Category Consistent Cyclic Visual Question Generation

Shagun Uppal^{* 1}, Anish Madan^{* 1}, Sarthak Bhagat^{* 1}, Yi Yu², Rajiv Ratn Shah¹

¹ IIIT-Delhi, ² NII Japan, ^{*} Equal Contribution

May 24, 2020

Shagun Uppal^{* 1} , Anish Madan^{* 1} , Sarthak Bhagat^{* 1} , Yi Yu² , Rajiv Ratn Shah¹

Visual Question Generation (*VQG*) is the task of generating natural questions given an image.

Challenges in constructing a VQG system:

- Capturing various concepts in images.
- Relevance of generated questions to the image.
- Many-to-one mapping between the image and generated questions since multiple questions are possible for an image.
- Avoid questions which invoke generic answers like "yes" / "I don't know".

Possible Category-Question pairs:

SPATIAL: Where are the pictures hanging? ACTIVITY: What is the little girl doing? BINARY: Is the lamp on? COUNT: How many pillows are there on the bed? COLOR: What is the color of the girl's dress?

- ▶ Weaken supervision by removing the need for answers.
- Variational training using a single combined latent space for image and category by maximizing mutual information.
- Category consistency using cyclic training in two disjoint steps.
- Center loss for category-wise clustering.
- Hyper-prior on latent space for encapsulation of independent features.

Training Framework

Figure 1: C3VQG Training

Inference Framework

Figure 2: C3VQG Inference

Shagun Uppal*1, Anish Madan*1, Sarthak Bhagat*1, Yi Yu2, Rajiv Ratn Shah1

$$\mathcal{L}_{center} = \|z_k - c_k\|_2^2$$

- Helps distinguish inter-category latent features by enforcing clustering.
- Centers are obtained by averaging the features of the corresponding classes updated based on mini-batches instead of the entire training data due to computational time constraints
- Update of these centers are scaled by a constant (< 1) to avoid sudden fluctuations.

Hyper-prior

$$\begin{split} \mathcal{L}_{bayes} &= \sum_{j=1}^{d} \mathbb{E}_{pd(x_k^{cc})} \left[KL(f(z_{k,j}|x_{k,j}^{cc})) || \mathcal{N}(z_{k,j}; 0, \alpha^{-1})) \right] \\ &+ \lambda_{reg} \sum_{j=1}^{d} (\alpha_j^{-1} - 1)^2 \end{split}$$

- A hyper-prior on learning the inverse variance of the variational latent prior
- Helps to capture intrinsically independent visual features within the combined latent space.
- This helps us in generating more diverse questions.

Experimental Results - Qualitative Generations

Figure 3: Question generated for each image from multiple answer categories using our approach.

Shagun Uppal*1, Anish Madan*1, Sarthak Bhagat*1, Yi Yu2, Rajiv Ratn Shah1

Experimental Results - Qualitative Generations

Figure 4: Qualitative results for C3VQG and Krishna et. al¹ without answers.

¹Krishna, Bernstein, and Fei-Fei, "Information Maximizing Visual Question, Generation".

We evaluate the efficacy of our approach using a set of evaluation metrics.

- Language Modelling Metrics: BLEU, METEOR, CIDEr, ROUGE-L
- Diversity Based Metrics
- Relevance Based Metrics (Crowd Sourced Metrics)

Experimental Results - Quantitative metrics

Supervision	Models	Bleu-1	Bleu-2	Bleu-3	Bleu-4	METEOR	CIDEr	ROUGE-L
Supervised (w A)	IA2Q [24]	32.43	15.49	9.24	6.23	11.21	36.22	-
	V-IA2Q [9]	36.91	17.79	10.21	6.25	12.39	36.39	-
	Krishna et al. [14]	47.40	28.95	19.93	14.49	18.35	85.99	49.10
	IC2Q [24]	30.42	13.55	6.23	4.44	9.42	27.42	
Weakly Supervised (w/o A)	V-IC2Q [9]	35.40	25.55	14.94	10.78	13.35	42.54	-
	Krishna et al. [14] w/o A	31.20	16.20	11.18	6.24	12.11	35.89	40.27
	Ι	38.44	19.83	12.02	7.69	13.27	45.19	40.90
	I + II	38.80	20.12	12.32	7.96	13.40	46.42	41.27
	I + CL	38.81	20.14	12.30	7.91	13.41	46.96	41.21
	I + II + CL	38.94	20.30	12.47	8.10	13.47	47.32	41.27
	I + II + Bayes	38.71	19.89	12.14	7.87	13.23	42.47	41.32
	I + CL + Bayes	38.64	20.06	12.28	7.95	13.32	45.83	41.16
	I + II + CL + Bayes	41.87	22.11	14.96	10.04	13.60	46.87	42.34

Table 1: Ablation study for different components of C3VQG using different language modeling quantitative metrics against other baselines in VQG. We compare our approach against previous works using answers as well as without answers.

Experimental Results - Quantitative metrics

Categories	V-IC2Q [9]		Krishna et al. [14]		C3VQ	G w/o Bayes	C3VQG	
	Strength	Inventiveness	Strength	Inventiveness	Strength	Inventiveness	Strength	Inventiveness
count	15.77	30.91	26.06	41.30	58.33	55.20	65.21	61.84
binary	18.15	41.95	28.85	54.50	58.39	36.32	65.12	38.55
object	11.27	34.84	24.19	43.20	57.77	51.51	65.58	58.85
color	4.03	13.03	17.12	23.65	58.38	48.97	65.21	54.34
attribute	37.76	41.09	46.10	52.03	60.05	58.38	64.59	63.02
materials	36.13	31.13	45.75	40.72	57.93	56.79	64.87	63.48
spatial	61.12	62.54	70.17	68.18	57.90	57.80	65.18	64.96
food	21.81	20.38	33.37	31.19	58.49	55.42	65.20	62.21
shape	35.51	44.03	45.81	55.65	58.85	58.75	66.01	65.98
location	34.68	18.11	45.25	27.22	58.39	58.10	65.09	64.72
predicate	22.58	17.38	36.20	31.29	57.05	57.05	65.67	65.67
time	25.58	15.51	34.43	25.30	58.13	58.10	65.00	64.96
activity	7.45	13.23	21.32	26.53	58.00	56.78	64.98	63.67
Overall	12.97	38.32	26.06	52.11	58.23	54.99	65.24	61.55

Table 2: Quantitative evaluation of C3VQG against other baselines using diversity-based metrics.

Model	Relevance			
	Image	Category		
V-IC2Q [9]	90.10	39.00		
Krishna et al. [14] w/o A	98.10	42.70		
C3VQG w/o Bayes, CL	98.00	58.40		
C3VQG	97.80	60.50		

Table 3: Quantitative evaluation of C3VQG against other weakly supervised baselines using crowd-sourced metrics.

For more details, please check our paper: <u>C3VQG: Category Consistent Cyclic Visual Question</u> <u>Generation</u>

