

16TH EUROPEAN CONFERENCE ON COMPUTER VISION

WWW.ECCV2020.EU

Disentangling Multiple Features in Video Sequences using Gaussian Processes in Variational Autoencoders

Sarthak Bhagat¹, Shagun Uppal¹, Zhuyun Yin², Nengli Lim³

¹IIIT Delhi ²Bioinformatics Institute, A*STAR, Singapore ³Singapore University of Technology and Design

Table of Contents

ECCV'20 ONLINE 23-28 AUGUST 2020

- Introduction
- Variational Autoencoders
- Gaussian Processes
 - Fractional Brownian Motion (fBMs)
 - Brownian Bridges (BBs)
- MGP-VAE
- Network Architecture
- Video Frame Prediction
- Experiments
 - Disentanglement
 - Video Frame Prediction
- Future Work

Problem Statement: To disentangle multiple factors of variation simultaneously from video sequences.

- We propose MGP-VAE (Multi-disentangled-features Gaussian Processes Variational AutoEncoder), for the unsupervised learning of disentangled representations for video sequences.
- It utilizes a latent prior distribution that consists of multiple channels of fractional Brownian motions and Brownian bridges.

Variational Autoencoders

Variational autoencoders [9] are powerful generative models which reformulate autoencoders in the framework of variational inference.

- Given latent variables $z \in \mathbb{R}^{M}$, the decoder, typically a neural network, models the generative distribution $p_{\theta}(x \mid z)$, where $x \in \mathbb{R}^{N}$ denotes the data.
- Due to the intractability of computing the posterior distribution $p(z \mid x)$, an approximation $q_{\varphi}(z \mid x)$, again parameterized by another neural network called the encoder, is used.

Gaussian Processes

Given an index set $T = \{X_{t'}, t \in T\}$ is a Gaussian Process [5, 14] if for any finite set of indices $\{t_{1'}, ..., t_n\}$ of T, $(X_{t1'}, ..., X_{tn})$ is a multivariate normal random variable.

• We are concerned primarily in the case where *T* indexes time, and the Gaussian Process $\{X_{t'} : t \in T\}$ can be uniquely characterised by its mean and covariance functions

$$\mu(t) := E[X_t] \tag{3}$$

$$R(s,t):=E[X_tX_s], \quad \forall \, s,t\in T.$$

The prior distributions employed in MGP-VAE are the appropriately discretized versions of two frequently encountered Gaussian processes in stochastic models, e.g. in financial modeling [1, 3], namely Fractional Brownian Motion (fBM) and Brownian Bridge (BB).

Fractional Brownian Motion (fBMs)

fBMs [10] { B_t^{H} ; $t \in T$ } are Gaussian processes parameterized by a Hurst parameter $H \in (0, 1)$, with mean and covariance functions given by

$$\mu(t) = 0, \tag{5}$$

$$R(s,t) = rac{1}{2} \Big(s^{2H} + t^{2H} - |t-s|^{2H} \Big) \,, \quad orall \, s,t \in T.$$
 (6)

- When H = 1/2, $W_t = B_t^{1/2}$ is standard Brownian motion [5] with independent increments.
- Most notably, when $H \neq 1/2$, the process is not Markovian.
 - when H > 1/2, the disjoint increments of the process are positively correlated,
 - whereas when H < 1/2, they are negatively correlated.

Brownian Bridges (BBs)

The Brownian bridge [3, 8] from $a \in \mathbb{R}$ to $b \in \mathbb{R}$ on the domain [0, T] is the Gaussian process defined as

$$X_t = a\left(1 - \frac{t}{T}\right) + b\left(\frac{t}{T}\right) + W_t + \frac{t}{T}W_T.$$
 (7)

 Its mean function is identically zero and its covariance function is given by

$$R(s,t)=\min(s,t)-rac{st}{T}, \hspace{1em} orall \hspace{1em} s,t\in T.$$
 (8)

From (7), its defining characteristic is that it is pinned at the start and the end such that $X_0 = a$ and $X_{\tau} = b$ almost surely.

Figure: Sample paths for various Gaussian processes. Top-left: Brownian bridge from -2 to 2; top-right: fBM with H = 0.1; bottom-left: standard Brownian motion; bottom-right: fBM with H = 0.9

MGP-VAE

- For VAEs in the unsupervised learning of static images, the latent distribution p(z) is typically a simple Gaussian distribution, i.e. $z \sim N(0, \sigma^2 I_d)$.
- For a video sequence input (x_1, \ldots, x_n) with *n* frames, we model the corresponding latent code as

$$egin{aligned} &z=(z_1,z_2,\ldots,z_n)\sim\mathcal{N}(\mu_0,\Sigma_0), \quad z_i\in\mathbb{R}^d, \ &\mu_0=\left[\mu_0^{(1)},\ldots,\mu_0^{(d)}
ight]\in\mathbb{R}^{n imes d}, \end{aligned}$$

$$\Sigma_0 = \left[\Sigma_0^{(1)}, \dots, \Sigma_0^{(d)}
ight] \in \mathbb{R}^{n imes n imes d}$$
 (11)

Here *d* denotes the number of channels, where one channel corresponds to one sampled Gaussian path, and for each channel, $\mu_0^{(i)}$, $\Sigma_0^{(i)}$ are the mean and covariance of

$$V+\sigma B^H_t,\quad t=\{1,\ldots,n\},$$
 (12)

in the case of fBM or

$$A\left(1-rac{t}{n}
ight)+B\left(rac{t}{n}
ight)+\sigma\left(W_t+rac{t}{n}W_n
ight)$$
 (13)

in the case of Brownian bridge.

- V, A are initial distributions, and B is the terminal distribution for Brownian bridge. They are set to be standard normal, and we experiment with different values for σ.
- The covariances can be computed using (6) and (8) and are not necessarily diagonal, which enables us to model more complex inter-frame correlations.

The output of the encoder is a mean vector μ₁ and a symmetric positive-definite matrix Σ₁, i.e.

$$q(z \mid x) \sim \mathcal{N}(\mu_1, \Sigma_1),$$
 (14)

 To compute the KL divergence term for the variational autoencoder loss, we use the formula

$$D_{KL}\left[q \mid p\right] = \frac{1}{2} \left[\operatorname{tr}\left(\Sigma_{0}^{-1} \Sigma_{1}\right) + \left\langle \mu_{1} - \mu_{0}, \Sigma_{0}^{-1}(\mu_{1} - \mu_{0})\right\rangle - k + \log\left(\frac{\det \Sigma_{1}}{\det \Sigma_{0}}\right) \right].$$
(15)

• Following [6], we add a β factor to the KL divergence term to improve disentanglement.

Network Architecture

Figure: Network illustration of MGP-VAE

Figure: Using the geodesic loss function as compared to squared-distance loss for prediction.

Geodesic Loss

We use the following algorithm from [11] to compute the geodesic distance.

Algorithm 1: Geodesic Interpolation

Input: Two points, z_0 , $z_\tau \in Z$; α , the learning rate Output: Discrete geodesic path, z_0 , z_1 , ..., $z_\tau \in Z$ Initialize z_i as the linear interpolation between z_0 and z_τ while $\Delta E_{zt} > \varepsilon$ do for $i \in \{1, 2, ..., T - 1\}$ do Compute gradient using (17) $z_i \leftarrow z_i - \alpha \nabla_{zt} E_{zt}$ end for

end while

$$E_{z_t} = rac{1}{2} \sum_{i=0}^T rac{1}{\delta t} |g(z_{i+1}) - g(z_i)|^2$$
 (16)

by computing its gradient

$$abla_{z_t} E_{z_t} = -(
abla g(z_i))^T \left[g(z_{i+1}) - 2g(z_i) + g(z_{i-1})
ight]$$
(17)

Experiments

Disentanglement

• Attribute Transfer

Figure: Results from swapping latent channels in Moving MNIST; channel 1 (fBM(H = 0.1)) captures digit identity; channel 2 (fBM(H = 0.9)) captures motion.

• Latent Space Visualisation

Figure: Latent space visualization of fBM channels for 6 videos. Each point represents one frame of a video. The more tightly clustered points in (a) capture digit identity whereas the scattered points in (b) capture motion.

• Attribute Transfer

Figure: Results from swapping latent channels in Coloured dSprites; channel 2 captures shape, channel 3 captures scale, channel 4 captures orientation and position, and channel 5 captures color.

Figure: Results from swapping latent channels in Sprites; channel 1 captures hair type, channel 2 captures armor type, channel 3 captures weapon type, and channel 4 captures body orientation.

 Qualitative results of MGP-VAE and baselines in the video prediction task. Predicted frames are marked in red, and the first row depicts the original video sequence.

Disentanglement

	Coloured dSprites												
Model	Shape Scale Colour x-Pos y-Pos												
MCnet [13]	95.6	69.2	94.0	69.7	70.2	79.7							
DRNet [2]	95.7	69.6	94.8	72.4	70.6	80.6							
DDPAE [7]	95.6	70.3	94.2	71.6	72.4	80.8							
MGP-VAE	96.2	77.9	94.0	76.4	72.8	83.4							

Table: mAP values (%) for Coloured dSprites

Video Frame Prediction

Table: Prediction results on Moving MNIST

		k = 1	k = 2	2	
Model	MSE	BCE	MSE	BCE	
MCnet [13]	50.1	248.2	91.1	595.5	
DRNet [2]	45.2	236.7	86.3	586.7	
DDPAE [7]	35.2	201.6	75.6	556.2	
Grathwohl, Wilson [4]	59.3	291.2	112.3	657.2	
MGP-VAE	25.4	198.4	72.2	554.2	
MGP-VAE (with geodesic loss)	18.5	185.1	69.2	531.4	

Figure: Without geodesic loss

6	6	6	6	6	6	6	6	8	0	0	0	0	0	0	0
6	6	6	6	6	6	6	6	8	0	0	0	0	0	0	8
Ь	6	Ь	ь	ь	Ь	6	6	P	ŝ	\$	8	8	ø	S	\$
Ь	6	ь	6	ь	Ь	6	8	P	ø	\$	8	8	ŝ	ø	S

Figure: With geodesic loss

9	9	9	9	9	9	9	9	0	0	0	0	٥	0	0	0
9	9	9	9	9	9	9	9	0	0	0	0	٥	0	0	0
8	8	8	8	8	8	8	8	5	5	5	5	5	5	5	5
8	8	8	ଚ	8	8	8	8	5	5	5	5	5	5	5	5

Figure: Comparison between predictions with and without using the geodesic loss function for Moving MNIST.

- For more details, please check our paper: <u>https://arxiv.org/pdf/2001.02408.pdf</u>
- The code for the paper is available at: <u>https://github.com/SUTDBrainLab/MGP-VAE</u>

Thank You!

200

References I

- 1 C. Bayer, P. Friz, and J. Gatheral. Pricing under rough volatility. *Quantitative Finance*, 16(6):887–904, 2016.
- E. L. Denton and V. Birodkar.
 Unsupervised Learning of Disentangled Representations from Video.
 In Conference on Neural Information Processing Systems (NIPS), 2017.
- P. Glasserman. Monte-Carlo Methods in Financial Engineering. Springer-Verlag, NY, 2003.
- W. Grathwohl and A. Wilson.
 Disentangling Space and Time in Video with Hierarchical Variational Auto-encoders.
 ArXiv, abs/1612.04440, 2016.
- T. Hida and M. Hitsuda.
 Gaussian Processes.
 American Mathematical Society, 2008.
- 6 I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. M. Botvinick, S. Mohamed, and A. Lerchner. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In International Conference on Learning Representations (ICLR), 2017.
- 7 J.-T. Hsieh, B. Liu, D.-A. Huang, F.-F. Li, and J. C. Niebles. Learning to Decompose and Disentangle Representations for Video Prediction.

Conference on Neural Information Processing Systems (NeurIPS), 2018.

(ロ)

References II

- I. Karatzas and S. E. Shreve.
 Brownian Motion and Stochastic Calculus. Springer-Verlag, NY, 1998.
- D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes.
 In International Conference on Learning Representations (ICLR), 2013.
- B. B. Mandelbrot and J. W. Van Ness. Fractional brownian motions, fractional noises and applications. *SIAM Review*, 10(4):422–437, 1968.
- H. Shao, A. Kumar, and P. T. Fletcher.
 The Riemannian Geometry of Deep Generative Models.
 In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018.
- 12 J. Stu"hmer, R. E. Turner, and S. Nowozin. Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations. In AISTATS, 2020.
- R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee. Decomposing Motion and Content for Natural Video Sequence Prediction. International Conference on Learning Representations (ICLR), 2017.
- C. K. Williams and C. E. Rasmussen.
 Gaussian Processes for Machine Learning, volume 2. MIT press Cambridge, MA, 2006.

