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ABSTRACT 

This paper focuses on sentiment mining and sentiment correlation 

analysis of web events. Although neural network models have 

contributed a lot to mining text information, little attention is paid 

to analysis of the inter-sentiment correlations. This paper fills the 

gap between sentiment calculation and inter-sentiment 

correlations. In this paper, the social sentiment is divided into six 

categories: love, joy, anger, sadness, fear, and surprise. Two deep 

neural network models are presented for sentiment calculation. 

Three datasets – the titles, the bodies, the comments of news 

articles – are collected, covering both objective and subjective 

texts in varying lengths (long and short). From each dataset, three 

kinds of features are extracted: explicit expression, implicit 

expression, and alphabet characters. The performance of the two 

models are analyzed, with respect to each of the three kinds of the 

features. In terms of the features, it is shown that the alphabet 

character features perform better than the other two features on 

short texts. In terms of sentiment in subjective text, sadness is 

easy to be recognized as other sentiments. All the sentiments are 

easy to be recognized as anger. In terms of sentiment in objective 

text, the text which actually arouses anger is relatively 

unpredictable and likely to be classified to love. 

CCS CONCEPTS 

• Computing methodologies → Artificial intelligence; Natural 

language processing; Information extraction • Computer systems 

organization → Architectures; Other architectures; Neural 

networks  

KEYWORDS 

Sentiment Analysis, Sentiment Correlation, Deep Neural 

Network, LSTM  

1. INTRODUCTION 

Social sentiments are valuable. Effective sentiment calculation 

does not only help product developers to understand the 

preference of their customers, but also helps governors to evaluate 

the public opinion to a social event. In recent years, many 

machine learning algorithms have contributed to sentiment 

analysis in text. However, even though the performance of these 

algorithms has been improved a lot, little attention is paid to the 

complexity of social sentiments: in social psychologist’s views, 

social sentiments are compound and diverse. For instance, 

someone could say, “You stupid farmer, why did you save the 

snake when you knew he could kill you?”, where a strong 

sentiment of empathy can be easily confused with anger. Given 

the same social event, the sentiments of different people are 

diverse. People with different personalities and prior knowledge 

may pay attention to different aspects. If a reader concerns more 

than one aspect of the sentiment, then his/her words may carry 

more than one sentiment. In the field of psychology, there is still 

some controversy about the classification of sentiments. However, 

in engineering scientist’s views, the learning algorithms often 

treat the social sentiments as a simple classification (e.g., 

positive/negative). The social psychologists and the engineering 

scientists focus on their own perspectives of sentiment calculation, 

leaving a gap between the performance of sentiment classification 

and the analysis of sentiment correlations. To fill this gap, this 

paper focuses on six kinds of human sentiment, i.e., love, joy, 

anger, sadness, fear, surprise[34], builds two deep learning 

models, and extracts three different kinds of features, to support 

mining both the text sentiment and the inter-sentiment correlation. 

The above six categories of sentiments are widely accepted as one 

of the mainstream classification today [34]. If other sentiment 

categories are chosen, the analyzing process can be analogized. 

Essentially, the performance of a sentiment calculation model is 

affected by both the quality of data and the effectiveness of model. 

Just as described above, the public’s sentiments to a social event 

are compound. On one hand, even to the same text, the cognition 

of its sentiment is heterogeneous among people. It means there are 

no absolutely accurate data for everyone. Consequently, a better 
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understanding of sentiment data can help interpreting the 

performance of sentiment calculation models. On the other hand, 

the sentiment calculation result could provide clues for data 

understanding, improving the comprehension of inter- sentiment 

correlations.  

To understand the sentiment data, three datasets – the titles, the 

bodies, and the comments of news articles – are collected, 

covering both objective and subjective texts in varying lengths 

(long and short). From each dataset, three kinds of features are 

extracted: explicit expression, implicit expression, and alphabet 

characters. In order to calculate sentiment for both the short and 

long texts uniformly, this paper presents two deep neural network 

models. The performance of the two models are analyzed, with 

respect to each of the three features. It is shown that the alphabet 

character features perform better than the other two features on 

short texts, while the other two features perform better on long 

texts. Taking all the combinations of the three datasets and the 

three features as the input of the two deep learning models, the 

sentiment calculation provides results to analyze the inter-

sentiment correlations. It is shown that anger is more likely to be 

confused with other sentiments, especially in sentences where 

multiple sentiments are expressed simultaneously and one of them 

is emphasized. Such kinds of sentiment cognitive biases are also 

revealed in other sentiment categories. 

The rest of the paper is organized as follows. We start by 

reviewing related work. In Section 3, we describe the sentiment 

calculation models and the inter-sentiment correlation analysis 

method. In Sections 4, the details of the experiment are introduced. 

Finally, we draw conclusions in Section 5. 

2.  RELATED WORK 

Social media is playing increasingly important roles in scientific 

research as well as our daily life. The data from social media 

contribute to the improvement of text-related analyses, such as 

sentiment analysis [3, 7, 23], sarcasm detection [1, 2], event 

dissemination [3], short text clustering [4], user clustering [5, 6], 

knowledge recommendation [7], and user behavior analysis [8, 9].  

Continuous word representations, including word2vec [10], glove 

[11], and weighted word embedding [12], also provide new ideas 

on knowledge mining. 

Sentiment analysis, as an important branch of knowledge 

mining, can be categorized into three levels, namely word level, 

sentence level, and article level. In word level, sentiment words 

are extracted mainly through three ways: 1) manual approach [13], 

2) dictionary-based approach [14, 15], and 3) corpus-based 

approach [16]. In sentence level, intra-sentential and inter-

sentential sentiment consistency were explored [17]. Qiu et al. [18] 

employed dependency grammar to describe relations for double 

propagation between features and opinions. Ganapathibhotla and 

Liu [19] adopted dependency grammar for sentiment analysis of 

comparative sentences. The Conditional Random Fields (CRF) 

method [20] was used as the sequence learning technique for 

extraction. Machine learning methods are widely used in both 

sentence and article level. Naive Bayesian [21, 22], maximum 

entropy classification [22], Support Vector Machines (SVMs) [22], 

and pattern recognition methods [23] are employed frequently. In 

recent years, neural network models, such as Long Short Term 

Memory (LSTM) [24, 25], convolutional neural network (CNN) 

[26, 27], recursive auto-encoders [28, 29], adversarial learning [30] 

and attention mechanism [31, 32], also contribute to sentiment 

analysis and classification tasks. 

All of the above works have improved the performance of 

sentiment analysis. However, just as Wilson et al. [33] pointed out, 

a single text may contain multiple opinions. Parrott [34] 

demonstrated that human sentiments are prototyped and complex. 

Most of the recent works just focus on recognizing the sentiment 

expressed in text. Little attention is paid to associate sentiment 

calculation in engineering with inter-sentiment correlation in 

psychology.  

3.  MODEL 

Sentiment data and model are the two factors which influence the 

performance of sentiment calculation, and they impact on each 

other. The compound sentiment in data impacts on the result of 

the sentiment calculation model, and the model’s result 

furthermore impacts on analysis of the inter-sentiment correlation 

in return. The interaction process is shown in Fig. 1. This section 

introduces the sentiment calculation models and the inter-

sentiment correlation analyzation method separately.  

3.1  Sentiment Calculation Models 

The sentiment calculation models aim to discriminate the 

sentiment orientation of input texts. In this paper, two deep neural 

network models, CNN-LSTM2 and CNN-LSTM2-STACK, are 

proposed to calculate sentiment. In both models, the length of an 

input text can be either short or long. The output of the models is 

one of the six kinds of sentiments, i.e., love, joy, anger, sadness, 

fear, and surprise. The calculation process can be divided into 

three parts, as shown in Fig. 2. CNN-LSTM2 is constructed with 

Part I and Part II. CNN-LSTM2-STACK is constructed by adding 

an additional Part III to CNN-LSTM2. The details of the three 

parts are represented as follows.  

3.1.1 Part I: Feature Processing. Part I focuses on feature 

processing which transforms the original features into dense 

vector information. There are four operations in this part: vector 

lookup, window sliding, convolutional calculation, and ReLU 

activation.  

Text ： I    like  …    cat

INPUT Sentiment Calculation

Inter-Sentiment 
Correlation Analysis

  Love        Joy         Anger

Sadness     fear       Surprise

 

Figure 1: Interaction diagram of sentiment calculation and 

inter-sentiment correlation analysis 
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(a) CNN-LSTM2  (b)   CNN-LSTM2-STACK 

Figure 2: Sentiment calculation models 

Let input be denoted as 𝑤𝑖
𝑗
, which means the 𝑖-th feature of the 

j-th sample text. The j-th sample text is indicated as 

[𝑤1
𝑗
, 𝑤2

𝑗
, … , 𝑤𝑁

𝑗
], where the text is padded by ‘none’ to length of 𝑁. 

Here, ‘none’ is the reserved symbol in the vocabulary. For 

instance, if the first sample text is ‘I like small cat’ and 𝑁 = 5, 

then 𝑤1
1 = ′I′ ,  𝑤2

1 = ′like′ ,   𝑤3
1 = ′small′ ,  𝑤4

1 = ′cat′ , 

 𝑤5
1 = ′none′. 

The first operation, vector lookup, searches the embedding 

representation 𝑣𝑖
𝑗
 of the corresponding input feature 𝑤𝑖

𝑗
, which is 

formulated as: 

 𝑣𝑖
𝑗
= LOOKUP(𝑤𝑖

𝑗
)                                (1) 

The second operation, window sliding, packets a targeted input 

feature and its context together after ‘none’ padding. Specifically, 

the window size in this paper is set to be 5, and 𝑤0
𝑗
=

𝑤−1
𝑗
= ′none′. Then, in the third operation, a convolutional layer 

is applied.  

ℎ𝑖,1
𝑗
= CNN([𝑣𝑖−2

𝑗
, 𝑣𝑖−1

𝑗
, 𝑣𝑖

𝑗
, 𝑣𝑖+1

𝑗
, 𝑣𝑖+2

𝑗
])               (2)  

where ℎ𝑖,1
𝑗

 is the first hidden layer. And [. ]  means embedding 

concatenation. In the last operation, a ReLU activation layer is 

added. 

ℎ𝑖,2
𝑗
= ReLU(ℎ𝑖,1

𝑗
) ≈ log (1 + ℎ𝑖,1

𝑗
)                   (3) 

where ℎ𝑖,2
𝑗

 is the second hidden layer of the 𝑖-th feature of the 𝑗-th 

sample. ℎ𝑖,2
𝑗

 acts as the input of Part II.  

3.1.2 Part II: Sentiment Calculation. Part II focuses on the 

sentiment calculation after feature processing of Part I. There are 

five operations in this part, i.e., Long Short Term Memory (LSTM) 

calculation, dropout operation, average calculation, fully connect 

calculation, and sorftmax. 

Firstly, the ℎ𝑖,2
𝑗
 output of Part I is fed into a two-layer LSTM 

component. The outputs of the two LSTM layers are represented 

as ℎ𝑖,3
𝑗

 and ℎ𝑖,4
𝑗

 respectively. After that, the dropout operation is 

applied to prevent over-fitting. Then, we can get:  

ℎ𝑖,3
𝑗
= LSTM(ℎ𝑖,2

𝑗
)                                (4) 

ℎ𝑖,4
𝑗
= LSTM(ℎ𝑖,3

𝑗
)                                (5) 

ℎ𝑖,5
𝑗
= DROPOUT(ℎ𝑖,4

𝑗
)                           (6) 

where 𝑖  is the index of the text sequence, which is an integer 

ranging from 1 to N. 

In practice, even though the texts have been padded to the same 

length of 𝑁, their actual lengths still vary. To settle this problem, 

we define 𝑚𝑠𝑖
𝑗
∈ {0, 1} as mask. The sequence data is combined 

to fixed-length vector.  

ℎ_,6
𝑗
=

1

𝑁
∑ (ℎ𝑖,5

𝑗
∙ 𝑚𝑠𝑖

𝑗
)𝑖                              (7) 

If the i-th feature of the j-th sample text is valid (i.e., not 

“none”), then 𝑚𝑠𝑖
𝑗
= 1 . Otherwise, 𝑚𝑠𝑖

𝑗
= 0 . Note that ℎ_,6

𝑗
 

denotes the sixth hidden layer. The last two steps are a fully 

connected layer and a softmax layer.  
Input Text
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Figure 3: Model of CNN-LSTM2 
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Figure 4: Model of CNN-LSTM2-STACK 
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ℎ_,7
𝑗
= LINEAR(ℎ_,6

𝑗
) = WTℎ_,6

𝑗
+ 𝑏                   (8) 

  P(𝑒𝑙
𝑗
) = SOFTMAX(ℎ_,7

𝑗
) =

𝑒
ℎ
_,7,𝑙
𝑗

∑ 𝑒
ℎ_,7,𝑚
𝑗

𝑀
𝑚=1

                  (9) 

where W and 𝑏 are the weight matrix and bias. 𝑙 is the sentiment 

index which ranges from 1 to 6, corresponding to the six 

categories of sentiments.  

3.1.3 Part III: Original Feature Attention. Part I and Part II 

construct the model CNN-LSTM2. However, with the neural 

network going deep, the backward fine-tuning process in CNN-

LSTM2 becomes weak, and the vanishing gradient problem 

occurs. To solve this problem, a second model CNN-LSTM2-

STACK is constructed by associating CNN-LSTM2 with Part III. 

This part links the input feature embedding 𝑣𝑖
𝑗
 to the layer ℎ_,6

𝑗
 

through linear and sigmoid operations.  

ℎ𝑖,8
𝑗
= LINEAR(𝑣𝑖

𝑗
)                (10) 

ℎ𝑖,9
𝑗
= SIGMOID(ℎ𝑖,8

𝑗
)               (11) 

Then, layer ℎ_,6
𝑗

 is adjusted by ℎ𝑖,9
𝑗

, i.e., the inputs of the sixth 

hidden layer changes to both ℎ𝑖,5
𝑗

 and ℎ𝑖,9
𝑗

. 

ℎ_,6
𝑗
=

1

𝑁
∑ (ℎ𝑖,5

𝑗
∙ 𝑚𝑠𝑖

𝑗
)𝑖 + 

1

𝑁
∑ (ℎ𝑖,9

𝑗
∙ 𝑚𝑠𝑖

𝑗
)𝑖           (12) 

The other operations in Part II remain the same. Part III aims to 

emphasize the impact of the input feature embedding on the 

sentiment calculation result. In other words, by stacking Part III, 

the network pays more attention to the original feature 

information.  

The two models CNN-LSTM2 and CNN-LSTM2-STACK use 

deep neural network methods to calculate text sentiment. In our 

model design, both long and short texts can act as input. Three 

parts – feature processing, sentiment calculation, and original 

feature attention – are introduced. The details are shown in Fig. 3 

and Fig. 4.  The sentiment calculation result of the two models 

supports the inter-sentiment analysis below.  

3.2 Inter-Sentiment Correlation Analysis 

In terms of the content, sentiment data can be divided into two 

categories: objective texts and subjective texts. Objective texts tell 

the story of what happens in an event. Subjective texts are the 

comments from readers, which are aroused by the objective texts. 

In this paper, the titles and the bodies of news articles are 

collected as objective texts, which are edited and published by 

journalist. The comments of news articles are collected as 

subjective texts, which are generated by the public. Analysis of 

objective texts aims at finding the correlation of objective 

information to subjective sentiment. Analysis of subjective texts 

intends to mine the correlation of subjective information to 

sentiment cognition.  

Suppose E is the input sentiment label of a sample text, which 

is marked manually. Ẽ is the ground truth of the sentiment, and Ê 

is the output label predicted by a learning model. If Ẽ = Ê = E, it 

means our model prediction, the manually marked label, and the 

ground truth of the sentiment are in consistence. However, it is 

almost impossible to completely keep this consistence in all the 

sample texts in practice. On one hand, the learning model often 

has a generalization error rate, which generates the differences 

between Ê and E. On the other hand, the difference between E and 

Ẽ stems from the human sentiment cognitive bias. The sentiment 

cognitive bias restricts the quality of data, and impacts on the 

prediction in further steps. To estimate the above two factors that 

influence the consistence, a voting mechanism based on multiple 

models and datasets is put forward, as shown in Fig. 5.  

Let C(𝑒𝑎|𝑒𝑏 , 𝐷𝑖 , 𝐹𝑗 , 𝑀𝑘) ∈ [0,1] represent the probability that 𝑒𝑏 

is recognized as 𝑒𝑎, given data 𝐷𝑖, feature 𝐹𝑗 and model 𝑀𝑘. Let 

Cr(𝑒𝑎|𝑒𝑏 , 𝐷𝑖 , 𝐹𝑗 ,𝑀𝑘) ∈ {0,1}  denote the indicator of  𝑒𝑏  being 

recognized as 𝑒𝑎 , where Cr  is calculated by the following 

equations:  

{
 
 

 
 Cr(𝑒𝑎|𝑒𝑏, 𝐷𝑖, 𝐹𝑗,𝑀𝑘) = {C(𝑒𝑎|𝑒𝑏, 𝐷𝑖, 𝐹𝑗,𝑀𝑘) > 𝜃} ∙ {1}

{True} ∙ {1} = 1                                                                    
{False} ∙ {1} = 0                                                                    
𝜃 ∈ [0,1]                                                                                 

       (13) 

where 𝐷𝑖 , 𝐹𝑗 , 𝑀𝑘 indicate corresponding dataset, input feature, and 

model respectively.  𝜃  is a threshold. Cr  is the sentiment 

correlation matrix with elements belonging to {0, 1}. The voting 

process can be formulated as: 

T(𝑒𝑎|𝑒𝑏) = ⋀ C(𝑒𝑎|𝑒𝑏 , 𝐷𝑖 , 𝐹𝑗 , 𝑀𝑘)𝑖,𝑗,𝑘              (14) 

The voting result of objective texts (i.e., T(𝑒𝑎|𝑒𝑏)  for news 

titles and bodies) implies the correlations from objective 

information to subjective sentiment. The voting result of 

subjective texts (i.e., T(𝑒𝑎|𝑒𝑏) for news comments) give clues on 

the correlations from subjective information to sentiment 

cognition. The result is shown in the experiment section.  

Di, Fj, Mk 

C(ea|eb,Di,Fj,Mk) Cr(ea|eb,Di,Fj,Mk)

0

1

1

0.1

0.02

0.09

T(ea|eb)

 

Figure 5: Process of sentiment correlation analysis 

4.  EXPERIMENT 

4.1 Datasets 

The datasets used in this paper is crawled from one of the most 

popular social network, news channel 

(http://news.sina.com.cn/society/moodrank/). Each news article is 

split into three parts: the comment (Data #1), the body (Data #2), 

and the title (Data #3), where Data #1 is treated as subjective, and 

Data #2 and Data #3 are regarded as objective. The sentiment 

labels of the three datasets are generated through the vote of the 

http://news.sina.com.cn/society/moodrank/
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public, strong rules, and manual selection. The distribution of the 

sentiments in the three datasets is introduced in Table 1. The 

comment dataset contains more than 150,000 sample texts. News 

body and news title data both contain more than 24,000 sample 

texts.  

4.2 Data Feature and Model Parameters  

A text is composed of words, words are composed of characters, 

and character is one of the most basic features of text. This paper 

presents three different ways to extract features from a sample text. 

They are explicit expression, implicit expression, and character 

features. In explicit expression, the features are all the words in 

the text. In implicit expression, the features are the synonym tags 

of the words, where the synonym tags, extracted through HIT 

synonymous dictionary (HIT IR-Lab Tongyici Cilin (Extended)), 

share the same symbol if the corresponding words are synonyms. 

In character features, each letter (or character) in the text is an 

independent feature. Table 2 shows the statistical information of 

features in the three datasets. The number of features, the 

maximum, minimum and average number of features per 

document are listed in the table. 

Table 1：Data Distribution of Sentiments 

Sentiment 

Data #1 

News comment 

Data #2 

   News body 

Data #3 

News title 

Train  Test Train  Test Train  Test 

Love  29,658 7,398 6,788 1,698 6,717 1,680 

Fear 2,098 520 5,240 1,309 5,211 1,302 

Joy  15,426 3,848 5,178 1,295 5,159 1,290 

Sadness  9,238 2,304 1,457 364 1,451 364 

Surprise 13,283 3,311 323 82 272 68 

Anger 51,610 12,882 578 144 571 142 

Total 121,313 30,263 19,564 4,892 19,391 4,846 

Table 2：Statistical Information of Features in the Datasets 

(Fea: feature; Exp: explicit expression; Imp: implicit 

expression; Char: Character features; #Fea: the number of 

features; #f/doc: maximum, minimum, and average number of 

features per document) 

 

Data #1 

News comment 

Data #2 

   News body  

Data #3 

News title 

Fea  #Fea  #f/doc  #Fea  #f/doc  #Fea  #f/doc  

Exp 81,519 1,553/1/21 155,327 8,297/4/718 20,643 1,936/6/13 

Imp 55,058 1,553/1/21 86,057 8,297/4/718 14,585 1,936/6/13 

Char  5,707 2,529/2/31 5,939 12,493/8/1,164 3,327 1,937/12/21 

In both the sentiment calculation models, the dimension of 

embedding is set to be 100, of which the initial value is assigned 

randomly. The output dimension of the convolutional layer is set 

to 100 and the output dimension of LSTM layers are set to 128. 

The dimension of the stack layer (i.e., Part III) is also set to 128. 

The final output dimension of the model is 6, corresponding to the 

six categories of sentiments. 

4.3 Sentiment Calculation Result 

Considering the two models (CNN-LSTM2 and CNN-LSTM2-

STACK), the three kinds of features (explicit expression, implicit 

expression and character), and the three datasets (comments, 

bodies and titles) together, there are 18 (2 × 3 × 3) combinations 

of choices in total to set up the sentiment calculation. The 

performance of the sentiment calculation on all the combinations 

are observed. During the training process, cross entropy is 

employed as the loss function. The loss and accuracy trends are 

recorded. Precision, recall, and F1-score on test sets are also 

recorded for all the sentiment labels in each training epoch. The 

tags listed in Table 3 are used to presents the six sentiment 

categories. We use ‘tag’-precision, ‘tag’-recall, and ‘tag’-f1 to 

represent sentiment precision, sentiment recall, and sentiment F1-

score respectively. Besides, the accuracy on test data is also 

recorded as shown in Fig. 6, Fig. 8 and Fig. 10.  

In this section, we firstly show the results grouped by dataset. A 

comprehensive discussion combining all the results is given in 

Section 4.4. 

Table 3：Tags of Sentiments 

Sentiment Tag   Sentiment Tag  

    Love gd Sadness ng 

    Fear zj Surprise xq 

    Joy gx Anger fn 

4.3.1 Data #1: News Comments. In Data #1, among all the 

combinations, model CNN_LSTM2 with the explicit expression 

features rank the top on accuracy (85.0%). If given the same 

model (either CNN_LSTM2 or CNN_LSTM2_STACK), the 

explicit expression features always perform the best in all the 

three kinds of features, followed by the character features. It is 

also shown that given the same features, model CNN_LSTM2 

performs better on accuracy than model CNN_LSTM2_STACK 

does. The details are shown in Fig. 6 and Table 4.  

The precision, recall, and F1-score of sentiment joy (gx) 

performs well. Sadness (ng) performs badly on both models. This 

phenomenon also reflects that sentiment sadness is more difficult 

to be recognized than other sentiments are, for example, the 

sentiment in the text ‘so happy to cry’. 

The accuracy and loss trends on training set of Data #1 are 

shown in Fig. 7. In every combination of the features and the 

models, the accuracy becomes steady after several iterations and 

achieves larger than 90%. Explicit expression features and 

implicit expression features both reach to higher than 97% of 

accuracy on both models. The accuracy of character features on 

CNN_LSTM2 and CNN_LSTM2_STACK reach to 91.63% and 

92.52% respectively, and the corresponding loss of the two 

models are 22.96% and 21.69%. 

All the three kinds of features (i.e., explicit expression, implicit 

expression, and character) are effectively fitted by both models. 

The fitting result of explicit expression and implicit expression is  
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Figure 6: Precision, recall, and F1-score trend on test set of 

Data #1 

Table 4：Accuracy Rank on Test Set of Data #1 

Rank Feature Model Accuracy 

1 Explicit CNN_LSTM2 85.0% 

2 Character CNN_LSTM2 84.4% 

3 Explicit CNN_LSTM2_STACK 82.9% 

4 Implicit CNN_LSTM2 82.2% 

5 Character CNN_LSTM2_STACK 81.5% 

6 Implicit CNN_LSTM2_STACK 76.1% 

 

Figure 7: Accuracy and loss trends on training set of Data #1 

 

slightly better than that of the character features on the training set. 

However, the fitting result on the test set shows an overfitting 

problem for explicit expression and implicit expression on the two 

models. Character features perform relatively consistent in both 

the training and test sets. 

4.3.2 Data #2: News Bodies. In Data #2 (news bodies which is 

kind of long text), model CNN_LSTM2_STACK with explicit 

expression features achieves the best score on accuracy (82.5%) 

among all the six combinations of models and features. In terms 

of the features, it is shown that explicit expression features always 

perform the best, no matter which model is applied. Implicit 

expression features give a little lower accuracy than explicit 

expression features. However, character features fail to achieve a 

good score on accuracy in both models. The result is shown in Fig. 

8 and Table 5.   

Precision, recall, and F1-score of sentiment love (gd) perform 

well, while those of anger (fn), surprise (xq), and sadness (ng) 

perform bad. It shows differences on performance among 

sentiments. We will discuss the reasons for this phenomenon in 

Section 4.4. In terms of the features, explicit expression features 

perform best, while character features perform worst, which  

 

Figure 8: Precision, recall, and F1-score trend on test set of 

Data #2 

Table 5：Accuracy Rank on Test Set of Data #2 

Rank Feature Model Accuracy 

1 Explicit CNN_LSTM2_STACK 82.5% 

2 Explicit CNN_LSTM2 81.2% 

3 Implicit CNN_LSTM2 79.6% 

4 Implicit CNN_LSTM2_STACK 79.1% 

5 Character CNN_LSTM2 62.0% 

6 Character CNN_LSTM2_STACK 55.3% 

 

 
Figure 9: Precision and loss trends on training set of Data #2 
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indicates that character features are not suitable for long texts in 

our models. 

The accuracy and loss trends on training set of Data #2 are 

shown in Fig. 9. The accuracy and loss of both implicit expression 

and explicit expression features come to steady after several 

iterations. The accuracy of these two kinds of features on model 

CNN_LSTM2_STACK achieves higher than 98%, and the loss 

reaches to 0.03 and 0.05 respectively. On model CNN_LSTM2, 

the accuracy of these two features are 79% and 85% respectively, 

and loss are 0.68 and 0.49 respectively. From the above results, it 

can be concluded that model CNN_LSTM2_STACK fits better 

than model CNN_LSTM2. The accuracy of character features on 

the two models cannot converge, which means character features 

are not suitable for long text process, which is in line with the 

former description.  

 

Figure 10: Precision, recall, and F1-score trend on test set of 

Data #3 

 

Figure 11: Precision and loss trends on training set of Data #3 

4.3.3 Data #3: News Titles. In Data #3, all the six combinations of 

the models and the features give relatively similar scores of 

accuracies, ranging from 77.8% to 82.0%. Model 

CNN_LSTM2_STACK combined with the character features 

performs the best, with an accuracy of 82.0%. Model 

CNN_LSTM2_STACK performs better than model 

CNN_LSTM2 does, no matter which kind of features is chosen. In 

terms of the precision, recall and F1-scores in the six sentiments, 

love (gd) performs the best, while anger (fn) and surprise (xq) 

perform the worst.  More details are shown in Fig. 10 and Table 6. 

The result of Data #3 is consistent with the result of Data #2. 

The objective texts with the ground truth of anger (fn) or surprise 

(xq) can confuse the models, making the models incorrectly 

classify the texts which belong to anger (fn) or surprise (xq) into 

other sentiment categories.  

Table 6. Accuracy Rank on Test Set of Data #3 

Rank Feature Model Accuracy 

1 Character CNN_LSTM2_STACK 82.0% 

2 Implicit CNN_LSTM2_STACK 81.2% 

3 Explicit CNN_LSTM2_STACK 80.5% 

4 Explicit CNN_LSTM2 80.0% 

5 Character CNN_LSTM2 79.6% 

6 Implicit CNN_LSTM2 77.8% 

Table 7: The Stable Sentiment Calculation Results (on test sets) of 

Three Features of Three Datasets on Two Models. (D: data; M1: 

model CNN_LSTM2; M2: CNN_LSTM2_STACK; A:  Accuracy) 

D #1 gd_f1 zj_f1 gx_f1 ng_f1 xq_f1 fn_f1 A 

exp|M1 0.804 0.796 0.926 0.622 0.928 0.869 0.850 

exp|M2 0.778 0.803 0.913 0.619 0.886 0.855 0.829 

imp|M1 0.772 0.855 0.903 0.588 0.895 0.844 0.822 

imp|M2 0.738 0.796 0.886 0.558 0.741 0.785 0.761 

char|M1 0.803 0.842 0.917 0.620 0.917 0.864 0.844 

char|M2 0.794 0.820 0.915 0.586 0.842 0.837 0.815 

D #2 gd_f1 zj_f1 gx_f1 ng_f1 xq_f1 fn_f1 A 

exp|M1 0.888 0.808 0.789 0.699 0.601 0.517 0.812 

exp|M2 0.890 0.816 0.812 0.709 0.558 0.616 0.825 

imp|M1 0.876 0.800 0.772 0.660 0.553 0.531 0.796 

imp|M2 0.868 0.803 0.787 0.666 0.417 0.473 0.791 

char|M1 0.736 0.606 0.654 0.398 0.450 0.372 0.620 

char|M2 0.668 0.634 0.566 0.312 0.494 0.497 0.553 

D #3 gd_f1 zj_f1 gx_f1 ng_f1 xq_f1 fn_f1 A 

exp|M1 0.851 0.817 0.802 0.645 0.500 0.527 0.800 

exp|M2 0.874 0.801 0.800 0.648 0.444 0.613 0.805 

imp|M1 0.859 0.790 0.773 0.626 0.266 0.416 0.778 

imp|M2 0.881 0.818 0.800 0.648 0.525 0.596 0.813 

char|M1 0.866 0.794 0.791 0.642 0.441 0.544 0.796 

char|M2 0.884 0.815 0.805 0.722 0.456 0.625 0.820 

The accuracy and loss trend are shown in Fig. 11. The accuracy 

of all the three kinds of features on the two models come to steady 

after iterations. Among them, model CNN_LSTM2 combined 

with implicit expression performs the worst, achieves an accuracy 

of 94% and a loss of 0.16. The accuracy of the other five groups 

are higher than 97% and the losses are less than 0.1.  

All the three kinds of features perform well on Data #3. 

Character features perform better than explicit expression and 

implicit expression. It can be concluded that character features are 

more suitable for short texts in our models, compared with the 

results on Data #1 and Data #2.  

The three datasets have their own distinguishable 

characteristics. Among them, news titles are the shortest and the 
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most coherent. News comments are relatively short, and the 

length, content and style of comments are free and abundant. 

News bodies are the longest, with fixed format and rich content. 

The three kinds of features in this paper show different 

capabilities on calculating the sentiment orientation in different 

datasets. The detailed results are shown in Table 7. From the table, 

it can be seen that character features perform better on news titles 

and news comments than on news bodies, which means character 

features perform better on short texts than on long texts in our 

models. The results of explicit expression and implicit expression 

are relatively stable. Model CNN-LSTM2 shows better 

performance than CNN-LSTM2-STACK does on news comments 

and bodies, while CNN-LSTM2-STACK performs better on news 

titles. 

4.4 Analysis  

This section focuses on the analysis of inter-sentiment correlation. 

The confusion matrix is employed to represent 

C(𝑒𝑎|𝑒𝑏 , 𝐷𝑖 , 𝐹𝑗 ,𝑀𝑘) in eq. 13. Instead of setting the fixed value of 

the threshold 𝜃, a dynamic 𝜃 is set in the analysis as selecting the 

top confusing sentiment pairs.  

The confusion matrix of Data #1 is illustrated in Fig. 12. It can 

be seen that the models are likely to be confused between the 

sentiments sadness (ng), love (gd), and anger (fn). Specifically, 

sadness (ng) is likely to be recognized as anger (fn) or love (gd). 

Love (gd) is likely to be judged as anger (fn). By contrast, anger 

(fn) is unlikely to be judged as fear (zj) or surprise (xq). In short, 

comments can be easily mistaken as anger, even though they are 

not.  

The confusion matrix of Data #2 and Data #3 are shown in Fig. 

13 and Fig. 14. The two datasets are both objective data, which 

are used to observe the inter-sentiment correlation. It can be seen 

from the figures that the confusion degree of news bodies is 

higher than that of news titles, which means that it is harder to 

recognize the sentiments aroused by news bodies than news titles. 

Based on the voting result, the objective contents that cause 

sadness (ng) and anger (fn) are easy to be misjudged as love (gd) 

and joy (gx). 

If our models are seen as a person who has sentiment cognitive 

bias, then the above results can explain and estimate how people 

misunderstand other’s words. In subjective texts, it is likely to 

misinterpret the sentiment in one’s words as anger (fn), rather 

than fear (zj) or surprise (xq). If the sentiment in one’s words is 

actually sadness (ng), it is more likely to be judged as other 

sentiments incorrectly. In objective texts, if a sample text causes 

anger (fn), the models are likely to predict that it will cause love 

(gd), but not likely to cause surprise (xq). 

It can be seen that there is a controversial phenomenon on the 

interpretation of anger (fn) and love (gd). In subjective news 

comments, a text is likely to be considered as anger. By contrast, 

in objective news bodies and titles, it is easy to predict that a text 

may cause love (gd). One of the reasons for this phenomenon may 

be the fact that the news articles have to be written without 

prejudice. Therefore, it is not easy to predict anger from the news 

articles through its text features. However, the readers are free to 

express their feelings. The netizen’s sentiments are easy to be 

transferred to anger (fn), no matter what sentiment they want to 

express. Thus, as a comment conversation keeps going on, it is 

likely to end up with anger. 

 

Figure 12: Confusion matrix on test set of Data #1 

 

Figure 13: Confusion matrix on test set of Data #2 

 

Figure 14: Confusion matrix on test set of Data #3 
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5. CONCLUSIONS 

Mining the inter-sentiment correlations in web events is 

significant to track its development. The sentiments, though 

caused by objective information, are subjective, compound, and 

diverse, which makes the sentiment recognition being hard. This 

paper employs six basic kinds of sentiments – love, joy, anger, 

sadness, fear, and surprise – to analyze the sentiment in texts. 

Three kinds of features and two deep neural network models are 

proposed and applied to three datasets.  

The two deep neural network models are presented for 

sentiment calculation. Three datasets – the titles, the bodies, the 

comments of news articles – are collected, covering both objective 

and subjective texts in varying lengths (long and short). From 

each dataset, three kinds of features – explicit expression, implicit 

expression, and alphabet characters – are extracted. In terms of the 

features, it is shown that the alphabet character features perform 

better than the other two features on short texts. In terms of the 

subjective comment data, the sentiment sadness is hard to be 

recognized, which is likely to be misinterpreted to other 

sentiments. The reason might be the overlap of the words or 

characters between the sentiment sadness and the others. All the 

sentiments are likely to be recognized as anger. In terms of the 

objective information, the text which actually arouses anger is 

relatively unpredictable and likely to be classified to love. 
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