Geometry of Disentangled Represenatations of Deep Generative Models

Ankita Shukla¹, Shagun Uppal¹, Sarthak Bhagat¹, Saket Anand¹, Pavan Turaga²

 $Z \subseteq \mathbb{R}^d$

 $X \subseteq \mathbb{R}^D$

 $d \ll D$

 $g : Z \to X$

¹IIIT- Delhi, ²Arizona State University *ICVGIP 2018, 18-22 December, Hyderabad, India*

Need for geometry awareness in latent space models

Latent space models learn a mapping from low dimensional latent space to high dimensional data space

Generator mapping approximates the data manifold reasonably well, allowing to generate novel data samples ► Generator mapping function

∽ 'g' is a composite function formed by> affine maps and activations

- Activation functions are smooth
- Weight matrices have maximal rank

Measures class seperability

➤ Tangent Space Alignment

- Principle angle between subspaces defined by the tangent spaces
- Large angle denotes higher curvature

Experimental Results

Residual Cross Correlation

Tangent Space	Alignment
---------------	-----------

Dataset	VAE	Szabo <i>et al</i> .	Mathieu <i>et al</i> .	Jha <i>et al</i> .
MNIST	0.071	0.142	0.178	0.167
MultiPie	0.65	-	0.72	0.71
3D chairs	0.162	0.262	0.311	0.315

Comparison of \hat{c} values for different disentangling models with VAE for MNIST digits, MultiPIE and 3D chairs dataset.

Datasets	VAE	Szabo et al	Mathieu <i>et al</i> .	Jha <i>et al</i> .
MNIST	21.45	34.12	32.25	32.76
MultiPIE	27.95	37.42	36.88	36.96
3D chairs	23.45	36.77	35.86	36.50

Approximate Curvature estimated with principal angles between Tangent Spaces.

	Models	VAE	Mathieu <i>et al.</i>	Jha <i>et al</i> .	Szabo et al	Mathieu <i>et al.</i>	Jha <i>et al</i> .	Szabo <i>et al</i>	Mathieu <i>et al</i> .	Jha <i>et al</i> .
Distances	Euclidean	0.312	0.346	0.332	0.158	0.160	0.156	0.114	0.112	0.116
	Riemannian	1.142	1.784	1.602	0.344	0.376	0.365	0.297	0.355	0.336
Clustering	Euclidean	82.98	89.37	90.06	91.16	94.33	94.24	91.12	94.32	92.22
F score	Riemannian	89.04	94.45	95.60	95.22	96.34	96.44	94.56	98.00	96.60

Others

Conclusion

- Riemannian metric should be used as opposed to Euclidean distance
- Effect of curvature on distances
 Effect of curvature on distances
 Clustering is achieved with Riemannian metric
 - Disentangling models impose higher curvature as

MNIS⁻

Interpolation between two samples from different classes in the latent spaces of VAE and specified space of Mathieu *et al.*[15] with fixed unspecified using Euclidean (Left) and Riemannian Metric (Right).

Randomly sampled unspecified component

				_
Dimension	16	64	80	
ĉ	0.065	0.069	0.071	
F score (Euclidean)	83.32	85.22	87.38	
F score (Riemannian)	91.74	92.33	96.23	

Activation function	VAE	Mathieu <i>et al</i> .
ReLU	8	15
ELU	16	16

Interpolations

1 1 9 9 9 4 4 4 4

11111199994

99999

and clustering performance

Dis. Model

<u>References</u>

[1] Attila Szabó, Qiyang Hu, Tiziano Portenier, Matthias Zwicker, and Paolo Favaro. Challenges in disentangling independent factors of variation. CoRR, abs/1711.02245, 2017.

[2] Michaël Mathieu, Junbo Jake Zhao, Pablo Sprechmann, Aditya Ramesh, and Yann LeCun. Disentangling factors of variation in deep representations using adversarial training. In NIPS, 2016.

[3] Ananya Harsh Jha, Saket Anand, Maneesh Kumar Singh, and V. S. R. Veeravasarapu. Disentangling factors of variation with cycle-consistent variational auto-encoders. In ECCV 2018

[4] Brahma, P.P., Wu, D. and She, Y., 2016. Why Deep Learning Works: A Manifold Disentanglement Perspective. IEEE Trans. Neural Netw. Learning Syst., 27(10), pp.1997-2008.

Acknowledgement

This work is supported in part by Infosys Center for Aritifical Intellegence at IIIT Delhi, India

<u>Contacts</u>

Ankita Shukla (ankitas@iiitd.ac.in), Shagun Uppal (shagun16088@iiitd.ac.in), Sarthak Bhagat (sarthak16189@iiitd.ac.in), Saket Anand (anands@iiitd.ac.in), Pavan Turaga (pturaga@asu.edu)

ReLU (top)vs ELU (bottom)

Dimensionality vs Non-Linearity

Rank of Jacobian