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Geometry of Disentangled Represenatations of Deep 
Generative Models 

Results

 

➢ Generator mapping function
 

➢‘g’ is a composite function formed by 
➢ affine maps and activations

 Activation functions are smooth
  Weight matrices have maximal rank

Need for geometry awareness in latent space models

What we do? 

• Study and compare the latent space geometry of deep generative models 
that learn disentangled representations

• Establish the presence of curvature in latent space using several metrics
• Establish the relevance of geometry aware metric over Euclidean metric

Disentangled Representation Learning         Metrics

➢ Residual 
➢ Cross Correlation

 
Highlights the difference between Euclidean and Riemannian 
distances

➢ Normalized Margin

 
 Measures class seperability

➢ Tangent Space Alignment
 Principle angle between subspaces defined by the tangent   
spaces

 Large angle denotes higher curvature
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   Conclusion

➢ Riemannian metric should be used as opposed to 
Euclidean distance

➢ Better image synthesis, interpolations and 
clustering is achieved with Riemannian metric

➢ Disentangling models impose higher curvature as 
opposed to VAEs

Tangent Space Alignment

Experimental Results
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VAE

Dis. Model

Randomly sampled unspecified component

Rank of Jacobian

Residual Cross Correlation

Effect of curvature on distances and clustering performance
MultiPIE                  3d Chairs              MNIST       

Interpolations

Dimensionality vs Non-Linearity ReLU (top )vs ELU (bottom)

➢ Latent space models learn a mapping from low dimensional latent 
space to high dimensional data space

➢ Generator mapping approximates the data manifold reasonably 
well, allowing to generate novel data samples

➢  Metric in the latent space deviates from
Euclidean distance
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