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Abstract
Syntactic processing techniques are the foundation of natural language processing (NLP), supporting many downstream NLP
tasks. In this paper, we conduct pair-wise multi-task learning (MTL) on syntactic tasks with different granularity, namely
Sentence Boundary Detection (SBD), text chunking, and Part-of-Speech (PoS) tagging, so as to investigate the extent to which
they complement each other. We propose a novel soft parameter-sharing mechanism to share local and global dependency
information that is learned from both target tasks. We also propose a curriculum learning (CL) mechanism to improve MTL
with non-parallel labeled data. Using non-parallel labeled data in MTL is a common practice, whereas it has not received
enough attention before. For example, our employed PoS tagging data do not have text chunking labels. When learning PoS
tagging and text chunking together, the proposed CL mechanism aims to select complementary samples from the two tasks
to update the parameters of the MTL model in the same training batch. Such a method yields better performance and learning
stability. We conclude that the fine-grained tasks can provide complementary features to coarse-grained ones, while the most
coarse-grained task, SBD, provides useful information for the most fine-grained one, PoS tagging. Additionally, the text
chunking task achieves state-of-the-art performance when joint learning with PoS tagging. Our analytical experiments also
show the effectiveness of the proposed soft parameter-sharing and CL mechanisms.

Keywords Text chunking · Part-of-speech tagging · Sentence boundary detection · Multi-task learning · Granularity
computing · Curriculum learning

Introduction

Syntactic processing is a generalization of natural lan-
guage processing (NLP) subtasks that are concerned with
the structure of phrases and sentences, as well as the rela-
tion of words to each other within the phrase or sentence
[1]. There is a multitude in the granularity of syntactic pro-
cessing. For instance, Sentence Boundary Detection (SBD),
text chunking, and Part-of-Speech (PoS) tagging are all fun-
damental syntactic tasks, ranging from coarse-grained to
fine-grained. The interplay between these tasks ensures a
granular understanding of the syntactic and structural aspects

B Erik Cambria
cambria@ntu.edu.sg

Xulang Zhang
xulang001@e.ntu.edu.sg

Rui Mao
rui.mao@ntu.edu.sg

1 College of Computing and Data Science, Nanyang
Technological University, Singapore, Singapore

of natural language, enabling more sophisticated language
processing applications [2]. SBD aims to distinguish where
sentences begin and end in raw texts. Downstream tasks
such as machine translation [3, 4], information retrieval [5],
and document summarization [6, 7] rely on predetermined
sentence boundaries for good performance. In sentiment
analysis, SBD can help identify negation scope to improve
the performance [8]. Text chunking splits sentences into non-
overlapping segments, such as noun phrase (NP) and verb
phrase (VP). It helps to understand a sentence structure and
the relation between words, e.g., recognizing names and syn-
tactic components. It supports natural language processing
(NLP) tasks that require a general understanding of sentence
components, such as text summarization [9] and sentiment
analysis [10]. PoS tagging aims to label each word in a given
text with its PoS tag, e.g., noun, verb, adjective, and adverb. It
parses input text to assist downstream tasks, including syntac-
tic tasks, e.g., text chunking [11, 12] and dependency parsing
[13, 14], as well as high-level NLP tasks, e.g., information
retrieval [15] and sentiment analysis [16, 17], and metaphor
interpretation [18–20]. These three tasks are all commonly
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regarded as a sequence labeling problem. Figure1 shows an
example of the different task labels given an input sentence.

Although current works have achieved very high accu-
racy on these tasks [21–23], these fundamental tasks are
still worth investigating for the improvement of downstream
applications. On the other hand, there has been limited
research on how syntactic tasks of different granularity
affect each other. In traditional feature-engineering-based
approaches, PoS tags are commonly used as input features
for coarser-grained syntactic tasks including SBD and text
chunking [24]. Modern neural-network-based techniques
such asmulti-task learning (MTL) [11, 25] and transfer learn-
ing [26] also show that PoS tagging is a complimentary task
for text chunking, but the reverse is inconclusive.

In the age of Large Language Models (LLMs), syntactic
processing techniques are often overlooked. LLMs are sub-
symbolic black boxes that rely on neural networks to implic-
itly extract syntactic information. It can achieve human-like
natural language generation capabilities. However, it does
not mean that LLMs have sufficient linguistic knowledge
in natural language understanding (NLU) [27, 28]. First,
we believe that adopting a neurosymbolic approach, which
involves decomposing tasks based on linguistic levels, could
facilitate progress in NLU [2, 29]. For example, a revisit-
ing of syntactic tasks can offer insights into understanding
language structures. Second, integrating syntactic processing
techniques can enhance the utility of LLMs, e.g., ChatGPT
in label parsing. For instance, these techniques can facilitate
the extraction of specific syntactic features, such as nominal
entities and adjective-noun phrases, from predictions made
by conversational LLMs. This is crucial because the conver-
sational nature of these models often leads to the inclusion of
extraneous context or explanations, which can impede users
from obtaining the desired output, such as labels and enti-
ties. Lastly, the practical issue of using LLMs in syntactic
processing tasks is the costs of inference. If a medium-sized
model can achieve acceptable accuracy (see Tables 2, 3, and 4
for example), using LLMs for such tasks becomes a waste of

computational resources. Thus, syntactic processing research
is still valuable in the era of LLMs.

In this work, we conduct pair-wise MTL on SBD, text
chunking, and PoS tagging respectively to study the cor-
relations between task granularity and the complementary
effect to each other. The adoption of MTL is motivated by
the advantage of joint learning to mitigate the error propaga-
tion problem [33]. We propose an effective local and global
dependency sharing (LGDS) mechanism. This is inspired by
the finding in MTL that soft parameter-sharing allows task-
specific towers to absorb useful features that are learned from
their neighbor towers [34, 35].

The employed PoS tagging dataset Wall Street Journal
(WSJ) [30], text chunking dataset CoNLL 2000 (CoNLL00)
[36], and SBD dataset IWSLT [32] have different labels. In
the case ofCoNLL00, chunking, PoS, and sentence boundary
labels are present. Thus, an MTL model can be trained with
parallel labeled data. That is, given an input with correspond-
ing sets of ground-truth labels for the two tasks, the model
can update the parameters of the task-specific towers simulta-
neously. On the other hand, the WSJ dataset lacks annotated
chunk labels, and the IWSLT dataset is limited to sentence
boundary labels. This poses a challenge for employingMTL.
For instance, in MTL for chunking and PoS tagging, the
model, when presented with a WSJ training sample, can-
not simultaneously update both task towers. This scenario is
termed training with non-parallel labeled data in our MTL
paradigm. AddressingMTLwith non-parallel labeled data is
significant, as optimizing a neural network-based model on
input instances with non-parallel labels may introduce bias
toward a specific task, potentially causing instability in the
training of the other task. For example, a WSJ input instance
optimizes the parameters by its associated PoS labels. As
such, the neural network tends to yield PoS-tagging-efficient
parameters and lower the accuracy of text chunking. MTL
with non-parallel labeled data is a common MTL paradigm;
however, previous research did not pay enough attention on
this [37, 38].

Fig. 1 An example that showcases the PoS, chunk, and sentence bound-
ary labels of a given sentence. The PoS tagging labels employ the Penn
Treebank [30] annotation schema. The chunk labels employ BIOES
annotation schema [31], where “B” represents the beginning of a chunk
that immediately follows another chunk; “I” represents the word is

inside a chunk; “O” represents outside of any chunk; “E” represents
the ending word of a chunk; “S” represents a chunk phrase that con-
tains only a single token. The sentence boundary word is labeled as
PERIOD, following the tagging schema of the IWSLT dataset [32].
Note that there are no punctuation marks in the IWSLT dataset
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To address this challenge,we propose to incorporate paral-
lel labeled data to balance the biased learning on non-parallel
labeled data, assuming that a strategic combination of two
instances can achieve effective learning for both tasks at
each batch training step. To this end, we present a Curricu-
lum Learning (CL) mechanism that selects complementary
training instances from both datasets to be packed in the
same training batch. The hypothesis (H1) is that a model
can achieve more robust MTL with non-parallel labeled
data if the task-encoded input instances from two different
datasets are in similar vector spaces. We use cross-entropy to
measure the similarity between two vector spaces to select
complementary samples, because cross-entropy is a classic
and intuitive measure for quantifying the information differ-
ence between two probability distributions [39]. We select
and train the pair of instances from two datasets in the same
batch by the curriculum criterion of minimizing the cross-
entropy of the hidden states from two task-specific towers.

We examine the pair-wise performance of SBD, chunk-
ing, and PoS tagging on our MTL model using three public
datasets and study how syntactic tasks of different granularity
affect each other. The text chunking task obtains impres-
sive performance when jointly learned with PoS tagging,
achieving state-of-the-art performance (98.43% Micro-F1),
outperforming the strongest published baseline by 1.13%.
The PoS tagging task and SBD task both demonstrate per-
formance gains when MTL with each other, compared to
when MTL with chunking. It may be concluded that pair-
wise MTL among syntactic tasks of different granularity
can bring performance gain compared to single-task learn-
ing. Nevertheless, fine-grained tasks, such as PoS tagging,
tend to be more helpful for coarse-grained tasks. Whereas
coarse-grained task, i.e., SBD, provides useful structural
information for PoS tagging. We also conduct an ablation
study to demonstrate the effectiveness of our proposedLGDS
and CL mechanisms.

Our research scope does not target to achieve state-of-
the-art performance for all the involved tasks. Instead, we
aim to propose an MTL framework where the complemen-
tary effects between syntactic tasks of different granularity
can be reliably evaluated using their respective benchmark
datasets. Thus, the contribution of this work can be summa-
rized as follows: (1) We propose an MTL framework with a
novel soft parameter-sharingmechanism that shares local and
global dependency information for sequence-labeling-based
syntactic processing tasks; (2) we propose a CL mechanism
to improve the stability of the loss convergence forMTLwith
non-parallel-labeled data; (3) we study how syntactic tasks
with different granularity complement each other through
pair-wise MTL.

RelatedWork

Sentence Boundary Detection

SBD is an important yet overlooked pre-processing task. It
is seemingly easy to identify punctuation marks. However,
the presence of a period may cause notable ambiguities, e.g.,
abbreviations and decimal points. Earlymethods focus on the
disambiguation of period usage in text. Recent task defini-
tion, motivated by automatic speech recognition, becomes
more challenging by aiming to classify whether a word
is followed by a sentence boundary punctuation mark in
unsegmented speech transcripts [32]. Rule-based approach
[40–42], despite the difficulties of constructing a compre-
hensive enough rule set, is still employed in recent years and
achieves competitive performance. Whereas deep learning
approaches [43–45] are the most widely used for the SBD
task nowadays. Notably, early feature engineering meth-
ods often incorporate PoS tags as a useful feature for SBD
[46–48], which suggests that PoS tagging might be a com-
plementary joint learning task for SBD.

Text Chunking

Text chunking is normally formulated as a sequence label-
ing task since the work of [49]. Early feature engineering
methods utilized graphical models, e.g., Conditional Ran-
dom Fields (CRF) [50–53].

In the era of deep learning, recent works utilized neu-
ral networks to automatically capture relevant features. The
most widely used architecture is the combination of CRF
and Recurrent Neural Network (RNN) variants such as Bidi-
rectional Long Short-Term Memory (BiLSTM) [21, 54–56]
andGated Recurrent Units (GRU) [57]. To address the RNN-
based method’s limitation of capturing non-continuous rela-
tions between tokens, [58] proposed a Position-aware Self
Attention (PSA) mechanism, where the BiLSTM encoder
employs self-attention to encode relative positional infor-
mation. However, there is no study on the effectiveness of
learning both tasks with dependency information sharing.
We believe that syntactic dependency features are useful for
chunking.

Part-of-Speech Tagging

PoS tagging is a well-studied problem. Most early works,
following [59], rely on hand-crafted features derived from
the local N -gram context. Similar to text chunking, most
feature engineering methods utilized graphical models, e.g.,
HMM[60, 61],MaximumEntropyMarkovModel (MEMM)
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[62], and CRF [63]. Among them, CRF is able to leverage
decisions at different positions and compute the conditional
probability of global optimal output sequence, overcoming
the drawbacks of both HMM and MEMM.

In the era of deep learning, different neural meth-
ods are used to learn character- and word-level features.
A window approach is proposed to extract word-level
[11] and character-level [64] features from local context.
[65] extended the standard BiLSTM-CRF structure with a
character-level Convolutional Neural Network (CNN) layer
[66]. Similarly, [21] proposed a contextual string embedding
called Flair to aid the BiLSTM-CRF tagger. [67] presented
a deep CNN architecture that stacked up more convolutional
layers while averting the vanishing gradient problem. The
accuracy of PoS tagging has been pushed to its near limit.
Hence, improvement of this task should prioritize its effec-
tiveness on aiding downstream tasks.

Multi-Task Learning

MTL takes advantage of sharing parameters and learns fea-
tures from two or more tasks. It helps a machine improve
performance andmitigate overfitting [68].MTLmethods that
take the form of joint training can be categorized into two
types, namely hard parameter-sharing and soft parameter-
sharing. The former shares the hidden layers between all
tasks, while using a task-specific layer for each task’s out-
put. As such, all involved tasks share the same representation
space, reducing overfitting but less adept at capturing task-
specific information. Soft parameter-sharing, on the other
hand, keeps a separate model, i.e., task tower, for each task
and utilizes constraint mechanisms to encourage similarities
among task model parameters, thus more flexible for task-
specific representations.

There have been studies where MTL approaches, includ-
ing hard and soft parameter-sharing, are applied to multiple
syntactic and semantic tasks [11, 25], e.g., PoS tagging, text
chunking, named entity recognition, and semantic role label-
ing. MTL can also interwind with different input modalities
[69] and learning paradigms [70]. However, the motivation
behind the task selection of MTL stems from similar task
formulation (sequence labeling), instead of linguistic granu-
larity. As such, the tasks involved are jointly learned together
indiscriminately, and their complementarity to each other is
not explored.

Furthermore, there are only a few studies that effectively
address the non-parallel labeled data learning issue in MTL
[38]. Chen et al. [25], Liu et al. [71] proposed LSTM-based
architectures that can handle non-parallel labeled data by
using a shared LSTM layer between two task towers. Their
limitation is that such an approach is more suitable for highly
similar tasks, e.g., sentiment classification tasks in differ-
ent domains or annotations. Similarly, [72] employed shared

stacked Bi-LSTM-CNNs with inter-task feedback strategy
to adopt hierarchical tasks for parallel multi-task learning.
However, such architecture runs the risk of biasing towards
one task when the volume of task datasets is imbalanced.

Curriculum Learning

CL aims to automatically select the most suitable samples
for each training step [73]. The curriculum is a sequence of
training criteria that rely solely on the data, themodel, and the
task objective. CL is widely used to select training samples
from easy to difficult for efficient learning [74–76].

The signal for determining whether a sample is appro-
priate for the current model is considered as curriculum
criterion. Traditionally, such criterion is defined as a task-
dependent difficulty metric, such as input text length [75, 77]
and term frequency [77, 78]. Contrasting the predefined sam-
ple ordering, another common way to dynamically generate
curriculum is to use task loss as the signal for teach-student
CL [79–81], or self-pace learning [74, 82–84]. However,
these CL criteria are applied to enforce the easy-to-hard
ordering of the curriculum. To the best of our knowledge,
CL has not been used to address the issue of MTL with non-
parallel labeled data.

Methodology

We conduct pair-wise MTL on three syntactic processing
tasks, namely, SBD, text chunking, and PoS tagging. Our
hypothesis is that syntactic tasks of varying granularity tend
to display different levels of compatibility with each other.
We also hypothesize that by controlling the combination of
input data from different sources without parallel-annotated
labels, an MTL model can achieve higher overall accuracy
and smooth learning loss convergence. This is because the
feature alignment of multiple task inputs can help the neu-
ral network learn features from similar spaces. In contrast,
features from very different spaces may lead to unstable
learning. This is particularly important for MTL in the con-
text where the sub-tasks do not have parallel labels for the
same input sentence.

In light of this, we propose an MTL framework (the first
subsection) with a novel soft parameter-sharing mechanism
to pass linguistic features learned from one task to the other,
so as to investigate the pair-wise complementarity of the
involved syntactic tasks. The soft parameter-sharing mecha-
nism (LGDS in the second subsection) means to share local
and global dependency information between two tasks. Con-
sidering that certain task datasets lack ground-truth labels
for complementary tasks—for instance, the absence of PoS
or chunk labels in the SBD dataset—we propose a CLmech-
anism (detailed in the third subsection) to enhance accuracy
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and stabilize learning. This mechanism regulates the integra-
tion of input data from both tasks within the same batch.

Multi-Task Learning

Wedenote the two tasks involved in ourMTL framework as p
and c, respectively. Then, given an input sentence w = (w1,

w2, . . . , wl), the goal of the MTL model is to predict its task
p labels p = (p1, p2, . . . , pl) and its task c labels c = (c1,
c2, . . . , cl), where l is the sequence length.

The architecture of the model is shown in Fig. 2. The input
sentence w is first embedded with pre-trained embeddings,
then fed into the two respective towers for task p and task
c. In each tower, the input is passed through an encoder
(Encoder0), whose output is denoted as H p

0 in the task p
tower andHc

0 in the task c tower. In thiswork,we adoptTrans-
former [85] as the encoder, because it has beenwidely applied
in diverseNLP tasks, presenting strong performance [86, 87].

Next, n blocks of encoders and soft parameter-sharing
mechanisms (LGDS) are employed. Here, we denote the
output of block i in the task p tower as H p

i , and the one in
the task c tower as Hc

i . Then, for the task p tower, H p
i is

given by

T p
i = Encoder pi (H p

i−1), (1)

H p
i = LGDSp

i (T p
i , Hc

i−1). (2)

Fig. 2 Architecture of the multi-task learning framework. σ denotes a
SoftMax function

For the task c tower, Hc
i is computed similarly to (2) by

incorporating H p
i−1 through LGDS.

Next, the final hidden states H p
n and Hc

n are each fed into
a linear layer (Ln+1(·)) with SoftMax (σ ):

E p = σ(L p
n+1(H

p
n )), (3)

Ec = σ(Lc
n+1(H

c
n )). (4)

Finally, during training, we use E p, Ec, CRF, and its loss
function [63] to obtain losses for task p (Lp) and task c (Lc),
respectively. The overall loss (L) is given by

L = αLp + (1 − α)Lc, (5)

where α is a hyper-parameter. During inference, Viterbi
decoding algorithm [88] is employed in CRF to predict the
label sequences of task p and task c.

Local and Global Dependency Sharing

We propose a soft parameter-sharing mechanism named
LGDS to incorporate local and global dependencies that are
learned from both tasks. As shown in Fig. 3, LGDS com-
bines CNN and Biaffine attention [13]. CNN, constricted by
window size, is used to extract relevant information from the
neighbor tower within the local context of the focal token.
The output of the CNN in block i of the task c tower Kc

i can
be computed as

Kc′
i = ReLU (Conv1D(H p

i−1, f = 1)

⊕ Conv1D(H p
i−1, f = 3)

⊕ Conv1D(H p
i−1, f = 5)),

(6)

Kc
i = tanh(WkK

c′
i + bk), (7)

where ⊕ denotes concatenation. f denotes filter width. Wk

and bk are learnable parameters.
Biaffine attention was used in dependency parsing to cap-

ture the dependencies between each word of a sentence [13].
Thus, we use Biaffine attention to capture the long-range
dependencies. A Biaffine attention matrix (Sci ∈ R

l×l ) in
block i of task c is computed by

Sci = T c
i U

c
i H

p�
i−1 + H p

i−1e
c
i , (8)

whereUc
i and e

c
i are learnable parameters. TheBiaffine atten-

tion output (Bc
i ) is the task p information (H p

i−1) enhanced
by its global task-c-dependent information (Sci )

Bc
i = tanh(so f tmax(Sci )H

p
i−1). (9)
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Fig. 3 Local and global
dependency sharing (LGDS)
mechanism. Bold italics denotes
input and output variables,
where black denotes the
variables for learning task c, red
with parentheses denotes
variable for learning task p.
Colored boxes denote layers
with learnable parameters.
+ denotes a plus; ⊕ denotes
concatenation; ⊗ denotes matrix
multiplication

Finally, the LGDS output of the current block i from the task
c tower (Hc

i ) is computed as

Hc
i = Lc

i (T
c
i ⊕ (Kc

i + Bc
i )). (10)

The output for the LGDS in the task p tower (H p
i ) can

be derived from similar procedures, while the input from the
private tower is T p

i instead of T c
i ; the input from the neighbor

tower is Hc
i−1.

Curriculum Learning

The benchmark dataset for one task might not contain
ground-truth labels for the other task, e.g., the PoS tag-
ging dataset (WSJ) not being annotated with chunk labels,
causing a non-parallel labeled data MTL issue. To alleviate
this, we propose a CL mechanism to select complemen-
tary samples from the other task’s dataset to optimize the
training on the non-parallel-labeled task’s data. Using the
MTL of chunking and PoS tagging as an example, for an
input WSJ instance (w p,m), we randomly select J instances
from CoNLL00 to feed into the model together for for-
ward propagation. The length of w p,m is l. The CoNLL00

instances are padded or pruned to achieve the same length
(l) in vector space. We denote the output of the first chunk-
ing encoder (Encoderc0) resulting from the j-th CoNLL00

instance as T c, j
0 , ( j ∈ {1, . . . , J }). Subsequently, we select

the CoNLL00 instance whose T c, j
0 is the most similar to

T p,m
0 (given by w p,m and Encoder p0 ) in vector space to bal-

ance the learning of w p,m , according to cross-entropy value

CEc∗ = arg min
j

(−
l∑

k=1

T p,m
0,k log(T c, j

0,k )), (11)

whose corresponding instance is defined as wc∗. wc∗ and
w p,m are learned with both forward and backward propaga-
tion in the same batch to achieve stable CL for text chunking.
We use hidden states from Encoderc0 and Encoder p0 rather
than task losses as signals, because minimizing losses does
not allow the model to learn useful information from the cur-
rent input.

Similarly, we apply this CL procedure on the SBD dataset
(IWSLT) when training with PoS tagging or text chunking,
as it does not contain ground-truth labels for either task. We
do not apply the CL mechanism when training on parallel
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annotated data, e.g., CoNLL00with both chunking, PoS, and
SBD labels, and WSJ with both PoS and SBD labels.

Experiment

Baselines

To put the performance of our MTL framework into pers-
pective, we include the following single-task and multi-task
baselines.

SBD:

• T-BRNN [89]:AbidirectionalGRUmodelwith attention
mechanism, using GloVe embeddings.

• BERT [44]: A BERT-large model with Bi-LSTM-CRF
stacked on top.

• Roberta [45]: A Roberta-large model with Bi-LSTM-
CRF stacked on top.

Text chunking:

• GRU-CRF [57]: A deep hierarchical GRU model that
encodes both character level and word level information,
using fine-tuned SENNA embedding [11].

• Star-C [90]: A Star-Transformer-CRF model using
GloVe embedding [91].

• MVCRF [12]: A multi-view CRF that extracts features
from the word view as well as POS view, using SENNA
embedding. Flair-C [21]: A BiLSTM-CRF model that
utilizes Flair embedding, GloVe embedding, and task-
trained character embedding.

• ACE [22]: A BiLSTM-CRF model that automatically
concatenates suitable embeddings includingGloVe,Flair,
BERT [92], etc.

POS tagging:

• LSTM-CNN-CRF [65]: A BiLSTM-CRF model that
uses CNN to extract character level features, usingGloVe
embedding and task-trained character embedding.

• GatedDualCNN [67]: A deep CNN architecture that
employs a dual path to alleviate the vanishing gradient
problem, using GloVe embedding and task-trained char-
acter embedding.

• Star-P [90]: Same as Star-C.
• Flair-P [21]: Same as Flair-C.

MTL:

• Meta-LSTM [25]:AMTL frameworkwith a task-shared
Meta-LSTM layer for non-parallel labeled data, using
GloVe embedding.

• Gated [93]: AMTLmodel with gated network as a shar-
ing mechanism using BERT embedding.

• AUX [94]:ABiLSTM-basedmodel that concatenates the
output of the auxiliary tower with input representation to
feed into the primary tower.

We also conduct experiments by using BiLSTM instead
of Transformer in our framework (Ours-LSTM) to achieve
a fair comparison with other BiLSTM-CRF-based baselines.

Datasets

Our multi-task learning framework is trained and evaluated
with the WSJ dataset [95], the CoNLL00 dataset [36], and
the IWSLT dataset [32]. The details of the used datasets can
be found in Table 1. For the SDB task, we use the PERIOD
class tagging schema provided by the IWSLT dataset [32]
and use the Ref testing set for evaluation. For the chunking
task, we use the BIOES tagging schema [31]. For the POS
tagging task, we use the Penn Treebank annotation schema
[30]. The standard evaluation metrics are accuracy for POS
tagging, F1measure for text chunking, and PERIOD class F1
measure [32] for SBD, which are in line with our baselines.

Setups

For the hyper-parameters, we randomly select J = 4 instan-
ces for CL. We adopt α = 0.6. We set the initial learning
rate to 0.0001 and adopt a learning schedule with the step
size of 20 and decay factor γ = 0.5. We also implement
an early stop strategy, where the model stops training if the
average accuracy of the two tasks is not improved in five
epochs. We use Adam [96] with 0.9 and 0.99 betas to opti-
mize themodel.We run 30 epochswith the batch size of 20 on
NVIDIA Tesla P100-PCI-E.We use Flair embedding, GloVe
embedding with 300 dimensions, and task-trained character
embedding as embeddings, aligningwith one of the strongest
baselines for two of the target tasks [21]. There are 2 blocks
(n=2 inFig. 2) of the encoderwithLGDS in each task-specific

Table 1 Details of the WSJ, CoNLL 2000, and IWSLT datasets

Dataset Task Data # seq. # token

IWSLT SBD Train – 2,102,417

Dev – 295,800

Test – 12,626

CoNLL 2000 Chunking Train 8,937 211,727

Test 2,013 47,377

WSJ PoS tagging Train 38,219 912,344

Dev 5,527 131,768

Test 5,462 129,654
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tower. The Transformer-based encoders have 4 heads, and
128 dimension hidden states. Additionally, we examine
BiLSTM-based encoders with 200 dimension hidden states.
We report micro-F1 and accuracy for SBD, text chunking,
andPoS tagging tasks, based on the averaged results of 5 runs.

Results

From Table 2, we can see that jointly learning SBDwith PoS
tagging outperforms that with text chunking by 1.43% F1
score. Similar performance advantages can be observed in
all the MTL methods, indicating that PoS tagging is a more
complementary task for SBD than chunking. Additionally,
Ours-Transformer outperforms BERT in both task pair set-
tings, and only falls behind Roberta by 1.35% F1 score when
paring with PoS tagging, despite using fewer Transformer
layers than both baselines. It shows that our MTL frame-
work can pass useful features from one task tower to the
other and glean the benefits of joint learning. Applying our
proposed CLmechanism also consistently improve theMTL
baselines Gated and AUX in both task pair settings, proving
its effectiveness in bringing performance gain.

Results shown in Table 3 indicate that text chunking
achieves the best performance when jointly learned with
PoS tagging. Although Ours-Transformer outperforms the
best single-task baseline (ACE) when learned with SBD,
the extent of improvement, 0.18%, is much less signifi-
cant comparing to when learned with PoS tagging, which
stands at 0.83%. This contrast of complementarity can also
be observed among all the experimented MTL methods. We
can also see thatwhen jointly learnedwith PoS tagging,Ours-
LSTM outperforms the LSTM-based ACE by 0.66% in F1
scores. It shows the effectiveness of our proposed MTL task

pair, soft parameter-sharing (LGDS), and CL mechanisms.
Using Transformer can further improve the model, reaching
98.13% F1, achieving the best performance. It significantly
outperforms Meta, showing that our approach for non-
parallel labeled data in MTL is superior to existing works.

From results shown in Table 4, it can be observed that
when jointly learned with SBD, all MTL methods obtains
better PoS tagging performance than learned with text
chunking. However, the best performingMTLmethod, Ours-
Transformer, still lags behind the best baseline Flair-P by
a marginal 0.06% in accuracy, suggesting that PoS tagging
reaps limited benefits from the joint training with other syn-
tactic tasks. Furthermore, combining with the results shown
in Table 2, we can conclude that our model achieves the best
PoS tagging and SBD performance when they are jointly
learned, whereas seeing Table 4 with Table 3 indicate that
chunking canbenefit a lot fromPoS taggingbut not in reverse.
It can be inferred that fine-grained syntactic tasks are com-
plementary for MTL with the more coarse-grained ones,
among which the most fine-grained task, namely PoS tag-
ging, consistently contributes the most to the improvement
of the other tasks. On the other hand, PoS tagging receives
limited benefits from MTL with more coarse-grained tasks.
Jointly learning PoS tagging with SBD achieves better per-
formance than with chunking and comparable performance
with the strongest single-task baseline. This might be due to
the fact that SBD provides global sequence structure infor-
mation, but is more challenging to learn in the fine-coarse
processing of PoS tagging.

Combining the results in Tables 2, 3, and 4, we can further
draw the conclusions that (1)when pairedwith themost com-
plementary task, Our-Transformer significantly outperforms
the strongest baseline in text chunking and obtains compa-
rable performance in SBD and PoS tagging; 2) applying

Table 2 SBD results when
learning with PoS tagging (SBD
with PoS) and with chunking
(SBD with Chunking)

Model SBD w/ PoS SBD w/ Chunking

F1 Acc F1 Acc

T-BRNN 72.9 – – –

BERT 84.1 – – –

Roberta 88.6 – – –

Gateda 81.31 81.42 79.22 79.53

Gated w/CLa 81.58 81.64 79.69 79.88

AUXa 79.99 80.28 78.93 79.41

AUX w/CLa 80.46 80.61 79.18 79.52

Ours-LSTM 86.740.14 87.010.19b 84.430.15 84.860.15b

Ours-Transformer 87.250.11 87.480.10b 85.820.16 85.950.14b

The F1 scores of the single-task learning (STL) baselines as shown under the SBD w/ PoS column in the first
panel for readability. The bold and underlines denote the best and second best results. The numbers on the
subscripts are standard deviations
aindicates the models re-implemented by us. w/CL means our CL mechanism is applied
bdenotes the improvement is statistically significant (p < 0.01 on a two-tailed t-test), against the highest
baseline score
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Table 3 Text chunking results
when MTL with PoS tagging
(Chunking w/ PoS) and with
SBD (Chunking w/ SBD)

Model Chunking w/ PoS Chunking w/ SBD

F1 Acc F1 Acc

GRU-CRF 95.41 – – –

MVCRF 95.44 – – –

Star-C 95.93 – – –

Flair-C 96.72 – – –

ACE 97.3 – – –

Meta 95.11 – – –

Gateda 97.50 97.63 97.11 97.36

Gated w/CLa 97.82 97.94 97.23 97.51

AUXa 97.18 97.51 96.69 96.83

AUX w/CLa 97.52 97.86 96.80 96.98

Ours-LSTM 97.960.05b 98.040.08b 97.400.07b 97.730.08b

Ours-Transformer 98.130.06b 98.450.07b 97.480.05b 97.980.05b

The F1 scores of the single-task learning baselines as shown under the Chunking w/ PoS column in the first
panel for readability. The bold and underlines denote the best and second best results. The numbers on the
subscripts are standard deviations
aindicates the models re-implemented by us. w/CL means our CL mechanism is applied
bdenotes the improvement is statistically significant (p < 0.01 on a two-tailed t-test), against the highest
baseline score

our proposed CL mechanism consistently bring significant
improvement to theMTLbaselines in all experiment settings,
indicating its robustness. Based on the former observation,
Our-Transformer is our main model of investigation in the
following experiments.

Ablation Study

Weconduct an ablation study using the best performingMTL
setups for each task, reported in Tables 2, 3, and 4, i.e., chunk-

ing pairedwith PoS tagging, andPoS tagging andSBDpaired
together. Specially, the following variants are studied:

• w/o MTL denotes that the two target tasks are trained
on the base tower structure of Transformer encoders and
CRF using single-task learning.

• w/oLGDSdenotes a hard parameter-sharingmodelwith-
out LGDS and CL, where the two tasks share the same
encoder layers and keep individual output layers.

Table 4 PoS tagging results
when learning with SBD (PoS
w/ SBD) and with chunking
(PoS w/ chunk)

Model PoS w/ SBD PoS w/ chunk

F1 Acc F1 Acc

LSTM-CNN-CRF – 97.55 – –

GatedDualCNN – 97.59 – –

Star-P – 97.68 – –

Flair-P – 97.85 – –

Meta – – – 97.45

Gateda 97.67 97.64 97.47 97.40

Gated w/CLa 97.74 97.70 97.60 97.52

AUXa 97.61 97.59 97.60 97.53

AUX w/CLa 97.71 97.66 97.62 97.56

Ours-LSTM 97.780.02b 97.700.03 97.580.03 97.520.03

Ours-Transformer 97.860.02b 97.790.02 97.640.04 97.590.03

The accuracy of the single-task learning baselines as shown under the PoS w/ SBD column in the first panel
for readability. The bold and underlines denote the best and second best results. The numbers on the subscripts
are standard deviations
aindicates the models re-implemented by us. w/CL means our CL mechanism is applied
bdenotes the improvement is statistically significant (p < 0.01 on a two-tailed t-test), against the highest
baseline score
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• Finetune denotes pre-training the task tower without
parallel labels using its corresponding dataset first, then
fine-tuning the two task towers with the parallel labeled
dataset.

• w/o CL denotes that chunking and PoS tagging are
trained on the proposed LGDS-based MTL architecture
without CL.

• w/o non-parallel denotes a w/o CL model that is trained
solely on parallel labeled dataset, but is evaluated on test-
ing sets of both tasks.

As seen in Table 5, a hard parameter-sharing MTL model
without LGDS (w/o LGDS) yields higher performance than
the single task learning model (w/o MTL) on all three tasks.
Further comparisons between the performance of w/o MTL
and Ours-Transformer in Tables 2, 3, and 4 show that all
pair-wise MTL combinations perform better than the sin-
gle task counterparts. This shows that joint training between
syntactic tasks can provide useful features for each other.
Learning multiple tasks simultaneously can also help the
model against overfitting [68], because the model needs to
learn robust representations to achieve the training targets of
both tasks. The improvements of w/o CL over w/o LGDS
are consistent across the three tasks, showing the effective-
ness of our proposed soft parameter-sharing mechanism and
layer connections. Comparing the performance of Finetune
with w/o CL and Our-Transformer on the three tasks, we
can conclude that fine-tuning cannot achieve stable learning
for MTL. Next, there is a sharp drop on SBD performance
by simply using the WSJ dataset for joint learning with PoS
tagging (w/o non-parallel). As a result, the PoS tagging per-
formance also decreases. The same reason can be inferred to
be responsible for the performance degradation of Chunking
w/ PoS when solely using the CoNLL00 training set for the
MTL of text chunking and PoS tagging. This shows the sig-
nificance of introducing data from both tasks to support the
pair-wise MTL. Finally, using the proposed LGDS, training
strategies, and CL mechanism can help the model achieve
further improvements on the three tasks, which is evidenced

by the consistent improvements of Ours-Transformer over
w/o CL models across different tasks.

Curriculum Learning Analysis

Figure4 shows the loss curves of SBD and PoS tagging in
pair-wise MTL, given by CL-4 (Fig. 4a) and CL-1 (Fig. 4b),
respectively. CL-1 denotes that we randomly sample the
equal number of instances from both task datasets in a batch
without using any sample selection criterion. CL-4 employs
our recommended CL sample size and sample selection cri-
terion. Similarly, Fig. 5 shows the loss curves of PoS tagging
and text chunking, and Fig. 6 the curves of SBDand chunking
in pair-wise MTL. It can be observed in Fig. 4 that the fluctu-
ation of the PoS tagging loss curve of CL-4 is less than those
of CL-1 (the blue lines). The same can be seen in the SBD
curves (the green lines), albeit to a smaller extent. It shows
that our proposed curriculum criterion (11) is effective in
selecting complementary PoS tagging instances to optimize
and stabilize the learning of both PoS tagging and SBD. Such
smoothing effect can also be observed in Figs. 5 and 6 for the
chunking loss curves (the red lines). The difference of PoS
tagging loss curves (the blue lines) in the two figures is not
conspicuous, as does the difference of SBD loss curves (the
green lines). Itmight be that the learning of chunking does not
cause significant biases for that of PoS tagging nor SBD. The
comparatively stable loss curves in CL-4 (Figs. 4a, 5a, and
6a) prove our hypothesis (H1 in introduction) that a model
can achievemore robustMTLwith non-parallel labeled data,
if input instances from two different tasks are in similar vec-
tor spaces.

We further analyze the tradeoff between time costs and
performance using text chunking and PoS tagging as a case
study in Table 6. We use the averaged accuracy of chunking
and PoS tagging as the overall accuracymeasure, because our
early stoppoint is determinedby the condition that the highest
overall accuracy (the sum of text chunking and PoS tagging
accuracy) is not improved in 5 training epochs.We use theCL
sample size of 1 (CL-1) as the time baseline, whichmeanswe
randomly sample a CoNLL00 instance to learn with a WSJ

Table 5 Ablation study results Model Chunking w/ PoS PoS w/ SBD SBD w/ PoS

F1 Acc F1 Acc F1 Acc

w/o MTL 95.77 96.64 97.51 97.46 85.04 85.18

w/o LGDS 96.47 97.20 97.61 97.55 86.42 86.57

Finetune 97.21 97.38 97.10 96.84 81.97 82.22

w/o CL 97.71 98.24 97.77 97.68 87.16 87.32

w/o non-parallel 97.35 97.96 96.32 96.33 79.98 80.26

Ours-Transformer 98.13 98.45 97.86 97.79 87.25 87.48

Chunking w/ PoS denotes chunking results when paired with PoS tagging. PoS w/ SBD denotes PoS tagging
results when paired with SBD. SBD w/ PoS denotes SBD results when paired with PoS tagging
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(a) (b)

Fig. 4 Loss curves of SBD and PoS tagging, given by a our proposed CL mechanism with a sample size in 4; b the CL mechanism with a sample
size in 1

(a) (b)

Fig. 5 Loss curves of PoS tagging and text chunking, given by a our proposed CL mechanism with a sample size in 4; b the CL mechanism with
a sample size in 1
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(a) (b)

Fig. 6 Loss curves of SBD and text chunking, given by a our proposed CL mechanism with a sample size in 4; b the CL mechanism with a sample
size in 1

instance; CL-2means the random sample size is 2, and so on.
The accuracy shows an upper trend as the sample size grows.
However, the time costs also increase, because the model
needs to compute and compare more cross-entropy of hidden
states when the sample size is larger. The CL improvements
in different setups are marginal in our full model, because the
model with LGDS and without CL (w/o CL) has achieved
very high accuracy in both tasks. Improving model perfor-
mance is very hard, given the w/o CL baseline has yielded an
average accuracy by 97.70%. Compared with the improve-
ment space (2.30%) to the ground-truth (100%), the gap
(0.27%) between CL-4 (97.97%) and w/o CL (97.70%) and
the gap (0.24%) between CL-4 (97.97%) and CL-1 (97.73%)
are reasonable.

Table 6 Curriculum learning sample size analysis by time costs and
average accuracy gains. Underlines denote baselines

Setup Time costs � Avg acc

w/o CL 0.86X −0.03 97.70

CL-1 1.00X – 97.73

CL-2 1.08X +0.15 97.88

CL-4 1.31X +0.24 97.97

CL-8 1.74X +0.26 97.99

Conclusion

In thiswork,we propose a soft parameter-sharingmechanism
to share dependency information that is learned from the two
involved tasks in pair-wise MTL. It consists of CNN and
Biaffine attention to capturing local and global dependency,
respectively. Additionally, we propose a CL mechanism to
achieve robustMTLwith non-parallel labeled data. The addi-
tion of CL mitigates the learning bias given by the task with
non-parallel data, so that the performance of both tasks may
further improve. The employed curriculum criterion enables
effective selection of complementary data, so that the learn-
ing loss of the tasks involved can converge more steadily.

Using the proposed MTL method, we conduct a study on
how syntactic tasks of different granularity complement each
other through pair-wise MTL.We conclude that fine-grained
tasks can provide information that yields significant gains
for coarse-grained tasks. On the other hand, the benefits that
coarse-grained tasks bring to fine-grained tasks are limited,
with the exception of SBD to PoS tagging, which is likely
because the delineation of structure in an input sequence
learned in the SBD task helps the PoS tagging tower focus on
learning features specific to sentences, facilitating the learn-
ing of long-range label dependencies.
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Additionally, our model achieves state-of-the-art perfor-
mance on text chunking and comparable performance on
SBD and PoS tagging to the state-of-the-art baselines. We
will test if our CL mechanism can relax task relevance
requirements in MTL in future work.
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