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Abstract. Planes are familiar mathematical objects which lie at the subtle boundary between
continuous geometry and discrete combinatorics. A plane is geometrical, certainly, but the ways
that two planes can interact break cleanly into discrete sets: the planes can intersect or not.
Here we review how oriented matroids can be used to try to capture the combinatorial aspect,
giving a way to encode with finite sets all the ways that n planes can interact. We mention how
the one-to-one correspondence breaks down in 2 dimensions for 9 lines, and in 3D for 8 planes.
We include illustrations of all the types of plane arrangements using n = 4 and 5.

1. Introduction: Linear algebra

The number of solutions to a system of linear equations can only be 0, 1 or ∞. The geometric

explanation of this fact is that each linear equation in n variables determines a hyperplane in Rn:

a point in R1, a line in R2, a plane in R3, and so on. Several distinct hyperplanes can: (1) avoid

mutual intersection, (2) mutually intersect in one point (we’ll need at least n for that), or (3)

have an (n − 2)-dimensional intersection. We say essential arrangements are those which have

one common point of intersection (at the origin.) We call an arrangement central when it has

a nonempty intersection of all the hyperplanes. The pictures of two lines which can be parallel

or intersecting—and three planes, which have 5 different possibilities, shown in Figure 2—are

familiar from the first pages of books on linear algebra.

For several years it has been a mystery to this author why the pictures stop there: why are

there no collections of pictures showing all the ways that four or five or more planes can interact?

We fix that here: see Figure 1 and then Figures 6- 11. Related questions motivated this paper.

We begin with how oriented matroids can be used to encode the combinatorial classes of plane

arrangements using finite sets. We present a gentle introduction of the axioms, and review the

historical discoveries (from the ancient days of the late 1970’s and early 80’s). The oriented

matroid correspondence breaks down in 2 dimensions for 9 lines, and in 3D for 8 planes, leaving

us the consolation prize of upper bounds. Something about the geometry gets in the way of

a clean representation via strings of symbols—at least as far as our current understanding can

tell. We hope to motivate some improvements! The only new material here is that we (using

numbers calculated by Lukas Finschi) sum up the possible abstract ways for n = 4 and 5 planes

to be arranged in three Euclidean dimensions, and then illustrate them in order to explicitly

show that the abstract possibilities are all realized by actual planes; this was predicted for n ≤ 7
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by Goodman and Pollack. Some interesting corollaries are seen, like the fact that choosing one

of 10 polytopal complexes with 2 or 3 chambers determines an arrangement of 5 hyperplanes in

R3; there are 64 other arrangements determined by other facts. We include some exercises and

open problems.

By five ways of intersecting 3 planes in R3 we mean five combinatorially inequivalent arrange-

ments of hyperplanes. Two arrangements of hyperplanes in n-dimensional Euclidean space are

combinatorially isomorphic (or combinatorially equivalent) if they have isomorphic posets of

faces. Intuitively, this means that a collection of planes in space chop up the space into regions

and also intersect each other in various ways. If we label all those regions and intersections (we

call them labeled faces) then we can list those faces in a hierarchy of boundaries. The highest

dimensional faces are regions of the ambient space; these are called chambers and have bound-

aries made of pieces of the hyperplanes. Those pieces are in turn bounded by lower dimensional

intersections, and so on. For example we label some faces in Figure 3: the regions X,Z,Q, and

Y , line segments S and P , and points R and W . This makes the set of faces partially ordered

by inclusion: a boundary face A is less than any face B it is included in (is a boundary of), but

not all pairs of faces are thus related. For faces in Figure 3, R < P < X. If two such posets are

in bijection, and that bijection (and its inverse) respects the ordering, then they are isomorphic.

Figure 1. Three of the 74 arrangements of five planes have a trio of closed
chambers, and the last has four closed chambers. That last is the unique ar-
rangement in general position: all ten subsets of three planes each determine a
0-dimensional intersection.
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Figure 2. Here are the five ways that three planes can intersect. The top row
shows the cases in which there is no simultaneous solution to the three (affine)
linear equations.

Isomorphism is an equivalence relation. Counting the number of equivalence classes of ar-

rangements, given n distinct hyperplanes in (affine) space, is definitely a hard problem. Note

that the number of polytopes with n facets is a subproblem. Some partial answers to this ques-

tion are out there. For instance, sequence A241600 in [19] counts the number of arrangements

of lines in the affine plane, up to n = 7, agreeing with the counts in [8, 9]. Peter Shor points out

that sequence A241600 is defined differently than via combinatorial equivalence, rather it uses

parameterized equivalence, where the homotopy between equivalent arrangements must preserve

straight lines and their intersections [18].

2. Oriented matroids from hyperplane arrangements

To get a grasp of how many ways a bunch of hyperplanes might interact, mathematicians have

looked hard at the finite poset of faces to see if it has some features which really correspond

nicely to geometry. First there is a product structure called composition, where any two faces

X and Y produce a third face Z = X ◦ Y. The way this composition arises via geometry is that

you start by choosing any point in the interior of X and moving a tiny positive distance d < ϵ
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towards any point interior to Y. For ϵ small enough, this movement lands in the same face every

time, which is defined to be Z = X ◦ Y. Either we see Z = X, or the composition is a higher

dimensional face Z with X < Z. This is not commutative; W = Y ◦X is a different face in most

cases. It is not a group; there is usually no inverse face. However, if we restrict our attention

to the essential arrangements it is a right-unital monoid, using the origin as the right identity:

X ◦ 0 = X.

Another structure on the faces of an arrangement is similar to the composition, but is only

defined for certain ordered pairs of faces. If X and Y are completely separated by at least one

hyperplane, but Y is a part of any hyperplanes that X is part of, we can define the restriction

XY of X towards Y as the subset of boundary faces of X on the “side towards” Y. That is,

XY is the set of boundary faces of X whose points lie on a line connecting some point in the

interior of X with some point in the interior of Y . Both structures are illustrated in Example 1,

referencing Figure 3.

Noticing the structure (composition, restriction) on the faces of a hyperplane arrangement

allows us to generalize by defining a certain kind of collection of vectors on a set, called an

oriented matroid. We start with a finite ground set, usually [n] = {1, . . . n} which corresponds

to the planes, numbered 1 to n. Then we have a set of n-tuples, called sign vectors (which

correspond to the faces), which are ordered lists of length n made of the symbols +,−, 0. It is

easy to see how to create sign vectors from a hyperplane arrangement. Each hyperplane is given

an orientation arbitrarily, and each face X can be described by a sign vector also called X: the

value of the component Xi is determined by whether it sits on plane i (in which case Xi = 0),
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Figure 3. The arrangement of 4 affine lines in the plane shown at left corre-
sponds to the signed suspension, the arangement of 5 planes in the center. The
great circles of the sphere on the right are another way to show the same ar-
rangement, and often the equator is seen as a projective “line at infinity.” Some
opposite faces are shown, and compositions and restrictions of the labeled faces
are seen in Example 1.
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or on the plus side, or on the minus side. Not all vector sets are called oriented matroids: there

are required structures and properties. Sign vectors are also partially ordered. We say X ≤ Y

when Xi ̸= 0 ⇒ Xi = Yi. Therefore strict inequality, X < Y , means that X is made by turning

some of the non-zero components of Y into 0’s. We define the opposite, or negative −X, of a

vector x in the obvious way: switch all the plus signs to minus, and vice versa, leaving 0’s as

is. That is, (−X)i = −(Xi) for i = 1, . . . , n. The composition and restriction of any two sign

vectors are defined as follows:

(X ◦ Y )i =

{
Xi , Xi ̸= 0

Yi , Xi = 0.

XY = {Z < X | Xi ̸= −Yi ⇒ Zi = Xi}

Example 1. By looking at some examples in Figure 3, we can see that these operations are

designed to mirror the geometric definitions of composition and restriction. For n = 5 let

X = (+++++), Y = (−−−++), and W = (−+ 0 0 +) so that all three faces can be seen

on the left of Figure 3, as an above view of the 3D picture. Then we have:

W ◦ Y = (−+−++) = Q

Y ◦W = (−−−++) = Y

W ◦X = (−++++) = Z

XW = {(0 + + ++)} = {P}
XY = {(0 + + ++), (+ + 0 + +), (0 + 0 + +),

(+ 0 + ++), (0 0 + ++), (+ 0 0 + +), (0 0 0 + +)} = {P, S,R, . . . }
Notice that three of the sign vectors in XY are not seen as faces in the arrangement! The

three that are seen, P, S, and R, fit our geometric description. Now we can list the axioms:

Definition 2. An oriented matroid on E = [n] is a set V of length n sign vectors: V ⊆
{+,−, 0}E , obeying for all i ∈ E and X,Y ∈ V :

(SV0) 0 = (0, . . . , 0) ∈ V.

(SV1) −X ∈ V.

(SV2) X ◦ Y ∈ V.

(SV3) ((Xi = 0 ⇒ Yi = 0) and (∃j ∈ E s.t. Xj = −Yj ̸= 0)) ⇒ XY ∩ V ̸= ∅.

For some easy examples, note that V = {0} and V = {+,−, 0}E are oriented matroids for all

n. Thus the size of V is between 1 and 3n. The first two axioms are for convenience, requiring

the matroid to contain 0 and all opposite vectors. Axioms SV 2 and SV 3 say that compositions

and restrictions must exist in V (always for composition, but restriction only for certain ordered

pairs.) Axiom SV 3 we include here is equivalent to the one used by Edmonds and Mandel [15],

and labeled V 3′′ in [7]. Several other slightly different versions of that last axiom are used in

other publications, such as [17] in [12].
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Oriented matroids turn out to describe lots of other mathematical situations, like directed

graphs and zonotopes (certain polytopes with parallel facets.) However the important thing

about them here is that they are precisely represented by arrangements of planes—with an

important caveat. Every combinatorially unique plane arrangement (after labelling the planes

1, . . . , n) gives a unique oriented matroid. We have already described how to attach a sign

vector to each face. However, there are extra oriented matroids, which you can still draw an

arrangement for, but for which some of the planes must be replaced by curved surfaces! We show

the famous examples in the next section. It is an open question whether there is some extra

requirement of the vectors that will eliminate these extra oriented matroids, leaving only the

ones that can be represented by perfectly flat planes. That problem is tempting but probably

very hard: the first guess would be to look for some finite list of forbidden sub-arrangements

whose presence would obstruct any possible representation via flat hyperplanes. However, this

finite list has been shown not to exist; see [3] for more details.

Since we don’t have that answer yet, one way to use the oriented matroids for counting plane

arrangements is to produce an upper bound. First we exhaustively find all the oriented matroids

for a given n and dimension d, and then we try to hit that upper bound by producing each plane

arrangement explicitly.

3. Counting oriented matroids and counting pseudoplane arrangements:

Stretchability and representability

A loop in an oriented matroid is an element k ∈ E of the ground set for which all the sign

vectors have a 0 component. The famous Topological Representability theorem of Folkman and

Lawrence, [10], says that equivalence classes of loop-free oriented matroids are in bijection with

equivalence classes of arrangements of pseudohyperplanes. The latter, including pseudolines and

pseudoplanes, are deformations of straight lines and planes, but are required to obey the usual

laws of intersection: for instance two pseudolines can intersect at most once.

This leads us to a pair of counting problems. Counting the number of rank d oriented matroids

on [n], so the number of arrangements of n pseudohyperplanes, is hard in itself. An open problem

is to find a good formula. However it can be done in finite time on a computer, and many of the

smaller values were calculated in 2001, in the thesis of Lukas Finschi [8]. We list some of these

in Table 1, with values taken directly from that source, but listed by number of hyperplanes

and with a new row of totals. The second problem is to count the number of actual hyperplane

arrangements, but this is much harder since we don’t have a perfect set-theoretical model for

them. We do know when the enumerations separate into two distinct problems, at least for

dimensions 2 and 3.

The Pappus arrangement of 9 lines helps us find the first counterexample showing that not all

oriented matroids are represented as hyperplane arrangements. This is the lefthand arrangement
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d = n = 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 3 8 46 790 37829 4134939 ? ?
3 1 5 27 1063 1434219 ? ? ?

d ≤ 3 1 2 5 14 74 1854 1472049 ? ? ?

Table 1. Numbers of equivalence classes of loop-free oriented matroids of rank
d ≤ 3, also called abstract dissection types in [8]. The values in the last row are
also the numbers of plane arrangements, for n ≤ 7.

in Figure 4, and the key feature is that points of intersection on the top and bottom horizontal

lines force the three points in the middle to be colinear. That suggests the second picture: it

is an arrangement of pseudolines which thus cannot be straightened while preserving their face

structure—we call this situation nonstretchable. It was found by Levi, and Goodman and Pollack

proved Grunbaum’s conjecture that no arrangement of 8 or fewer pseudolines is nonstretchable

[13]. Thus the total number of arrangements of 8 lines is 41349340. For 9 lines, the number is

unknown: but Richter-Gebert showed that the example in Figure 4 is the unique nonstretchable

case [16].

Figure 5 is an example of a non-stretchable oriented matroid where n = 8 in dimension 3,

found by Goodman and Pollack in [14]. The 8 planes in the first picture are the four planes in

the tetrahedron OABC, the three planes made by the triangles inside it: ∆A′B′C, ∆AB′C ′,

and ∆A′BC ′, and the plane which contains O,P,Q, and R. This eighth plane is determined: P

is the intersection of lines BC ∩ B′C ′, Q = AC ∩ A′C ′, and R = AB ∩ A′B′ . Goodman and

Pollack show that the version where we bend the eighth plane enough to miss the point P is a

non-stretchable pseudoplane arrangement. They also show that eight pseudoplanes are required

to make such an example, so that all arrangements of 7 or fewer planes are stretchable. Thus

we can conclude by finding all the arrangements of 4 or 5 planes in R3, since the total numbers

coincide with the total numbers of oriented matroids.

4. Illustrating plane arrangements: n=4 and n=5 planes

The center picture of Figure 3 is an example of a hyperplane arrangement of 5 planes in R3.

It is a signed suspension of the affine line arrangement to its left. The signed suspension (or

coning, or just suspension) is found by placing the lower dimensional (here, 2D) arrangement in

the Euclidean hyperplane at constant height on the nth axis (here z = 1), and then taking as

the new hyperplanes the spans of the original lines, plus the plane at z = 0. The suspensions of

two different line arrangements can be equivalent. This highlights the difficulty of counting the

actual number of ways to arrange n planes in R3. The arrangements are of several types:

1) The trivial arrangement of n parallel planes
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Figure 4. The Pappus arrangement on the left, and a nonstretchable pseudoline
arrangement on the right.

2) The cross product of any nontrivial n-line arrangement in the xy-plane with the z-axis. If

the line arrangement is essential, then the cross-product is central. There are 8 of these using 4

planes, as seen in Figure 6. There are 46 of these with 5 planes, as seen in Table 1 (where the

arrangements of 5 lines are listed). For pictures of the 46 line arrangements see [8].

3) The signed suspensions of any line arrangements of n−1 lines. Distinct affine line arrange-

ments can produce equivalent signed suspensions. All signed suspensions of affine arrangements

will be essential. These are counted directly, checking for duplicates. Two of these are seen

using 4 planes in Figure 7. We find 3 of these using five planes, as seen in Figure 8. We leave

it as an exercise to the reader to see which of the three the other line arrangements suspend

to become! That there are only those three is also seen indirectly once we list the rest of the

5-plane arrangements to fill out the 27 predicted by Table 1.

Exercise 3. For each of the 8 nontrivial line arrangements of 4 lines, find the signed suspensions

(each will have 5 planes). One is shown in Figure 3, but it is a duplicate of one of the three

shown in Figure 8. Classify all 8 into the three combinatorial classes.

Problem 4. Find invariants for hyperplane arrangements that can predict when their signed

suspensions will be combinatorially inequivalent. Test these on the 46 line arrangements of five

lines shown in [8].

4) The cross-product of an (n − 1)-line arrangement with the z-axis, together with the xy-

plane itself (or any plane perpendicular to the z-axis.) Two of these are seen using 4 planes

in Figure 7. There are 8 of these using 5 planes, since using the trivial arrangement of 4 lines

yields a duplicate of a cross product from 2. Figure 9 shows an example.
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Figure 5. Top: an arrangement of 8 planes described by Goodman and Pollack
in [14]. Bottom: the associated nonstretchable arrangement of 8 pseudoplanes,
where point P is not on the pseudoplane containing ∆OQR.

5) “New” affine arrangements (not using cross-products or suspensions). These can be counted

abstractly by suspending them into R4, to produce essential arrangements of 4D hyperplanes.

In practice, we find most of them by focusing on closed polytopal complexes, arrangements with

various inclusions of faces that are closed 3D chambers. One of these is seen using 4 planes in
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Figure 7. Using 5 planes there is only one of these that has no closed chambers, in Figure 9.

That leaves 15 to finish the count of 74 using 5 planes, all are shown in Figures 10, 11, and 1.

For more elementary reading we recommend first the excellent introductions to arrangements

and oriented matroids in [12]. Perhaps the most exciting new developments are the specializa-

tions of oriented matroids, by adding extra requirements like purity and positivity, for the added

value in studying networks. The connections between pure oriented matroids and positroids

are discussed by Galashin and Postnikov [11]. The connections between realizability, positively

oriented matroids, and positroids are described by Ardila, Rincón and Williams in [3, 4]. For

more algebraic structures on the faces of hyperplanes, including some category theory and Hopf

algebras, we recommend the new books by Aguiar and Mahajan: [1] and [2]. For really am-

bitious readers who appreciate the positroids and related positive geometry, there is the new

Amplituhedron approach to scattering matrices of Arkani-Hamed and collaborators, in [6] and

[5], among many other papers.

Knowing that there are precisely 74 arrangements of 5 hyperplanes in R3 gives us lots of

power. We have drawn all 27 (excluding the 47 found by crossing a line arrangement with the

z-axis) and now since we can show that our pictures are distinct combinatorially, then there

are no further combinatorial possibilities. That allows other questions to be answered. For

instance, we see that the arrangement of 2 or more closed chambers completely determines the 5

hyperplane arrangement in R3. We close with some more exercises and open problems, neither

guaranteed to be easy!

Exercise 5. Choosing any of the illustrated hyperplane arrangements in this paper, analyze the

associated matrices. For instance, an arrangement from Figure 6 or 7 comes from a matrix

equation Ax = b where A is 4 × 3, x is a proposed solution in R3, and b ∈ R4. What are the

rank and nullity of A? Does a solution x exist? Can b be the 0-vector? Numbering the rows of

A for the 4 planes, which sets of rows are linearly independent?

Exercise 6. Lots of other pictures of 5-plane arrangements can be constructed: the challenge is

to always find their combinatorial equivalent in the listing. For instance, Figure 9 shows adding

two parallel planes to one of the five arrangements in Figure 2. Do the same for the other four,

but where are they in the list already?

Exercise 7. The number of arrangements of n planes that have a single closed tetrahedral

chamber (and no other closed chamber) is 0, 1, 2, . . . , for n = 3, 4, 5, . . . . What is the number

for n = 6? Hint: notice in Figure 10 the location of the fifth plane, the one not forming a side

of a tetrahedron.

Problem 8. The number of arrangements of n planes that have a single closed tetrahedral

chamber (and no other closed chamber) is 0, 1, 2, . . . , for n = 3, 4, 5, . . . . What is the general

formula for this sequence?
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Figure 6. Nine of the 14 plane arrangements of 4 planes in R3. These are the
nine found as an arrangement of lines in the plane, crossed with the z-axis.

Problem 9. The number of arrangements of n planes that have only a single closed chamber

(of any shape) is 0, 1, 4, . . . , for n = 3, 4, 5, . . . . What is the general formula for this sequence?

Problem 10. The number of arrangements of n planes that have only exactly two closed cham-

bers (of any shape) is 0, 0, 7, . . . , for n = 3, 4, 5, . . . . What is the general formula for this

sequence?
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Figure 7. Five of the 14 plane arrangements of 4 planes in R3. The first two on
the top row are found by adding a perpendicular plane to an arrangement of 3
planes. The third on the top row is a tetrahedral chamber (the four planes are
extended visually a bit at each vertex). The bottom row are the two essential
arrangements, found as signed suspensions of arrangements of 3 lines.

Problem 11. The number of arrangements of n planes that have any number of closed chambers

(of any shape) is 0, 1, 14, . . . , for n = 3, 4, 5, . . . . What is the general formula for this sequence?

We know that the maximum number of 0-dimensional faces (points) of an arrangement of n

hyperplanes in Rk is
(
n
k

)
. From Zaslavsky [20] we have that the maximum number of chambers,

both closed and open, is
∑k

i=0

(
n
i

)
(Sequence A008949 in [19].)

Problem 12. The maximum number of closed chambers in an arrangement of n planes is

0, 1, 4, . . . , for n = 3, 4, 5, . . . . What is the general formula for this sequence?

Problem 13. The number of arrangements of n planes that have exactly n 0-dimensional faces

is 0, 1, 4, . . . , for n = 3, 4, 5, . . . . What is the general formula for this sequence?

Problem 14. What is the smallest value n for which parameterized equivalence of line arrange-

ments does not give the same classes as combinatorial equivalence? If n > 8 then the sequence

A241600 can be extended by the value 4134940 as seen in [8].
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Figure 8. Three of the 74 arrangements of five planes are essential, and all are
found as signed suspensions of 4 lines. Notice that the example in Figure 3 at
first appears to be missing, but it is here!
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