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Introduction

Problem Statement: To disentangle multiple factors of variation  
simultaneously from video sequences.

● We propose MGP-VAE (Multi-disentangled-features 
Gaussian  Processes Variational AutoEncoder), for the 
unsupervised learning  of disentangled representations 
for video sequences. 

● It utilizes a latent prior distribution that consists of 
multiple channels of  fractional Brownian motions and 
Brownian bridges.



Variational Autoencoders

Variational autoencoders [9] are powerful generative models which  
reformulate autoencoders in the framework of variational inference.

Given latent variables z ∈ RM , the decoder, typically a neural  
network, models the generative distribution pθ 

(x | z ), where
x ∈ RN denotes the data.

Due to the intractability of computing the posterior  
distribution p(z | x ), an approximation qφ(z | x ), again  
parameterized by another neural network called the encoder, 
is  used.

#


Gaussian Processes

(3)

(4)

The prior distributions employed in MGP-VAE are the appropriately  
discretized versions of two frequently encountered Gaussian processes 
in  stochastic models, e.g. in financial modeling [1, 3], namely Fractional 
Brownian Motion (fBM) and Brownian Bridge (BB).

Given an index set T = {X
t
; t ∈ T } is a Gaussian Process [5, 14] if 

for any finite set of indices {t
1
, …, t

n
} of T, (X

t1
, …, X

tn
) is a 

multivariate normal random variable. 

We are concerned primarily in the case where T indexes time,  and 
the Gaussian Process {X

t
; t ∈ T } can be uniquely characterised by its 

mean and covariance functions
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Fractional Brownian Motion (fBMs)

  fBMs [10] {B
t
H; t ∈ T} are Gaussian processes parameterized by a Hurst 

parameter H ∈ (0, 1), with mean and covariance  functions given by

(5)

(6)

When H = 1/2, W
t
= B

t
1/2  is standard Brownian motion [5] with 

independent increments.

 Most notably, when H ≠ 1/2, the process is not Markovian.
● when H > 1/2, the disjoint increments of the process are positively 

correlated,
● whereas when H < 1/2, they are negatively correlated. 
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Brownian Bridges (BBs)

The Brownian bridge [3, 8] from a ∈ R to b ∈ R on the domain [0, T ] 
is the  Gaussian process defined as

(7)

Its mean function is identically zero and its covariance function is 
given by

(8)

From (7), its defining characteristic is that it is pinned at the start 
and  the end such that X

0 
= a and X

T 
= b almost surely.

#


Figure: Sample paths for various Gaussian processes. Top-left: Brownian  bridge 
from -2 to 2; top-right: fBM with H = 0.1; bottom-left: standard  Brownian 
motion; bottom-right: fBM with H = 0.9



MGP-VAE

For VAEs in the unsupervised learning of static images, the  latent distribution 
p(z) is typically a simple Gaussian  distribution, i.e. z ∼ N (0, σ2I

d 
).

For a video sequence input (x
1
, . . . x

n
) with n frames, we  model the 

corresponding latent code as

(9)

(10)

(11)



Here d denotes the number of channels, where one channel 
corresponds to one sampled Gaussian path, and for each channel,    
µ

0
(i), Σ

0
(i) are the mean and covariance of

(12)

in the case of fBM or

(13)

in the case of Brownian bridge.

V , A are initial distributions, and B is the terminal distribution 
for  Brownian bridge. They are set to be standard normal, and 
we experiment  with different values for σ.

The covariances can be computed using (6) and (8) and are not  
necessarily diagonal, which enables us to model more complex 
inter-frame  correlations.

in the case of Brownian bridge.



(14)

.

Following [6], we add a β factor to the KL divergence term to 
improve  disentanglement.

The output of the encoder is a mean vector µ
1
 and a 

symmetric positive-definite matrix Σ
1
, i.e. 

To compute the KL divergence term for the variational 
autoencoder loss, we use the formula

(15)



Network Architecture

Figure: Network illustration of MGP-VAE



Figure: Using the geodesic loss function as compared to squared-distance  
loss for prediction.

Video Frame Prediction



Geodesic Loss

Algorithm 1: Geodesic Interpolation

Input: Two points, z
0 

, z
T 
∈ Z ; α, the learning rate

Output: Discrete geodesic path, z
0
, z

1
, ..., z

T 
∈ Z  Initialize 

z
i 
as the linear interpolation between z

0 
and z

T  

while ∆E
zt 

> ε do
for i ∈ {1, 2, ..., T − 1} do

Compute gradient using (17)
z

i 
← z

i 
− α∇

zt 
E

zt

                  
end for

end while

by computing its gradient

We use the following algorithm from [11] to compute the geodesic distance.

(16)

(17)

#


Experiments
Disentanglement

• Attribute Transfer

Figure: Results from swapping latent channels in Moving MNIST;  channel 1 
(fBM(H = 0.1)) captures digit identity; channel 2  (fBM(H = 0.9)) captures motion.



• Latent Space Visualisation

Figure: Latent space visualization of fBM channels for 6 videos. Each  point 
represents one frame of a video. The more tightly clustered points  in (a) 
capture digit identity whereas the scattered points in (b) capture  motion.

(a) fBM, H = 0.1 (b) fBM, H = 0.9



• Attribute Transfer

Figure: Results from swapping latent channels in Coloured dSprites;  channel 2 captures shape, 
channel 3 captures scale, channel 4 captures  orientation and position, and channel 5 captures color.

Figure: Results from swapping latent channels in Sprites; channel 1  captures hair type, channel 2 
captures armor type, channel 3 captures  weapon type, and channel 4 captures body orientation.



Qualitative results of MGP-VAE and baselines in the video  prediction 
task. Predicted frames are marked in red, and the first  row depicts the 
original video sequence.

Figure: Moving MNIST

Figure: Colored dSprites



Video Frame Prediction

k = 1 k = 2

Model MSE BCE MSE BCE
MCnet [13] 50.1 248.2 91.1 595.5
DRNet [2] 45.2 236.7 86.3 586.7
DDPAE [7] 35.2 201.6 75.6 556.2

Grathwohl, Wilson [4] 59.3 291.2 112.3 657.2
MGP-VAE 25.4 198.4 72.2 554.2

MGP-VAE (with geodesic loss) 18.5 185.1 69.2 531.4

Table: Prediction results on Moving MNIST

                      Coloured dSprites

Model Shape Scale Colour x-Pos y-Pos Avg.
MCnet [13] 95.6 69.2 94.0 69.7 70.2 79.7
DRNet [2] 95.7 69.6 94.8 72.4 70.6 80.6
DDPAE [7] 95.6 70.3 94.2 71.6 72.4 80.8
MGP-VAE 96.2 77.9 94.0 76.4 72.8 83.4

Disentanglement

Table: mAP values (%) for Coloured dSprites

#
#


Figure: Without geodesic loss

Figure: With geodesic loss

Figure: Comparison between predictions with and without using the  geodesic 
loss function for Moving MNIST.



● For more details, please check our paper: 
https://arxiv.org/pdf/2001.02408.pdf

Thank You!

● The code for the paper is available at: 
https://github.com/SUTDBrainLab/MGP-VAE

https://arxiv.org/pdf/2001.02408.pdf
https://github.com/SUTDBrainLab/MGP-VAE
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