
Viscovery: A Platform for Trend Tracking in Opinion Forums
Ignacio Espinoza

Novaviz
Av. Vicuña Mackenna 3939,

San Joaquín
Santiago, Chile

ignacio@novaviz.com

Marcelo Mendoza
Universidad Técnica Federico Santa

María
Av. Vicuña Mackenna 3939,

San Joaquín
Santiago, Chile

marcelo.mendoza@usm.cl

Pablo Ortega
Novaviz

Av. Vicuña Mackenna 3939,
San Joaquín

Santiago, Chile
pablo@novaviz.com

Daniel Rivera
Novaviz

Av. Vicuña Mackenna 3939,
San Joaquín

Santiago, Chile
daniel@novaviz.com

Fernanda Weiss
Novaviz

Av. Vicuña Mackenna 3939,
San Joaquín

Santiago, Chile
fernanda@novaviz.com

ABSTRACT
Opinions in forums and social networks are released by millions
of people due to the increasing number of users that use Web 2.0
platforms to opine about brands and organizations. For enterprises
or government agencies it is almost impossible to track what people
say producing a gap between user needs/expectations and organiza-
tions actions. To bridge this gap we create Viscovery, a platform for
opinion summarization and trend tracking that is able to analyze
a stream of opinions recovered from forums. To do this we use
dynamic topic models, allowing to uncover the hidden structure of
topics behind opinions, characterizing vocabulary dynamics. We
extend dynamic topic models for incremental learning, a key as-
pect needed in Viscovery for model updating in near-real time. In
addition, we include in Viscovery sentiment analysis, allowing to
separate positive/negative words for a specific topic at different
levels of granularity. Viscovery allows to visualize representative
opinions and terms in each topic. At a coarse level of granularity,
the dynamic of the topics can be analyzed using a 2D topic em-
bedding, suggesting longitudinal topic merging or segmentation.
In this paper we report our experience developing this platform,
sharing lessons learned and opportunities that arise from the use of
sentiment analysis and topic modeling in real world applications.

CCS CONCEPTS
• Information systems→ Sentiment analysis; Retrieval tasks
and goals;

KEYWORDS
Sentiment analysis, topic modeling, opinion platforms

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WISDOM’17, August 2017, Halifax, Nova Scotia, Canada
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference format:
Ignacio Espinoza, Marcelo Mendoza, Pablo Ortega, Daniel Rivera, and Fer-
nanda Weiss. 2017. Viscovery: A Platform for Trend Tracking in Opinion
Forums. In Proceedings of ACM WISDOM jointly with KDD, Halifax, Nova
Scotia, Canada, August 2017 (WISDOM’17), 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The emergence of the Web 2.0 has allowed that millions of users
can send posts and opinions about celebrities, institutions, orga-
nizations and brands. As the volume of opinions in forums and
blogs increases, the need to develop effective platforms for opinion
search has become urgent. In the stream of opinions, trend track-
ing is a key building block of this kind of platforms, allowing to
describe what users expect about institutions/organizations and
how opinion trends evolve over time.

Effective tools for opinion browsing need to incorporate opinion
aggregation functionalities, being relevant to obtain descriptions of
each trend. In addition, the sentiment orientation of opinions w.r.t.
named entities lights up how users act/react in front of a given
organization. Sentiment analysis methods are helpful in this task.

As the volume of opinions is huge, the need to develop effective
aggregation methods over opinions is the key building block of any
opinion trend platform. Opinion clustering is a way to aggregate
opinions. Using hard clustering algorithms each opinion can be
assigned to a single class. However, documents achieve a best de-
scription by modeling its content with a mixture of topics, where
each topic is defined as a probability distribution over words. In
this way, opinions belong to several topics with different degrees
of membership. This is the reason why documents are in general
modeled using mixed membership models, an in particular Latent
Dirichlet Allocation (LDA) models [2], allowing to uncover the
hidden structure of topics behind a corpus. LDA has made improve-
ments in information retrieval tasks [10] and outperforms standard
text clustering algorithms being the state-of-the-art method for
document aggregation.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WISDOM’17, August 2017, Halifax, Nova Scotia, Canada I. Espinoza et al.

In Chile, the National Agency of Consumers 1 centralize com-
plaints about brands and their products. As it is almost impossible
to follow each complaint, consumers may be disappointed due to
the slow response of the Agency to their needs. To bridge this gap
we created Viscovery, a platform for opinion aggregation and trend
tracking that allow to browse a huge volume of opinions in a few
minutes. The core of Viscovery is based on Dynamic Topic Models
(DTM) [1], an extension of LDA [2] capable of model a time sliced
corpus, being able to estimate dependencies between vocabularies
across time slices. To create Viscovery, we had to develop an in-
cremental learning component able to update a model with new
opinions. Our DTM update method achieves very similar results
to DTM batch fitting in terms of topic coherence diminishing com-
putational costs. In addition, we included in Viscovery sentiment
analysis. Sentiment analysis allows to distinguish between sub-
jective/neutral terms in each distribution of words, enlightening
how consumers opine about brands and products. To include sen-
timent analysis in DTM we explore a simple approach based on
aggregation, using lexical analysis at opinion level and conducting
sentiment aggregations at topic and document level. A third ele-
ment included in Viscovery is topic embedding. Using a time sliced
2D topic embedding, topic merging and topic segmentation are sug-
gested. Dynamics across topics are very interesting for the analysis,
and is a promising characteristic of Viscovery that allow practition-
ers to understand how topics evolve. Specific contributions of the
paper are:

• A scalable implementation of DTM for online training up-
dating model parameters when new opinions come to the
platform.

• A simple way to incorporate sentiment analysis into DTM,
allowing to explore neutral/subjective words at different
levels of aggregation.

• A topic visualization tool that works with a time sliced 2D
topic embedding, allowing to visualize how topics evolve
over time.

The rest of the paper is organized as follows. In Section 2 we
review relatedwork on topicmodels and sentiment analysis. Section
3 presents the architecture of Viscovery. Implementation issues are
discussed in Section 4. Incremental learning on DTM is presented in
Section 5 and browsable sentiment analysis is discussed in Section
6. Viscovery data slices are presented in Section 7 and finally we
conclude in Section 8 giving conclusions and discussing future
work.

2 RELATEDWORK
Topic models. Main efforts on topic models start with proba-

bilistic Latent Semantic Analysis [7] (pLSA), an aspect model for
text developed using topic mixtures. This approach decomposes
a corpus of documents across terms introducing latent variables,
decoupling terms and documents with topic mixtures. Model fit-
ting was conducted using the Expectation-Maximization algorithm
(EM) [3] casted for matrix completion with incomplete data. As
the term-space is a high dimensional feature space, pLSA needs
a high amount of data to perform well. As in general, text data is
sparse, pLSA tends to overfit limiting generalization capabilities. To
1Sernac: Servicio Nacional del Consumidor, http://www.sernac.cl

tackle this problem, Blei et al. [2] introduced Dirichlet priors on vo-
cabulary and document topic proportions. Using smoothing these
models addressed the over-fitting limitations of pLSA. This kind of
models, known as Latent Dirichlet Allocation (LDA) were firstly fit-
ted using variational EM (VEM), an extension of the EM algorithm
that successfully handle incomplete data with distributional priors.
Later, Griffiths and Steyvers [6] explored Gibbs sampling for LDA
model fitting, reducing the number of iterations until convergence.
Gibbs sampling is the standard method used for LDA model fitting
until today because its fast convergence does not affect the quality
of the estimated models. Dynamic Topic Models (DTM) [1] was
introduced to deal with vocabulary dynamics. DTM works over a
corpus with timestamps, whilst model fitting is conducted using
time slices of the corpus. Temporal dependencies across vocabular-
ies are modeled using Kalman filtering, allowing to detect changes
in descriptive words along different corpus slices. The inclusion
of Kalman filtering in LDA for text dynamics involves additional
computational costs in model fitting, slowing convergence. Despite
computational costs involved inmodel fitting, DTM can successfully
handle text dynamics.

Sentiment analysis and topic modeling. A topic generative model
for sentences with polarity was proposed by Eguchi and Lavrenko
[4]. The model distinguishes between neutral words and sentiment
words using a random binary variable that controls the member-
ship of each word to each one of the vocabularies. As documents
can be generated from sentiment or topic words, each sentence
achieves a polarity orientation calculated in terms of the number
of sentiment words that contains. Dirichlet smoothing was used on
topic and sentiment word distributions to avoid over-fitting. The
performance of the model in information retrieval is tested infer-
ring topic and sentiment orientation of each query showing that
the proposal is feasible. Mei et al. [12] proposed Topic Sentiment
Mixture (TSM), a sentiment topic model with a two tier mixture of
vocabularies to produce sentiment oriented sentences in a corpus.
A first tier of the model is composed by neutral term distributions
(one per each topic) and two additional term distributions for pos-
itive and negative words. Then, each topic can be produced by a
mixture of these vocabularies defined from document proportions.
The model is non-parametric (no distributional priors were used)
and model fitting was conducted using the EM algorithm. TSM can
be considered as an extension of pLSA to sentiment analysis being
the main difference the split conducted over the vocabulary to dis-
tinguish between factual/subjective sentences. The Joint Sentiment
Topic model (JST) based on LDA was proposed by Lin and He [11].
Term distributions were sampled over a simplex over terms cross
polarities, then the generative model drawn topic proportions con-
ditioned on each polarity. In this way, words can be drawn by topics
× polarities distributions, producing words by the joint effect of
topics and polarities in the document. As a consequence, sentiment
coverages at document level can be directly estimated by the model.
JST is able to successfully address the sentiment classification task
at document level. An extension of JST was proposed by Jo and
Oh [9], who introduced Aspect and Sentiment Unification (ASUM).
As JST, ASUM jointly models sentiments and topics, being topic
proportions conditioned on polarities, with vocabularies at topic

Viscovery: A Platform for Trend Tracking in Opinion Forums WISDOM’17, August 2017, Halifax, Nova Scotia, Canada

level per each sentiment orientation. However, ASUM models sen-
timent at sentence level, with words conditioned at a single topic
per sentence. Results on sentiment classification shows that ASUM
outperforms JST and comes close to supervised methods whilst
ASUM does not require labels for model fitting. The state of the art
shows that main efforts on sentiment topic modeling are focused
on static models, discarding vocabulary dynamics. As the core of
Viscovery is DTM, we will need to use a different approach to in-
clude sentiment analysis into dynamic topic models. We will show
in Section 6 how we use sentiment analysis at sentence level to
conduct aggregation at different levels of granularities over DTM.

3 VISCOVERY: ARCHITECTURE AND
DESIGN PRINCIPLES

In this section we discuss how we integrate different algorithms
to ingest/process/aggregate opinions into Viscovery. We model
different algorithms as micro services to develop a platform for
trend tracking in opinion forums. A micro service architecture
organizes the platform as a set of weakly coupled services where
each service implements a set of encapsulated procedures. For
example, a micro service in Viscovery corresponds to an indexer of
opinionated tweets. Services in Viscovery are communicated using
asynchronous protocols. We developed each service independently
of the other. Indeed each micro service has its own database in
order to be decoupled from other services.

To develop Viscovery we create a start-up named Novaviz. The
idea behind Novaviz is to develop tools for text data management.
To accomplish this purpose we develop the Novaviz API Gateway, a
list of services and functionalities implemented in Python, requested
by four components: a) Data Ingester, b) Data Preprocessor, c) Data
Processor, and d) Indexer. For visualization we use three libraries: a)
DFR browser, b) Kibana, and c) D3. Visualization and processes are
connected through micro services defined in Novaviz API Gateway,
as is shown in the architectural diagram of Figure 1.

Data Ingester. This component is in charge of opinion recollec-
tion from heterogeneous sources as Twitter and web forums (e.g.
http://www.reclamos.cl). It calls services from the Novaviz API.
Among the services requested the most important is web scrapping,
that allows Viscovery to retrieve opinions from web page forums.
For storage, this component interacts with Redis 2, an open source
(BSD licensed) in-memory data structure store, used as a cache
database to support this process.

Preprocessor. This component normalize the text. It calls services
from the Novaviz API as stopwords removal, caps normalization
and symbol/punctuation removal. It allows Viscovery to create a
vocabulary of keywords to describe opinions by content. For storage
this component interacts with MongoDB 3, a noSQL database for
document storage and retrieval.

Processor. This component is in charge of text analysis and is
the core component of Viscovery. It calls services from the No-
vaviz API as Dynamic Topic Models and Sentiment Analysis. For
Dynamic Topic Models (DTM), the API wraps Gensim 4. Gensim
2https://redis.io/
3https://www.mongodb.com/
4http://radimrehurek.com/gensim/

is an implementation of topic modeling written in Python [13]. It
includes implementations of LDA, LSI and DTM. For sentiment
analysis, the API wraps Vader 5, a rule-based model for sentiment
analysis that uses a lexicon of English words [8]. As the preproces-
sor component, the processor interacts for storage with MongoDB,
allowing to register each view of the data (e.g. topic model view) as
a document view of each opinion, with the attributes leveraged by
the respective view. For instance, from the sentiment view of an
opinion, each document in MongoDB stores neutral, positive and
negative scores at sentence level. Weights for topic membership are
stored in the topic model view of each opinion. Then, documents
in MongoDB will ingest the indexer, the component that provides
data for opinion search and browsing.

Indexer. This component is in charge of opinion indexing. For
each view of the data, we create an index allowing search and
browsing at different levels of granularity. As opinions are clus-
tered using topic models, browsing is conducted using topics as
opinion aggregation containers. For each topic, each opinion regis-
ter its membership score, which indicates the degree of membership
of each opinion to the topic. As each topic is a probability distri-
bution over words, we store the weights of each word per topic.
As browsing is conducted over topics, the use of words to describe
each topic is a key element of Viscovery. To integrate the sentiment
view of the data, we index opinions and their related sentiment
weights for search and browsing. To ingest these indexes, we re-
cover the document views created by the processor in the previous
step, processing and indexing them into Elasticsearch 6. Elastic-
search is a distributed, RESTful search and analytics engine capable
of support searches over unstructured data implementing fast and
efficient data access operations using inverted indexes. We use Elas-
ticsearch indexes to support all the search and browsing operations
in Viscovery.

DFR browser. To visualize opinion trends we started using DFR
browser 7, a visualization tool that works over topic models to inte-
grate data views into a single, coherent, and searchable visualization
of the data. As the code of DFR browser is available, we started
working over DFR browser to cast this tool to our needs and re-
quirements. DFR allows to search over topics, the basic search-able
element in the visualization, and to disaggregate the information
at topic level into documents and words by topic.

Kibana. Kibana is part of the suite provided by Elastic, named
The Open Source Elastic Stack. The purpose of Kibana is to hand
Elaticsearch visualizations.

D3.js. Another tool that we use for data visualizations is D3.js
8. D3.js is a JavaScript library for data visualizations compatible
with HTML, SVG, and CSS. D3 follows a data-driven approach
for data manipulation, using DOM as a standard for document
representation.

5https://github.com/cjhutto/vaderSentiment
6https://www.elastic.co/
7https://agoldst.github.io/dfr-browser/
8https://d3js.org/

WISDOM’17, August 2017, Halifax, Nova Scotia, Canada I. Espinoza et al.

Figure 1: Viscovery architectural diagram. Visualization components are connected to data processing components using the
Novaviz API.

4 IMPLEMENTATION ISSUES
4.1 Novaviz API
The Novaviz API includes a list of services and functionalities. As
the architecture of Viscovery is micro service oriented, the Novaviz
API contains a list of reusable and generic services. Our API includes
seven services:

Scrapper. This service extracts and recovers data from heteroge-
neous data sources as Twitter or opinionweb forums (e.g. reclamos.cl).
In the case of Twitter, it takes as seed a hashtag using the public
API and producing a .json file compounded by the list of tweets that
contains the hashtag. In the case of reclamos.cl we scrap the html
source code of the forum recovering a semi-structured view of the
forum in a .json file. The attributes included in the file are creation
date, the complaint content (unstructured), the url (a permalink
created by reclamos.cl for each opinion), and the title of the com-
plaint. It is implemented using Scrapy 9, a scrapper implemented
in Python. The scrapper is called by the ingester component of
Viscovery.

Corpus constructor. It takes scrapper outputs in .json format pre-
processing the content to normalize the text. It starts tokenizing the
text. Is in this service that caps, stopwords, accents, punctuation
and symbols are processed. We include a rule-based word removal
by frequency. By default, words with one occurrence in the data are
removed. In addition, a second rule-based word removal is included,
removing words by length. Words with less than two chars are re-
moved from the vocabulary. The constructor is language-flagged.
Novaviz considers two languages, English and Spanish. By default,
9https://scrapy.org/

the constructor is set to English. The stopword list is customizable.
In addition, the basis for time slicing can be defined here using a
parameter with values in {daily,weekly,monthly, yearly}. Out-
put files produced by the corpus creator are foo.dict (dictionary),
foo.lda-c (a row oriented file with one doc per row and entries in-
dicating word occurrences), sliced.json (docIDs and timestamps).
These files are used for LDA model fitting. The corpus constructor
is called by the preprocessor component of Viscovery.

LDA fitting. It takes foo.dict (dictionary) and foo.lda-c for LDA
model fitting. It needs the number of topics as a parameter (five
topics by default). LDA fitting wraps the Gensim implementation of
LDA that is based on Gibbs sampling [6]. Output files produced by
LDA fitting are stored in a directory that contains topic-word.json
(truncated to the top-30 words per topic), doc-topic.json (topic
proportions), frequency.txt (a list of words with their occurrences
of the corpus), and foo which corresponds to the model file, a coded
view of the fitted model. LDA fitting is called by the processor
component of Viscovery.

DTM fitting. Analogously to LDA fitting, this service wraps the
Gensim implementation of DTM. It takes foo.dictionary, foo.lda-c
and sliced.json for DTM fitting. Output files produced by DTM are
topic-word.json with timestamps (one timestamp per time slice for
each word in the dictionary), doc-topic.json (topic proportions),
frequency.txt, and foo which corresponds to the coded view of the
DTM model. DTM fitting is called by the processor component of
Viscovery.

Sentiment Analysis. It takes the .json file produced by the Scrap-
per and conducts sentiment analysis using VADER. It works at

Viscovery: A Platform for Trend Tracking in Opinion Forums WISDOM’17, August 2017, Halifax, Nova Scotia, Canada

three different levels of granularity, sentences, documents and top-
ics. Output files produced by Sentiment Analysis are stored in .json
files (with pairwise entries ID-sentiment score). A detailed discus-
sion about how sentiment scores are calculated at different levels
of granularity is provided in Section 6.

NER. It takes the .json file produced by the Scrapper service,
and conducts named entity recognition using NLTK 10 (Natural
Language ToolKit, a Python implementation of NLP basic tools).
Output files produced by NER are stored in .json files (with pairwise
entries wordID-NER tag).

POS. It takes the .json file produced by the Scrapper service, and
conducts part-of-speech using NLTK. Output files produced by POS
are stored in .json files (with pairwise entries wordID-POS tag).

Topic scaling. It takes as input the foo model file retrieved from
LDA fitting. In addition it takes the foo.dict (dictionary) and foo.lda-c
from corpus constructor to recover document lengths. Topic scaling
wraps Principal Coordinate Analysis (PCoA) using the implemen-
tation provided in Scikit-bio 11. Dimensionality reduction is con-
ducted using PCoA towards a 2D embedding based on the Jensen-
Shannon divergence between topics. The output file produced by
topic scaling is a .json file with paiwise entries topicID - ⟨x, y⟩.
Topic scaling is called by DFR browser for topic visualization.

4.2 Elastic Indexes
For data storage we use Elastisearch indexes. Elasticsearch provides
services for data indexing and retrieval. Elastic indexes are key
elements for opinion browsing, allowing to browse opinions at
different levels of granularity. For each level of granularity we
created a specific index in Elastic:

Opinions index. This index retrieves opinions using a docID as a
search key. Each opinion is indexed at full content, allowing fast
retrieval of opinions when documents are picked in Viscovery.

Topic-word index. This index retrieves top-K words per topic,
using topicID as a search key. For each word the index stores the
membership level for the topic.

Topic-document index. This index retrieves top-k documents per
topic, using topicID as a search key. For each document the index
stores the membership level for the topic.

Term frequency index. This index retrieves the frequency of each
term using termID as a search key.

Sentiment-document index. This index retrieves sentiment scores
at document level using docID as a search key.

Sentiment-topic index. This index retrieves sentiment scores at
topic level using topicID as a search key.

Sentiment-sentence index. This index retrieves sentiment scores
at sentence level using sentenceID as a search key.

10http://www.nltk.org/
11http://scikit-bio.org/

4.3 DFR cast
DFR (Data For Research) 12 is a visualization tool that produces
global data views avoiding unnecessary accesses to documents at
finer granularity levels. It produces a global first data view com-
prising document contents using topics as containers and words
as topic descriptors. Topics can be picked in the global data view
showing the most relevant words of the selected topic as a list.
The temporal evolution of the topic is showed in the topic view.
Lengthwise selection on the timeline of the topic exhibits data re-
sponsiveness, updating top-documents at topic level. Along with
top document at topic level, a list of top-50 words is showed.

The document list includes three attributes per document: the
title, the degree of membership of the document to the selected
document, and the number of tokens that compound it. These lists
include the top-20 most salient documents per topic in terms of
degree of membership. The topic view provided by DFR is shown
in Figure 2.

Figure 2: DFR topic-view.

We extended the DFR topic view to include sentiment analysis
and a 2D topic embedding global view between the timeline and the
list of top documents. To en-chase the topic embedding we modified
the DRF topic view. By default, DFR does not include sentiment vi-
sualizations. Then two files, sentiment scores at term and document
levels were included to allow sentiment visualizations. These files
were used to indicate the polarity of topics, documents and words.
At topic level, each topic was colored according to its polarity, using
a white/red color palette (negative scores were represented in red).
In addition we included a button in the top words list to change the
length of each word bar according to objective/subjective scores. A
screen shoot of our sentiment DFR extension is shown in Figure 3.

12http://agoldst.github.io/dfr-browser/demo

WISDOM’17, August 2017, Halifax, Nova Scotia, Canada I. Espinoza et al.

Figure 3: Sentiment DFR topic-view.

5 INCREMENTAL LEARNING FOR DYNAMIC
TOPIC MODELS

5.1 Dynamic Topic Models
A set of latent variables can be introduced to model the relation-
ships between terms and documents in a corpus. Formally, let
d ∈ D = {d1,d2, . . . ,dN } and w ∈ W = {w1,w2, . . . ,wM } be
random variables representing documents and terms, respectively.
A set of random variables z ∈ Z = {z1, z2, . . . , zk } can be in-
troduced to model the joint probability of documents and terms,
producing a mixed membership model expressed as follows:

P(w |d) =
∑
z∈Z

P(w |z) · P(z |d). (1)

Using the Bayes rule to invert the conditional probability P(z |d),
we obtain an expression of the joint probability conditioned to the
model parameters:

P(w,d) =
∑
z∈Z

P(w |z) · P(d |z) · P(z). (2)

The equation 2 is known as the generative formulation of the topic
model of the corpus.

Topic models based on Dirichlet allocation require two Dirichlet
distributions. A first one generates topic proportions for each doc-
ument and a second one generates terms conditioned on document
topics proportions. Specifically, a Dirichlet k-dimensional random
variable θ takes values in a k-1 simplex (0 ≤ θi ≤ 1,

∑k
i=1 θi = 1),

where its density function is defined by:

p(θ |α) =
Γ(∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1
1 · . . . · θαkk , (3)

and {α1, . . . ,αk } corresponds to the distributional parameters,αi >
0. Then, equation 2 is expanded using Dirichlet priors:

P(W ,d) =
M∏
n=1

P(wn |zn , β) · P(zn |θd) · P(θd |α). (4)

In equation 4, θd indicates the proportion of topics in d . Then,
zn is conditioned on β and represents the sampling probability
of wn on d . Note that α and β are the distributional parameters
of the Dirichlet density functions. Usually they are consigned as
hyper-parameters to make a difference with model parameters. It
is common to make an assumption of density symmetry for hyper-
parameters, that is α1 = . . . = αk = α and β1 = . . . = βk = β . The
values α , β control the level of smoothness/sharpness of the density
functions around the centroid of the simplex.

To model a time sliced corpus, Blei and Lafferty [1] introduced
dynamic topic models (DTM). DTM is based on the static Latent
Dirichlet Allocation model and use the mean parameterization
of the multinomial topic distribution. The idea behind DTM is to
use the mean parameterization of the topics to introduce mean
chaining, being possible to model time dependencies over time. To
chain topics over time, DTM models the chain of mean parameters
introducing Gaussian noise, modeling uncertainty over time slices.
Let βt,k be the k-th topic in the time slice t and let π be the mean
parameter of the topic. Note that the i-th component of βt,k is given
by βi = log

(
πi
πV

)
. As πi represents the expected value of wi and

πV is the expected value of a random chosen word over the whole
vocabulary V , the fraction πi

πV is the odd ofwi over V and then βi
corresponds to the logit function forwi overV . As is known, a zero
variation overV achieves a zero value in the logit function. Positive
or negative deviations of wi in V achieves positive or negative
values in [−1,+1], respectively. Then, βt,k can be chained in a state
space of parameters that evolves with Gaussian noise:

βt,k |βt−1,k ∼ N(βt−1,k ,σ 2I). (5)

Topic proportions are also chained in DTM, using mean parame-
terization over θ :

θt |θt−1 ∼ N(αt−1,δ2I). (6)

Time chaining does not affect model expressiveness. In fact, the
decomposition of the joint distribution of words and documents in
a corpus remains the same, except for the fact that both Dirichlet
distributions (on topic proportions and terms) are conditioned on
the Dirichlet distributions of the previous time slice:

P(W ,d, t) =
M∏
n=1

P(wn |zn , βt) · P(zn |θd,t) · P(θd,t |α). (7)

Model estimation has some drawbacks under these assumptions.
Posterior inference (model estimation of parameters conditioned
on observed variables) is intractable due to the non conjugacy of
Gaussians and multinomial distributions. Blei and Lafferty explored
variational methods for posterior inference, discarding stochastic
simulation (e.g. Gibbs sampling) due to computational difficulties
inherent in the non conjugacy of Gaussians. To retain the sequential
structure of topics over time, DTM fits a dynamic model with Gauss-
ian variational observations (β̂k,1, . . . , β̂k,t , . . . , β̂k,T), fitting these
parameters to minimize the Kullback-Leibler divergence between
the resulting posterior and the true posterior. To mimic Gaussian

Viscovery: A Platform for Trend Tracking in Opinion Forums WISDOM’17, August 2017, Halifax, Nova Scotia, Canada

variational observations, DTM uses Kalman filtering, which enables
the use of backward-forward calculations in a linear state space
model. Analogously, topic proportions θt,d are conditioned on free
Dirichlet parameters γt,d and topic indexes zt,d,n are conditioned
on free multinomial parameters ϕt,d,n :

q(βk,1, . . . , βk,T |β̂k,1, . . . , β̂k,T), (Kalman parameters) (8)
q(θt,d |γt,d), (Dirichlet parameters) (9)

q(zt,d,n |ϕt,d,n), (Multinomial parameters) (10)

Forward-backward calculations on Kalman parameters allows
to estimate posterior mean and variance parameters (mt and Vt) in
terms of Gaussian parameters (σ 2) over topics. As time sliced topics
βt are conditioned on the immediate past time sliced topic βt−1,
and both are related by a Gaussian of σ parameter, the variational
state space model β̂t is conditioned on βt and both are related by a
Gaussian of v̂t parameter. Then, in forward calculations, posterior
mean and variance parameters (mt and Vt) are calculated from
σ and from the variational parameters β̂t and σ̂t . In backward
calculations the marginal mean m̃t−1 and variance Ṽt−1 of βt−1
depends on posterior meanmt−1 and varianceVt−1, σ and the one-
step aheadmarginal mean m̃t and variance Ṽt . Forward calculations
use initial conditions m0 and V0 and backward calculations use
initial conditions m̃T =mT and ṼT = VT . The rest of the parameters
are estimated using variational expectation maximization (VEM) as
was proposed in the original posterior inference algorithm of LDA
[2].

5.2 Variational Inference Algorithm
To estimate model parameters, DTM works using VEM and Varia-
tional Kalman filtering in a tandem. The inference algorithm starts
initializing Kalman parameters using the LDA static VEM inference
algorithm over the whole corpus, discarding timestamps. As an
output of this process DTM obtains Kalman variational parame-
ters (β̂i). Forward calculations are conducted to estimate posterior
means and variancesmt = E(βt |β̂1:t) and Vt = E((βt −m)2 |β̂1:t)
with initial conditions m0 = 0 and V0 = σ 2 · e+03. Backward
recurrences are used to estimate marginal means and variances
m̃t−1 = E(βt−1 |β̂1:T) and Ṽt−1 = E((βt−1 − m̃t−1)2 |β̂1:T) with ini-
tial conditions m̃T =mT and ṼT = VT . Likelihood bound variables
ζt =

∑
w em̃tw+0.5·Ṽtw are calculated for each topic in each time

slice and βt,k,n for each topic, term and time slice in the corpus.
After the initialization step, the inference algorithm runs the

EM algorithm. The E-step uses the static LDA VEM inference al-
gorithm, at document level, in chronological order according to
document timestamps. Then, for each document a free Dirichlet
parameter γt,d is obtained, and for each word in each document a
multinomial parameter ϕt,d,n is obtained. The E-step iterates until
convergence following the LDA VEM convergence criteria. Then,
the M-step runs bounding topic likelihoods. The process repeats
the steps considered in the initialization process conditioned on
ϕt,d,n model parameters. Forward and backward calculations are
conducted reestimating variational Kalman parameters iterating
until convergence following a topic likelihood criteria. At global
level, E-step and M-step alternates until convergence, following a
criteria that combines document and topic likelihoods.

5.3 Incremental learning on DTM
A key aspect of Viscovery relies on incremental learning. As topics
are used as opinion containers, the need to incorporate new opin-
ions in a daily basis is a key aspect to keep information updated. To
avoid the recalculation of the entire model, we extended DTM to al-
low incremental learning, updating the model to be consistent with
new opinions but avoiding the recalculation of model parameters
that depends on previous time slices.

When a new document batch is aggregated into Viscovery, a
set of unseen words may appears. Suppose that Q new words are
appended by the new batch to the model and assume that the
batch size (number of documents in the batch) is R. LetWnew =
{wM+1, . . . ,wM+Q } be the set of new words and let Dnew =
{dN+1, . . . ,dN+R } be the new batch. We need to aggregate to the
model a set of new parameters. A first set of parameters is in de-
pendence of Wnew and previous slices 1 : T . Topic parameters
included into the model are βM+1,1:T , . . . , βM+Q,1:T . As new words
were unobserved on previous slices, we set these parameters using
βlong-tail, the value assigned by DTM to words in the long-tail
of the model. In practice, by choosing at random any word in the
tail of any topic, βlong-tail achieves only small fluctuations (order
10−12). Analogously, we set β̂M+1,1:T , . . . , β̂M+Q,1:T as β̂long-tail,
the value assigned by DTM to words in the long-tail of the Kalman
variational parameters. Then we fit a static LDA over the new
batch to obtain initial values for β1:Q,T+1 parameters (model pa-
rameters for the new batch over the whole vocabulary). Mean and
variance parameters (variational and marginal) are calculated us-
ing the forward-backward procedure at one step (one step ahead
for forward calculation and one step behind for backward recur-
sion). To avoid unnecessary computation costs, we discarded the
recalculation of the entire chain of Kalman variational parameters,
constraining inference only to dependencies between batches in
slices T and T + 1. The constrained forward-backward calculation
produces estimations for mean and variance in the new batch, and
values for likelihood bounds ζT+1 and βT+1,k,n .

Now we follow the EM procedure. Log likelihoods of topics
and documents modeled in previous batches are retrieved to be
included in the global likelihood criterion function used in the EM
procedure. The E-step is conducted over the documents included
in Dnew, obtaining estimates for γT+1,d and ϕT+1,d,n , d ∈ Dnew,
likelihood bounds for each document. The E-step runs until conver-
gence following the LDA VEM convergence criteria. The M-step
runs bounding topic likelihoods. The process repeats the following
cycle at word level for each document in the new batch: repeat:
topic bound est→ batch model updating→new topic bound
→ check convergence. As the M-step runs over the last chain of
DTM, the convergence is very fast and the overall convergence is
also very fast. In the appendix we give more details about how our
incremental algorithm guarantees that the log likelihood logp(d1:T)
is bounded from below using the Jensen’s inequality.

6 BROWSABLE SENTIMENT ANALYSIS
In this section we indicate how we produce a browsable sentiment
analysis view of the data in Viscovery. Sentiment analysis is a
key aspect of opinion mining tools and in Viscovery is a salient
aspect that helps users to distinguish between subjective/neutral

WISDOM’17, August 2017, Halifax, Nova Scotia, Canada I. Espinoza et al.

information. As a base service, the Novaviz API uses VADER [8]
for sentiment sentence tagging. VADER provides three sentiment
scores at sentence level: positive (scs (⊕)), negative (scs (⊖)) and
neutral (scs (⊙)) scores, where scs (⊕) + scs (⊖) + scs (⊙) = 1. We
recover for each sentence in our data these scores.

Document level. A first level of aggregation considered in Vis-
covery is the document level. As opinions can be compounded by
a number of sentences, sentiment scores need to be aggregated
at opinion level. Let d be a document indexed in Viscovery, and
s ∈ d the sentences that compounds d , where |d | is the number of
sentences of d . Sentiment scores at document level are obtained
from:

scd (∗) =
∑
s ∈d

scs (∗)
|d | , with ∗ ∈ {⊕, ⊖, ⊙} (11)

Note that scd (⊕) + scd (⊖) + scd (⊙) = 1, as expected.

Topic level. A second level of aggregation considered in Vis-
covery is the topic level. As opinions are aggregated into topics,
sentiment scores need to be aggregated at topic level to indicate the
level of polarity of each topic. Let z be a LDA latent variable, and
P(d |z) the membership probability given by DTM and defined in
Equation 2. Note that P(∗|z) = ∑

d ∈D P(∗|d) · P(d |z). For simplicity,
we denote P(∗|z) by scz (∗). Then, sentiment scores at topic level
are obtained from:

scz (∗) = Cz ·
∑
d ∈D

scd (∗) · P(d |z), with ∗ ∈ {⊕, ⊖, ⊙} (12)

where Cz = 1∑
∗ scz (∗)

. Note that scz (⊕) + scz (⊖) + scz (⊙) = 1, as
expected.

Term level. At a high level of granularity Viscovery browses
terms. To use sentiment analysis at term level, we need to esti-
mate P(∗|w), denoted for simplicity by scw (∗). As scw (∗) can be
expanded over latent variables by

∑
z∈Z scz (∗) · P(z |w), using the

Bayes rule on P(z |w) we obtain scw (∗) as:

scw (∗) =
∑
z∈Z

scz (∗) ·
P(w |z) · P(z)

P(w) , with ∗ ∈ {⊕, ⊖, ⊙} (13)

Note that scw (⊕) + scw (⊖) + scw (⊙) = 1, as expected.

Using topics as proxies. Viscovery allows to browse opinions
using topics as proxies. When a topic is picked in Viscovery, the
sentiment view of the data can be projected to documents or terms.
To show sentiment scores conditioned on topics, we reuse the
scores defined in equations 11-13. Sentiment scores at document
level conditioned on topics are defined by:

scd (∗|z) =
(∑
w ∈W

scw (∗) · P(w |z)
)
· P(z |d), with ∗ ∈ {⊕, ⊖, ⊙}

(14)
Analogously, sentiment scores at term level conditioned on topics

are defined by:

scw (∗|z) =
(∑
d ∈D

scd (∗) · P(d |z)
)
· P(z |w), with ∗ ∈ {⊕, ⊖, ⊙}

(15)

This simple way to aggregate scores from sentence sentiment
scores allows us to use sentiment analysis on DTM.

7 DATA SLICES AND PRELIMINARY RESULTS
Incremental learning testing
We evaluate our incremental version of DTM to measure speed up
and model quality in terms of topic coherence [14]. We expect to
reduce the computational time involved in model fitting avoiding
a retrogress in terms of topic coherence. To test this aspect of our
proposal, we run ten trials of model fitting for a corpus, with and
without incremental learning on the last time slice. We used as
test data a curated dataset to evaluate topic coherence provided by
Greene & Cross [5] that comprises news about the political agenda
of the European Parliament. The dataset is divided into four time
slices and is compounded by 1324 news articles classified into a
manually-specified number of topics, helping to evaluate topic co-
herence. Mean and variance of coherence and mean computational
time involved in both algorithms are reported in Table 1.

Algorithm Mean Coh. Var Coh. Mean Comp. Time
DTM -1.5747 0.0047 2:06:56
DTM + Seq. Upd. -1.5373 0.0063 1:47:37 + 0:11:50

Table 1: Topic coherence and computational times in DTM
and DTM+seq update. Mean and variance over ten trials per
algorithm are reported.

As expected, the mean computational time involved in DTM +
Seq. Upd. is less than the time registered by DTM, with only 11
minutes spent in the fourth slice. This result indicate that the most
expensive step of the algorithm is the Kalman variational inference
and as our proposal constraints this step two the last slice, it reduces
the cost involved. As the data used for this experiment is small
(we used this dataset to estimate topic coherence) the difference
between both algorithms in terms computational time is small. In
Reclamos.cl, a big data set with more than 200,000 complains that
we indexed in Viscovery, the difference between both algorithms
is high. If we use DTM over the whole dataset, model fitting takes
14.7 hours. On the other hand, using sequential update over the last
time slice it takes 1.91 hours. Note that without sequential update,
we will need to retrain the whole model for each new slice and our
proposal avoids this with a speed up of almost 8x. Surprisingly the
time reduction does not affect the quality of the model in terms
of topic coherence as is shown in Table 1. In fact, our proposal
achieves a slight improvement over DTM at a cost of a higher
variance between the different trials.

7.1 Data slices over Reclamos.cl
We are developing Viscovery implementing new functionalities. In
fact, the current version of Viscovery implements browsable senti-
ment analysis at topic and word levels. Currently we are working
on the implementation of sentiment analysis at document level,
according to the proposal introduced in Section 6. Viscovery allows
to browse opinions using topics as proxies of opinions. We indexed
into Viscovery 12 years of data from Reclamos.cl, a Chilean fo-
rum for complaints abouts companies, marks and institutions. The

Viscovery: A Platform for Trend Tracking in Opinion Forums WISDOM’17, August 2017, Halifax, Nova Scotia, Canada

dataset contains 201,969 different complaints. Retail, government,
banks and universities are among the most frequent subjects of
opinions.

The size of the vocabulary after stopword removal is 86,723 terms.
We used 18 hours to create the corpus of reclamos using Viscovery.
Reclamos.cl is a very active site in Chile, reporting an overall of
90,128 persons contacted by companies after complaint publication
(a significant number in proportion to the Chilean population).

Running DTM using years as timestamps, we achieved 12 time
slices of the data. We used the default value for the number of topics,
set as 10 for this example. Data slices for this corpus are shown in
Figure 4. As Figure 4 shows, the a) Corpus view (overview) has four
alternatives for corpus deployment: grid, scaled, list and stacked.
We show topics using lists as data view. The list of topics include
topics proportions over time, topwords per topic and the proportion
of the topic in the corpus. When a topic is selected (we click topic
1 for this example), the b) Topic view is deployed. A topic view
shows the list of top words for the topic, sorted in decreasing order
according to the proportion on the topic. If the polarity bottom is
pressed the bars are modified according to the sentiment weight
of the word in the topic. For this version of Viscovery, the bar
size is proportional to the sum of positive and negative scores.
Currently we are implementing an extension that produces two
bars per term, one per polarity. Topic embeddings are also shown
in this view, illustrating the correlation of topic (distances in the
topic embedding). The polarity orientation of each topic is shown
using a color bar, where negative-biased topics are indicated with
red shades. A list of top-documents per topic is shown below the
embedding (omitted in this figure) and the user can select a specific
opinion. In this case, Viscovery deploys the c) Document view,
where the top words of the document in the given topic are shown.
The subject and the date of the complaint is shown at the top of
the view. Finally, Viscovery provides a d) Term view across topics,
showing how relevant is a given word across topics. In the example,
we show the word view using the term ’company’, and as expected,
this word is used in many topics of reclamos.cl, with different levels
of membership.

8 CONCLUSIONS
We present Viscovery, a tool for opinion browsing and trend track-
ing. Key elements of Viscovery are Dynamic Topic Models (DTM)
and our extension of DTM for sequential updating. We include
sentiment analysis in Viscovery starting from sentiment scores at
sentence level and then, conducting aggregation across topics and
documents. This approach is simple and effective. For visualization
we use DFR browser, extending DFR to include topic embeddings
and sentiment analysis.

Currentlywe are extending Viscovery to includemore functional-
ities. Among these functionalities we are working on the sentiment-
document view, topic evolution tracking view and opinion search
module. We are implementing these modules using Kibana and D3,
two visual components considered in Viscovery not included in the
current version. In addition, we are using Viscovery to index more
sources, as opinions retrieved from Twitter and Reddit.

ACKNOWLEDGMENT
This work was supported by the Fondef VIU 15E0085 project of the
National Agency of Science and Technology, Conicyt, Chile.

REFERENCES
[1] David Blei and John Lafferty. 2006. Dynamic topic models. In Proceedings of the

23rd International Conference on Machine Learning, ICML. 113–120.
[2] David Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet Allocation.

Journal of Machine Learning Research 3, 4-5 (2003), 993–1022.
[3] Arthur Dempster, Nan Laird, and Donald Rubin. 1977. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistics Society 39
(1977), 1–38.

[4] Koji Eguchi and Victor Lavrenko. 2006. Sentiment retrieval using generative
models. In Proceedings of the 6th Conference on Empirical Methods in Natural
Language Processing, EMNLP. 345–354.

[5] Derek Greene and James P. Cross. 2016. Exploring the Political Agenda of
the European Parliament Using a Dynamic Topic Modeling Approach. CoRR
abs/1607.03055 (2016).

[6] Thomas Griffiths and Mark Steyvers. 2004. Finding scientific topics. Proceedings
of the National Academy of Sciences, PNAS 101, 1 (2004), 5228–5235.

[7] Thomas Hofmann. 2001. Unsupervised learning by probabilistic latent semantic
analysis. Machine Learning 42, 2 (2001), 177–196.

[8] C.J. Hutto and Eric Gilbert. 2014. VADER: A Parsimonious Rule-based Model for
Sentiment Analysis of Social Media Text. In Proceedings of the Eighth International
Conference on Weblogs and Social Media, ICWSM.

[9] Yohan Jo and Alice Oh. 2011. Aspect and sentiment unification model for online
review analysis. In Proceedings of the 4th ACM International Conference on Web
Search and Data Mining, WSDM. 815–824.

[10] Oren Kurland and Lillian Lee. 2009. Clusters, language models, and ad hoc
information retrieval. ACM Transactions on Information Systems, TOIS 27, 3
(2009).

[11] Chenghua Lin and Yulan He. 2009. Joint sentiment/topic model for sentiment
analysis. In Proceedings of the 18th ACM International Conference on Information
and Knowledge Management, CIKM. 375–384.

[12] Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and ChengXiang Zhai. 2007.
Topic sentiment mixture: modeling facets and opinions in weblogs. In Proceedings
of the 16th ACM International World Wide Web Conference, WWW. 171–180.

[13] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modeling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. 45–50.

[14] Hanna Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. 2009.
Evaluation methods for topic models. In Proceedings of the 26th International
Conference on Machine Learning, ICML. 1105–1112.

APPENDIX. LOWER BOUND OF THE
LIKELIHOOD FOR THE INCREMENTAL
ALGORITHM
In this section we give details of the incremental algorithm that
maximizes the lower bound of the likelihood on logp(d1:T). This
section is an extension of the appendix provided in Blei and Lafferty
[1] where the lower bound is calculated for the static algorithm.
For the incremental version of the inference algorithm, we only
need to calculate the terms for the last time slice T . The first term
of the lower bound is:

Eq logp (βT |βT−1) = −V
2 (logσ 2 + log(2σ 2)

− 1
2σ 2 Eq (βT − βT−1)T (βT − βT−1)

= −V
2 (logσ 2 + log 2π) − 1

2σ | |m̃T − ˜mT−1 | |2

− 1
σ 2Tr (ṼT) + 1

2σ 2 (Tr (Ṽ0) −Tr (ṼT))

(16)

WISDOM’17, August 2017, Halifax, Nova Scotia, Canada I. Espinoza et al.

Figure 4: Viscovery data views. Three data slices are deployed from the a) Corpus view (list of topics and temporal proportions)
after topic selection: b) Topic view, which includes top words per topic, topic proportions on time and topic embedding, c)
Document view (membership of the document to the given topic), and d) Word view across topics, showing the ranking of the
word in each topic where the word is prominent.

The second term is:

Eq logp (dT |βT) =∑
w ntwEq (βw − log

∑
w exp (βw))

≥ ∑
w nwm̃w − nwζ

−1
T

∑
w exp(m̃T + Ṽw /2)

+nT − nT log ζ −1T

(17)

where nT =
∑
w nw . The third term is the entropy H (q) =

1
2
∑
w log Ṽw + V

2 log 2π . The term V
2 log 2π is canceled in term

1 and the entropy. In term 2

nT ζ
−1
T

∑
w exp(m̃T + Ṽw /2) = nT ζ −1T ζT = nT (18)

The new term −nT is canceled with the corresponding nT . Then,
the bound can be obtained as

= −V
2 (logσ 2) − 1

2σ | |m̃T − ˜mT−1 | |2 − 1
σ 2Tr (ṼT)

+ 1
2σ 2 (Tr (Ṽ0) −Tr (ṼT)) +

∑
w nwm̃w − nT log ˜ζT

+ 1
2
∑
w log Ṽw

(19)

	Abstract
	1 Introduction
	2 Related Work
	3 Viscovery: Architecture and Design Principles
	4 Implementation Issues
	4.1 Novaviz API
	4.2 Elastic Indexes
	4.3 DFR cast

	5 Incremental Learning for Dynamic Topic Models
	5.1 Dynamic Topic Models
	5.2 Variational Inference Algorithm
	5.3 Incremental learning on DTM

	6 Browsable Sentiment Analysis
	7 Data slices and preliminary results
	7.1 Data slices over Reclamos.cl

	8 Conclusions
	References

