This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity... more This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence of media type, media depth and drought during plant establishment on plant growth and long-term management of media pH were investigated. The goal of the project was to provide high-quality replicated data which could be used to develop and refine reliable anticipated runoff volumes and loadings from green roofs, respectively, as well as evaluate factors which impact plant growth and establishment. Results indicate that the green roofs are capable of removing 50% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively increasing the time to peak, and slowing peak flows for a watershed. There are seasonal considerations as more runoff is generated during winter and for many summer storms there was no runoff. Green roof runoff does contain concentrations of some nutrients and other parameters, but values are in line with other planted systems. Due to the volume reduction, actual nutrient loadings from green roofs are less than asphalt roofing runoff or otherwise manageable at the downspout.
Plants suitable for extensive green roofs must tolerate extreme rooftop conditions, and the subst... more Plants suitable for extensive green roofs must tolerate extreme rooftop conditions, and the substrates in which they grow must fulfill horticultural and structural requirements. Deeper substrates may retain more water for plants during dry periods, but will also weigh more, especially when near saturation. A study in central Pennsylvania was conducted to evaluate the influence of substrate type and depth on establishment of five green roof plants. Two stonecrops [white stonecrop (Sedum album) and tasteless stonecrop (Sedum sexangulare)], one ice plant (Delosperma nubigenum), and two herbaceous perennials [maiden pink (Dianthus deltoides) and saxifrage pink (Petrorhagia saxifraga)] were planted in three depths (30, 60, and 120 mm) of two commercially available green roof substrates (expanded shale and expanded clay). Study flats inside a plasticulture tunnel received three drought treatments (no drought, 2 weeks early drought, and 2 weeks late drought). The two stonecrops performed w...
From its beginnings in Germany in the twentieth century, a thriving extensive green roof industry... more From its beginnings in Germany in the twentieth century, a thriving extensive green roof industry has become established in many countries in temperate climates. Based upon the success of the industry, and with an expectation that this technology will be adopted in other climates, this review of the ecological research of extensive green roofs aims to evaluate the application of this knowledge. The modern extensive green roof is the product of research in the 1970s by German green roof pioneers; the selection of suitable species from analogue habitats led to green roof vegetation dominated by drought tolerant taxa. The commercial success of extensive green roof systems can be attributed to engineering and horticultural research, to policy mechanisms in some places, and to a market that encourages innovation, and the origins in ecological design are now easily overlooked. Some of the work reviewed here, including the classification of spontaneous roof vegetation into plant communitie...
From its beginnings in Germany in the 20th century, a thriving extensive green roof industry has ... more From its beginnings in Germany in the 20th century, a thriving extensive green roof industry has become established in many countries in temperate climates. Based upon the success of the industry, and with an expectation that this technology will be adopted in other climates, this review of the ecological research of extensive green roofs aims to evaluate the application of this knowledge. The modern extensive green roof is the product of research in the 1970s by German green roof pioneers; the selection of suitable species from analogue habitats led to green roof vegetation dominated by drought tolerant taxa. The commercial success of extensive green roof systems can be attributed to engineering and horticultural research, to policy mechanisms in some places, and to a market that encourages innovation, and the origins in ecological design are now easily overlooked. Some of the work reviewed here, including the classification of spontaneous roof vegetation into plant communities, is not widely known due to its confinement to the German literature. By re-visiting the history of the extensive green roof and reviewing the ecological research that has contributed to our understanding of it, the intention is for this paper to inform those considering green roofs in other climatic regions, to apply an ecologically informed approach to using local knowledge for developing installations that are suited to the bio-region in which they occur. Finally the paper considers some future directions for research and practice.
This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity... more This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence of media type, media depth and drought during plant establishment on plant growth and long-term management of media pH were investigated. The goal of the project was to provide high-quality replicated data which could be used to develop and refine reliable anticipated runoff volumes and loadings from green roofs, respectively, as well as evaluate factors which impact plant growth and establishment. Results indicate that the green roofs are capable of removing 50% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively increasing the time to peak, and slowing peak flows for a watershed. There are seasonal considerations as more runoff is generated during winter and for many summer storms there was no runoff. Green roof runoff does contain concentrations of some nutrients and other parameters, but values are in line with other planted systems. Due to the volume reduction, actual nutrient loadings from green roofs are less than asphalt roofing runoff or otherwise manageable at the downspout.
Plants suitable for extensive green roofs must tolerate extreme rooftop conditions, and the subst... more Plants suitable for extensive green roofs must tolerate extreme rooftop conditions, and the substrates in which they grow must fulfill horticultural and structural requirements. Deeper substrates may retain more water for plants during dry periods, but will also weigh more, especially when near saturation. A study in central Pennsylvania was conducted to evaluate the influence of substrate type and depth on establishment of five green roof plants. Two stonecrops [white stonecrop (Sedum album) and tasteless stonecrop (Sedum sexangulare)], one ice plant (Delosperma nubigenum), and two herbaceous perennials [maiden pink (Dianthus deltoides) and saxifrage pink (Petrorhagia saxifraga)] were planted in three depths (30, 60, and 120 mm) of two commercially available green roof substrates (expanded shale and expanded clay). Study flats inside a plasticulture tunnel received three drought treatments (no drought, 2 weeks early drought, and 2 weeks late drought). The two stonecrops performed w...
From its beginnings in Germany in the twentieth century, a thriving extensive green roof industry... more From its beginnings in Germany in the twentieth century, a thriving extensive green roof industry has become established in many countries in temperate climates. Based upon the success of the industry, and with an expectation that this technology will be adopted in other climates, this review of the ecological research of extensive green roofs aims to evaluate the application of this knowledge. The modern extensive green roof is the product of research in the 1970s by German green roof pioneers; the selection of suitable species from analogue habitats led to green roof vegetation dominated by drought tolerant taxa. The commercial success of extensive green roof systems can be attributed to engineering and horticultural research, to policy mechanisms in some places, and to a market that encourages innovation, and the origins in ecological design are now easily overlooked. Some of the work reviewed here, including the classification of spontaneous roof vegetation into plant communitie...
From its beginnings in Germany in the 20th century, a thriving extensive green roof industry has ... more From its beginnings in Germany in the 20th century, a thriving extensive green roof industry has become established in many countries in temperate climates. Based upon the success of the industry, and with an expectation that this technology will be adopted in other climates, this review of the ecological research of extensive green roofs aims to evaluate the application of this knowledge. The modern extensive green roof is the product of research in the 1970s by German green roof pioneers; the selection of suitable species from analogue habitats led to green roof vegetation dominated by drought tolerant taxa. The commercial success of extensive green roof systems can be attributed to engineering and horticultural research, to policy mechanisms in some places, and to a market that encourages innovation, and the origins in ecological design are now easily overlooked. Some of the work reviewed here, including the classification of spontaneous roof vegetation into plant communities, is not widely known due to its confinement to the German literature. By re-visiting the history of the extensive green roof and reviewing the ecological research that has contributed to our understanding of it, the intention is for this paper to inform those considering green roofs in other climatic regions, to apply an ecologically informed approach to using local knowledge for developing installations that are suited to the bio-region in which they occur. Finally the paper considers some future directions for research and practice.
Uploads
Papers by Christine E Thuring