNTB is the core part that achieves
the context compositionality. The formulation of GNTB is described
below:

pt ¼ f ðmT
t T

½1:k�mt þWmtÞ ð1Þ

mt ¼ pt�1 � ut ð2Þ

where mt 2 R2d is the concatenation of pt�1 and ut ; f is an activation

function, such as tanh and sigmoid; the tensor T ½1:k� 2 R2d�2d�k and

the matrix W 2 Rk�2d are the parameters used to calculate pt . Each

slice T ½i� 2 R2d�2d can be interpreted as capturing a specific type of

context compositionality. Each slice W ½i� 2 R1�2d maps contextual
utterance vector pt and utterance vector ut into the context compo-
sitionality space. Here we have k different context compositionality
types, which constitutes k-dimensional context compositionality
space. The main advantage over the previous NTN [42], which is a
76
special case of the GNTB when k is set to d, is that GNTB is suitable
for different structures rather than only the recursive structure and

the space complexity of GNTB is Oðkd2Þ compared with Oðd3Þ in
NTN. In order to further reduce the number of parameters, we
employ the following low-rank matrix approximation for each slice

T ½i�:

T ½i� ¼ UV þ diagðeÞ ð3Þ
where U 2 R2d�r;V 2 Rr�2d; e 2 R2d and r � d.

3.3.2. Two-channel feature extractor
We utilize TFE to refine the emotion features from contextual

vector pt . As shown in Fig. 3: (b), the TFE is a two-channel model,
including an LSTM cell [9] branch and a one-dimensional CNN [10]
branch. The two branches receive the same contextual utterance
vector pt and produce outputs that may contain complementary
information [47].

At time t, the LSTM cell takes hidden state ht�1, cell state ct�1

and the contextual utterance vector pt as inputs, where ht�1 and
ct�1 are obtained from the last time step t � 1. The outputs of the
LSTM cell are updated hidden state ht and cell state ct . The hidden
state ht is regarded as the emotion feature vector. The CNN receives
pt as input and outputs the emotion feature vector lt . Finally, the
outputs of LSTM cell branch ht and CNN branch lt are concatenated
into an emotion feature vector et which is also the output of ERU.
The formulas of TFE are as follows:

ht ; ct ¼ LSTMCellðpt; ðht�1; ct�1Þ ð4Þ

lt ¼ CNNðptÞ ð5Þ

et ¼ ht � lt ð6Þ
3.3.3. Sentiment classification & regression
Taking emotion feature et as input, we use a linear neural net-

workWc 2 RDe�n class followed by a softmax layer to predict the sen-
timent labels, where n class is the number of sentiment labels.

Then, we obtain the probability distribution St of the sentiment
labels. Finally, we take the most possible sentiment class as the
sentiment label of the utterance ut:

St ¼ SoftmaxðWT
c etÞ ð7Þ

ŷt ¼ argmax
i

ðSt½i�Þ ð8Þ

For sentiment regression task, we use a linear neural network
Wr 2 RDe�1 to predict the sentiment intensity. Then, we obtain
the predicted sentiment intensity qt:

qt ¼ WT
r et ð9Þ

where Ws 2 RDe�n class; et 2 RDe ; St 2 Rn class; qt is a scalar and ŷt is the
predicted sentiment label for utterance ut .

3.3.4. Training
For the classification task, we choose cross-entropy as the mea-

sure of loss and use L2-regularization to relieve overfitting. The
loss function is:

L ¼ � 1
PN

s¼1cðsÞ
XN

i¼1

XcðiÞ

j¼1

log Si;j yi;j
� �þ kkhk2 ð10Þ

For the regression task, we choose the mean square error (MSE)
to measure loss, and L2-regularization to relieve overfitting. The
loss function is:



Table 1
Statistical information and data partition of datasets used in this paper.

DATASET Partition Utterance Count Dialogue Count

IEMOCAP train + val 5810 120
test 1623 31

AVEC train + val 4368 63
test 1430 32

MELD train + val 11098 1153
test 2610 280
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L ¼ 1
XN

s¼1

cðsÞ

XN

i¼1

XcðiÞ

j¼1

qi;j � zi;j
� �2 þ kkhk2 ð11Þ

where N is the number of samples/conversations, Si;j is the probabil-
ity distribution of sentiment labels for utterance j of conversation
i; yi;j is the expected class label of utterance j of conversation i; qi;j

is the predicted sentiment intensity of utterance j of conversation
i; zi;j is the expected sentiment intensity of utterance j of conversa-
tion i, c(i) is the number of utterances in sample i; k is the L2-
regularization weight, and h is the set of trainable parameters. We
employ stochastic gradient descent based Adam [48] optimizer to
train our network.

3.4. Bidirectional emotion recurrent unit variants

Our model has two different forms according to the source of
context information, namely bidirectional emotion recurrent unit
with global context (BiERU-gc) and bidirectional emotion recurrent
unit with local context (BiERU-lc).

3.4.1. BiERU-gc
According to Eq. (1), GNTB extracts the context information

from pt�1, integrates the context information into ut , and thus
obtains the contextual utterance vector pt . Based on the definition
of contextual utterance vector, pt�1 is the utterance vector that
contains information of ut�1 and pt�2. In this case, the contextual
utterance vector pt holds the context information from all the pre-
ceding utterances u1;u2; � � � ;ut�1 in a recurrent manner. Bidirec-
tional neural networks have empirically gained improved
performance than its counterpart with only forward propagation
[49]. As shown in Fig. 2: (a), we utilize the bidirectional setting
to capture context information from surrounding utterances. The
BiERU in Fig. 2: (a) is named as BiERU-gc.

3.4.2. BiERU-lc
Following Eq. (1), GNTB extracts the context information from

the contextual utterance vector pt�1, and pt�1 contains the context
information of all the preceding utterances u1;u2; � � � ;ut�2 as men-
tioned above. If replacing pt�1 with ut�1 in Eq. (1) and (2), pt con-
tains the information of ut�1 and ut . In other words, ut�1 is not
only an utterance vector, but also works as the context of ut . As
shown in Fig. 2: (b), bidirectional ERU makes pt obtain the future
information utþ1. In this case, GNTB extracts the context informa-
tion from ut�1 and utþ1, which are the adjacent utterances of ut .
We name this model as BiERU-lc.
4. Experiments

In this section, we conduct a series of comparative experiments
to evaluate the performance of our proposed model (Codes are
available on our GitHub1) and perform a thorough analysis.

4.1. Datasets

We use three datasets for experiments, i.e., AVEC [50], IEMOCAP
[44] and MELD [51], which are also used by some representative
models such as DialogueRNN [2] and DialogueGCN [6]. We conduct
the standard data partition rate (details in Table 1).

Originally, these three datasets are multimodal datasets. Here,
we focus on the task of textual conversational sentiment analysis
and only use the textual modality to conduct our experiments.
1 https://github.com/Maxwe11y/BiERU.

77
IEMOCAP. The IEMOCAP [44] is a dataset of two-way conversa-
tions involved with ten distinct participators. It is recorded as
videos where every video clip contains a single dyadic dialogue,
and each dialogue is further segmented into utterances. Each utter-
ance is labeled as one sentiment label from six sentiment labels,
i.e., happy, sad, neutral, angry, excited and frustrated [52]. The
dataset includes three modalities: audio, textual and visual. Here,
we only use textual modality data in experiments.

AVEC. The AVEC dataset [50] is a modified version of the
SEMAINE database [53] that contains interactions between human
speakers and robots. Unlike IEMOCAP, each utterance in the AVEC
dataset is given an annotation every 0.2 s with one of four real val-
ued attributes, i.e., valence ( �1;1½ �), arousal ( �1;1½ �), expectancy
( �1;1½ �), and power ( 0;1½ �). Our experiments use the processed
utterance-level annotation [2], and treat four affective attributes
as four subsets for evaluation.

MELD. The MELD [51] is a multimodal and multiparty sentiment
analysis/classification database. It contains textual, acoustic, and
visual information for more than 13,000 utterances from the
Friends TV series. The sentiment label of each utterance in a dia-
logue lies within one of the following seven sentiment classes: fear,
neutral, anger, surprise, sadness, joy and disgust.
4.2. Baselines and settings

To evaluate the performance of our model, we choose the fol-
lowing models as strong baselines including the state-of-the-art
methods.

c-LSTM [4] The c-LSTM uses bidirectional LSTM [9] to learn con-
textual representation from the surrounding utterances. When
combined with the attention mechanism, it becomes the c-LSTM
+ Att.

CMN [5] This model utilizes memory networks and two differ-
ent GRUs [54] for two speakers for representation learning of utter-
ance context from dialogue history.

DialogueRNN [2] It distinguishes different parties in a conversa-
tion interactively, with three GRUs representing the speaker states,
context, and emotion. It has several variants including Dia-
logueRNN + Att with attention mechanism and bidirectional
BiDialgoueRNN.

DialogueGCN [6] This model employs graph neural networks
based approach through which context propagation issue can be
addressed, to detect sentiment in conversations. AGHMN [3] It uti-
lizes hierarchical memory networks with BiGRUs for utterance
reader and fusion, and attention mechanism for memory
summarizing.

Settings. All the experiments are performed using CNN extracted
features as described in the Method section. For a fair comparison
with the state-of-the-art DialogueRNN model, we use their utter-
ance representation directly.2

To alleviate over-fitting, we employ Dropout [55] over the out-
puts of GNTB and TFE. For the nonlinear activation function, we
2 Extracted features of two datasets are available at https://github.com/sentic-
net/conv-emotion.

https://github.com/Maxwe11y/BiERU
https://github.com/senticnet/conv-emotion
https://github.com/senticnet/conv-emotion


Table 2
Hyper-parameters of our BiERU-lc model on different datasets.

DATASET Dropout Learning Regularization
Rate Rate Weight

IEMOCAP 0.8 0.0001 0.001

AVEC.VALENCE 0.5 0.0001 0.0002
AVEC.AROUSAL 0.8 0.0001 0.0002

AVEC.EXPECTANCY 0.5 0.00005 0.0005
AVEC.POWER 0.8 0.0001 0.0001

MELD 0.7 0.0005 0.001
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choose the sigmoid function for sentiment classification and the
ReLU function for sentiment regression. Our model is optimized
by an Adam optimizer [48]. Hyper-parameters are tuned manually.
Batch size is set as 1. We set the rank for all the experiments to
r ¼ 10. Our model is implemented using PyTorch [56]. In Table 2,
we display the hyper-parameters of our BiERU-lc model on the
three standard datasets.

4.3. Results

We compare our model with baselines on textual modality
using three standard benchmarks. We run the experiment five
times and report the average results. Overall, our model outper-
forms all the baseline methods including state-of-the-art models
like DialogueRNN, DialogueGCN and AGHMN on these datasets,
and markedly exceeds in some indicators as the results show in
Table 3.

For the IEMOCAP dataset as a classification problem, we use
accuracy for each class, and weighted average of accuracy and f1-
score for measuring the overall performance. As for the AVEC data-
set, standard metrics for the regression task including Pearson cor-
relation coefficient (r) are used for evaluation. We use weighted
average of accuracy as the measure of performance on the MELD
dataset.

4.3.1. Comparison with the state of the art
We firstly compare our proposed BiERU with state-of-the-art

methods DialogueGCN, DialogueRNN and AGHMN on IEMOCAP,
AVEC and MELD, respectively.

IEMOCAP. As shown in Table 3, our proposed BiERU-gc model
exceeds the best model DialogueGCN by 0:10% and 0:06% in terms
of weighted average accuracy and f1-score, respectively. And the
BiERU-lc model pushes up state-of-the-art results by 0:84% and
0:41% for weighted average accuracy and f1-score, respectively.
For all 14 indicators on the IEMOCAP dataset, our models outper-
form at 7 indicators and have more balanced performances over
these six classes. In particular, the accuracy of ‘‘happy” of our pro-
posed BiERU-lc is higher than the result of DialgoueGCN by
14:82%. In the DialogueGCN model, the authors employ a two-
Table 3
Comparison with baselines on IEMOCAP and MELD datasets using textual modality. Avera
original paper.

METHODS IEMO

Happy Sad Neutral An

Acc. F1 Acc. F1 Acc. F1 Acc.

c-LSTM 30.56 35.63 56.73 62.90 57.55 53.00 59.41
CMN 25.00 30.38 55.92 62.41 52.86 52.39 61.76
DialogueRNN 25.69 33.18 75.10 78.80 58.59 59.21 64.71
DialogueGCN 40.62 42.75 89.14 84.54 61.92 63.54 67.53
AGHMN 48.30 52.1 68.30 73.3 61.60 58.4 57.50
BiERU-gc 49.81 32.75 81.26 82.37 65.00 60.45 67.86
BiERU-lc 55.44 31.56 80.19 84.13 64.73 59.66 69.05
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layer graph convolutional network to model the interactions
between speakers within a sliding window. For dyadic conversa-
tions, there are 4 different relations and context information is
scattered into each relation. In this case, however, the context
information is incomplete and inadequate for each relation.
Besides, window size is fixed, which makes it inflexible to different
scenarios. Our proposed models, to some extent, is more capable of
capturing adequate context information. To sum up, the experi-
mental results indicate that BiERU models can effectively capture
contextual information and extract rich emotion features to boost
the overall performance and achieve relatively balanced results.

AVEC. Among these four attributes, our model outperforms Dia-
logueRNN for ‘‘valence”, ‘‘arousal” and ‘‘expectancy” attributes and
obtains the same results on the ‘‘power” attribute. The pearson cor-
relation coefficient r of BiERU-gc is 0:04 higher than its counterpart
in terms of ‘‘arousal” (Table 4). As for the BiERU-lc model, it is 0:05
higher in r. For the attributes ‘‘expectancy” and ‘‘valence”, the
BiERU-lc model is 0:01 higher in r. As for the attribute‘‘power”,
although our best model does not outperform the state-of-the-art
method, it surpasses most of the other baseline methods including
CMN and c-LSTM. Overall, the BiERU-lc model works well on all the
attributes, considering the benchmark performances are very high.
As mentioned in part 1 of Section 4, AVEC is composed of conver-
sations between human speakers and robots. Robots are not good
at identifying global information and tend to respond to adjacent
queries from human speakers. This is one possible reason that
our BiERU-lc model has better performances than baselines and
BiERU-gc since it is skilled at capturing local context information.

MELD. Three factors make it considerably harder to model sen-
timent analysis on MELD in comparison with IEMOCAP and AVEC
datasets. First, the average number of turns in a MELD conversation
is 10 while it is close to 50 on the IEMOCAP. Second, there are more
than 5 speakers in most of the MELD conversations, which means
most of the speakers only utter one or two utterances per conver-
sation. What’s worse, sentiment expressions rarely exist in MELD
utterances and the average length of MELD utterances is much
shorter than it is in IEMOCAP and AVEC datasets. For a party-
dependent model like DialogueRNN, it is hard to model inter-
dependency between speakers. We find that the performances of
party-ignorant models such as c-LSTM and AGHMN are slightly
better than party-dependent models on this dataset. Our BiERU
models utilize GNTB to perform context compositionality and
achieve the state-of-the-art average accuracy of 60:9%, outper-
forming AGHMN by 0:6% and DialogueRNN by 4:8%.
4.3.2. Comparison between BiERU-gc and BiERU-lc
The proposed two variants take different context inputs. The

BiERU-gc model takes the output of GNTB at the last time step
and the current utterance as the input of GNTB at the current time
step. And the BiERU-lc model uses the last utterance and current
utterance as input of GNTB at the current time step. According to
ge score of accuracy and f1-score are weighted. ‘‘–” represents no results reported in

CAP MELD

gry Excited Frustrated Average Average

F1 Acc. F1 Acc. F1 Acc. F1 Acc.

59.24 52.84 58.85 65.88 59.41 56.32 56.19 57.5
59.83 55.52 60.25 71.13 60.69 56.56 56.13 –
65.28 80.27 71.86 61.15 58.91 63.40 62.75 56.1
64.19 65.46 63.08 64.18 66.99 65.25 64.18 –
61.9 68.10 69.7 67.10 62.3 63.50 63.50 60.3
65.39 63.14 73.29 59.77 60.68 65.35 64.24 60.7
65.25 63.18 74.32 61.06 61.54 66.09 64.59 60.9



Table 4
Comparison with baselines on AVEC dataset using textual modality. r stands for
Pearson correlation coefficient.

METHODS AVEC

Valence Arousal Expectancy Power
r r r r

c-LSTM 0.16 0.25 0.24 0.10
CMN 0.23 0.29 0.26 �0.02

DialogueRNN 0.35 0.59 0.37 0.37
BiERU-gc 0.30 0.63 0.36 0.36
BiERU-lc 0.36 0.64 0.38 0.37

Fig. 4. Heat map of confusion matrix of BiERU-lc.
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experimental results in Tables 3 and 4, the overall performance of
BiERU-lc is better than BiERU-gc.

For IEMOCAP datasets, the BiERU-lc model surpasses the BiERU-
gc model by 0:74% and 0:45% in terms of weighted average accu-
racy and f1-score, respectively. For the AVEC and MELD datasets,
BiERU-lc also outperforms its counterpart. One possible explana-
tion is that context information of a contextual utterance vector
in BiERU-gc comes from all utterances in the current conversation.
However, in BiERU-lc, the context information comes from neigh-
borhood utterances. In this case, context information of BiERU-gc
contains redundant information and thus has a negative impact
on emotion feature extraction.

4.4. Case study

Fig. 5 illustrates a conversation snippet classified by our BiERU-
lc method. In this snippet, person A is initially in a frustrated state
while person B acts as a listener in the beginning. Then, person A
changes his/her focus and questions person B on his/her job state.
Person B tries to use his/her own experience to help person A get
rid of the frustrating state. This snippet reveals that the sentiment
of a speaker is relatively steady and the interaction between speak-
ers may change the sentiment of a speaker. Our BiERU-lc method
shows good ability in capturing the speaker’s sentiment (turns 9,
11, 12, 14) and the interaction between speakers (turn 10). The
sentiment in turn 13 is very subtle. Turn 13 contains a little bit
of frustration since he/she is not satisfied with his/her job state.
However, considering that person B attempts to help person A,
turn 13 is more likely to be in a neutral stand. Besides, we also dis-
play the prediction results of baselines including the state of the art
in Fig. 5. On the one hand, both the DialogueRNN and DialogueGCN
models cannot successfully model the interaction between the two
speakers in this dialogue snippet. On the other hand, the two base-
Fig. 5. Illustration of a conversation
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lines are more likely to classify a few consecutive utterances into
the same emotion label, which indicates that they are insensitive
to the context information. In contrast, our BiERU-gc model gets
better results and detects the emotion shifting from frustrated to
neutral and from frustrated to neutral. However, global context
may contain noise information that is not related to the current
utterance, which weakens the proportion of related information
and makes the BiERU-gc model less sensitive to sentiment shifting.
In this case, the BiERU-lc model obtains the best results on this dia-
logue snippet since it is more sensitive to the context information
and has a better context compositionality ability in general.

4.5. Visualization

We use visualization to provide some insights into the proposed
model. Firstly, we visualize the confusion matrix in the form of a
heat map to describe the performance of our BiERU-lc model.
The heat maps of BiERU-lc on the IEMOCAP dataset are shown in
Fig. 4. Our model has a balanced performance over all the senti-
ment classes.

Secondly, we perform a deeper analysis of our proposed model
and DialogueRNN by visualizing the learned emotion feature
snippet from IEMOCAP dataset.



Fig. 6. Visualization of learned emotion features via dimensionality reduction.

Fig. 7. Training curve and time consumption logged on a single GPU using the IEMOCAP dataset.
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representations on IEMOCAP as shown in Fig. 6a and b. Vectors fed
into the last dense layer followed by softmax for classification are
regarded as emotion feature representations of utterances. We use
principal component analysis [57] to reduce the dimension of emo-
tion representations from our model (BiERU-lc) and DialogueRNN.
The emotion representation is reduced to be 3-dimensional. In
Fig. 6a and b, each color represents a predicted sentiment label
and the same color means the same sentiment label. The figures
show that our model outperforms on extracting emotion features
of utterances labeled ‘‘happy”, which is consistent with the results
in Table 2. In detail, neutral is an intermediate emotion and every
other emotion can smoothly transfer into neutral and vice versa.
Therefore, in both our BiERU model and DialogueRNN model, neu-
tral has more overlapping regions compared with other emotions.
Compared with DialogueRNN, our model distinguishes happy &
excited, frustrated & angry more clearly. Therefore, our model
has the ability to learn better emotion features to some extent.

4.6. Efficiency analysis

We analyze the efficiency of our proposed BiERUmodel by com-
paring it with two recent strong baselines. Two variants of our
model, i.e., BiERU-gc and BiERU-lc, are included. We choose Dia-
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logueRNN and DialogueGCN for comparison as these two are
recent competitive methods with public source code. Our proposed
model has advantages over DialogueRNN, in terms of convergence
capacity, the number of trainable parameters, and training time. In
the comparison with DialogueGCN, our models take much less
training time. Fig. 7a shows the training curve with training and
testing loss plotted. We utilize the same loss function for all the
compared models. Our BiERU-lc and BiERU-gc show comparable
convergence speed with their counterparts, while DialogueRNN is
prone to overfitting.

Our BiERU-gc has fewer trainable parameters and takes less
training time than DialogueRNN and DialogueGCN. Moreover,
BiERU-lc with low-rank matrix approximation has further reduced
trainable parameters. For 100D feature input in the IEMOCAP data-
set, our model has about 0.5 M parameters, while DialogueRNN
requires around 1 M. For the 600D MELD dataset, DialogueRNN
has 2.9 M parameters, and our BiERU-lc only has 0.6 M. With much
fewer parameters, our model consequently trains faster than its
counterpart as shown in Fig. 7b, where training time is logged in
a single NVIDIA Quadro M5000. Our BiERU model with either glo-
bal or local context is more parameter-efficient and less time-
consuming for training.



Table 5
Results of ablated BiERU on the IEMOCAP dataset. Accuracy and F1-score are
weighted average.

GNTB TFE ACCURACY F1-SCORE

� + 55.45 55.17
+ � 49.85 49.42
+ + 65.93 64.63
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4.7. Ablation study

To further explore our proposed BiERU model, we perform an
ablation study on its two main components, i.e., GNTB and TFE.
We conduct experiments on the IEMOCAP dataset with individual
GNTB and TFE modules separately, and their combination, i.e., the
complete BiERU. Experimental results on the IEMOCAP dataset are
illustrated in Table 5.

The performance of sole GNTB or TFE is low in terms of accuracy
and f1-score. The reason is that outputs of GNTB mainly contain
context information and outputs of TFE lack context information.
However, when these two modules are combined together as the
BiERU model, the accuracy and f1-score increase dramatically,
which proves the effectiveness of our BiERU model. More impor-
tantly, the GNTB and TFE modules couple significantly well to
enhance the performance.

5. Conclusion

In this paper, we proposed a fast, compact and parameter-
efficient party-ignorant framework BiERU for sentiment analysis
in conversations. Our proposed GNTB, skilled at context composi-
tionality, reduced the number of parameters and was suitable for
different structures. Additionally, our TFE is capable of extracting
high-quality emotion features for sentiment analysis. We proved
that it is feasible to both simplify the model structure and improve
performance simultaneously.

Our model outperforms current state-of-the-art models on
three standard datasets in most cases. In addition, our method
has the ability to model conversations with arbitrary turns and
speakers, which we plan to study further in the future. Finally,
we also plan to adopt more recent emotion categorization models,
e.g., the Hourglass of Emotions, to better distinguish between sim-
ilar yet different emotions.
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