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1. Introduction

Provenance, which is one kind of metadata that captures the derivation history of a data product, including its original data
sources, intermediate products, and the steps that were applied to produce it, has become increasingly important in the area of
scientific workflows [1-8] to interpret, validate, and analyze the result of scientific computing. In general, provenance captures
past workflow execution and data derivation information (i.e., which tasks were performed and how data products were derived)
via a provenance collection mechanism during workflow execution. Provenance captured typically holds data dependencies,
process dependencies, causality between data and processes, and annotations. Such provenance is often represented by a
provenance graph. For example, Fig. 1(a) shows a sample scientific workflow (which is the Load Workflow defined in the Third
Provenance Challenge [9]) that checks and reads CSV files before loading, creates a database to load CSV files, loads them into
tables and validates tables, and compacts a database after loading. Fig. 1(b) shows a sample provenance graph produced via the
execution of the Load Workflow, where a node of a rectangle shape represents a process (i.e., a task), a node of an ellipse shape
represents an artifact (i.e., a data product), which was used or generated by a process, a node of an octagon shape represents a
contextual entity acting as a catalyst of a process, and an edge represents a causal dependency between its source denoting the
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Fig. 1. An example of a scientific workflow and its provenance: (a) the Load Workflow defined in the Third Provenance Challenge; (b) a provenance graph
generated via the execution of the Load Workflow; (c) a provenance graph representing data dependencies associated with artifact ag; and (d) a provenance graph
representing process dependencies associated with process ps.

effect and its destination denoting the cause. Fig. 1(c) and (d) also represents a data dependency graph associated with artifact ag
and a process dependency graph associated with process pg from the provenance graph, respectively.

Most existing systems [10,11,13,14] store provenance data in provenance stores with proprietary provenance data models and
conduct provenance querying using languages such as SQL, SPARQL, and XQuery, over the physical provenance storages
(i.e., relational, RDF, and XML). Such query languages are closely coupled to the underlying provenance storage strategies. As a
result, querying provenance at such a low level leads to poor usability of the system because users need to know the underlying
storage schema to formulate queries; if the schema changes, queries need to be reformulated; and queries formulated for one
system will not run in another system. Moreover, to formulate complicated provenance queries, a user requires the expertise
about grammars, syntax, and semantics of a query language. Using existing approaches, provenance lineage queries (queries for
tracking ancestor nodes) often require a user to write recursive queries, directly typing recursive statements or using recursive
functionality. For example, Fig. 2 shows two query languages SQL and OPQL answering for a provenance query (Q1), which asks
for “which artifacts contributed to derive artifact as” over the provenance graph in Fig. 1(b). First, the SQL statement is expressed
by a recursive query via the WITH ~ UNION ALL clause to track ancestor nodes associated with artifact as; thus, to answer query
Q1, a user has to know the information of table WasDerivedFrom (i.e., how attributes define and what the attributes mean), a user
needs the expertise to formulate a recursive query, which is nontrivial, and if the schema (i.e., the table information) changes, the
SQL query needs to be reformulated, which is cumbersome. On the other hand, since the OPQL query is formulated at the graph
level, a user does not have to know the storage schema, therefore, even though the storage schema changes, it does not affect the
query. Moreover, OPQL construct WDF supports a recursive query pattern; thus, OPQL is easy and convenient to formulate a
recursive query pattern.

In this paper, to address these issues, we propose OPQL, a provenance query language that enables the querying of provenance
directly at the graph level. OPQL relies on the Open Provenance Model [15], a community-driven data model, which captures main
aspects of the workflow provenance and does not enforce a particular physical representation of the provenance data. An OPQL
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Q1: Which artifacts contributed to derive artifact as ?

<SQL>
WITH Lineage (EffectArtifactID, CauseArtifactID) AS
(SELECT EffectArtifactID, CauseArtifactID FROM WasDerivedFrom
WHERE EffectArtifactID = ‘a5’
UNION ALL
SELECT L.EffectArtifactID, D.CauseArtifactID FROM WasDerivedFrom D, Lineage L
WHERE L.CauseArtifactID = D.EffectArtifactID)
SELECT * FROM Lineage;
* Table: WasDerivedFrom (EffectArtifactID, CauseArtifactID)

<OPQL>
WDF (a5);

Fig. 2. A sample provenance query answered by query languages SQL and OPQL, respectively.

query takes an OPM-compliant provenance graph as input and produces another OPM-compliant provenance graph as output.
Thus, OPQL queries are not tightly coupled to the underlying storage strategies. This paper has the following main contributions:
(1) we design OPQL, including six types of graph patterns, a provenance graph algebra, and OPQL syntax and semantics, that
supports querying provenance at the graph level; and (2) we implement OPQL using a Web service via the OPMPRov system;
therefore, users can invoke the Web service to execute OPQL queries in a provenance browser, called OPMProVis. The result of
OPQL queries is displayed as a provenance graph in OPMProVis.

The rest of the paper is organized as follows. In Section 2, we overview the OPMPRrov system that stores, reasons, and queries
scientific workflow provenance using a relational database. In Section 3, we present six types of graph patterns, a provenance
graph algebra, and OPQL syntax and semantics to support querying provenance at the graph level. In Section 4, we discuss how
OPQL is implemented via our OPMProv system. Section 5 describes how OPM graphs are reconstructed using our GraphConstruct
algorithm. Section 6 reports the experimental study confirming the feasibility of using OPQL to query provenance at the graph
level. Section 7 discusses related work on provenance query processing in existing systems. Section 8 presents conclusions and
discusses possible future research directions. Finally, Acknowledgments section concludes the paper.

2. OPMProv overview

OPMProv is a relational database-based provenance system that stores, reasons, and queries scientific workflow provenance
[16]. OPMProv supports storing and querying both prospective provenance that captures an abstract workflow specification as a
recipe for future data derivation and retrospective provenance that captures past workflow execution and data derivation, which
are collected via a provenance collection framework [17] while most existing systems focus on storing and querying only
retrospective provenance. Moreover, OPMProv supports provenance reasoning using recursive views and SQL queries alone
without any external reasoning engine. More details on the implementation and performance of OPMProv can be found in [16].

In this paper, we continue our efforts with the OPMPRrov system to enhance the following main capabilities: (1) OPMProv supports
OPQL, a provenance query language that enables the querying of provenance directly at the graph level while previous versions of
OPMProv supported provenance query processing in SQL, which is closely coupled to the underlying storage schema. We also expose
the functionality of OPQL through a Web service interface so that other systems can use it; and (2) OPMPRrov implements a provenance
browser that enables a user to display provenance graphs and invoke the OPQL Web service for provenance querying. We present an
overview of the current version of OPMPRov in the context of the VIEW workflow system [18] in Fig. 3.

ViEw is an online scientific workflow management system (www.viewsystem.org) that allows users to create, edit, and run
visual scientific workflows online. A scientific workflow represents a multiple-step data analysis pipeline that chains several data
analysis modules (e.g. Web Services, scripts) together via data links, which connect the output of one module to the input of
another module. As shown in Fig. 3(a) View is composed of six major functional subsystems, including Workbench, Workflow
Engine, Worklfow Monitor, Data Product Manager, Task Manager, and Provenance Manager. Workbench implements functions of
workflow design, presentation and visualization. Workflow Engine is responsible for executing a workflow by running each
module and passing the output result as input for the next module in the chain. Workflow Monitor oversees each workflow run
by tracking execution status of individual modules and the entire workflow as a whole. Data Product Manager allows to store and
retrieve artifacts (data products) from its repository. The purpose of Task Manager is to execute individual task-based modules.
The underlying tasks include Web Services, scripts, local applications, grid jobs etc. Finally, Provenance Manager (OPMProv) is
responsible for storing, querying and reasoning prospective and retrospective workflow provenance data. As shown in Fig. 3,
OPMPRrov plays a role of Provenance Manager in our VIEW system.

Fig. 3(b) shows the three-layer architecture of OPMProv. The provenance presentation layer provides users with the
functionalities of provenance querying, data insertion, and provenance visualization via OPMProVis® (desktop version) and
OPMProVis" (web version) as user-friendly GUIs. The provenance presentation layer interacts with the provenance service layer
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Fig. 3. An overview of the opmprov system: (a) an architecture of the View system; (b) an architecture of the opmProv system; and (c) an overview of the
provenance collection framework.

via interface Ippy that is defined and described by WSDL. The provenance service layer provides users with provenance services.
OPMProv currently provides two Web services that employ two mappings: (1) one is to insert provenance data into OPMProv
using an XML-to-Relational data mapping that maps XML documents to relational tuples; and (2) the other is to execute OPQL
queries from OPMProv using an OPQL-to-SQL query mapping that translates OPQL queries into SQL queries. These mappings
interconnect the provenance service layer and the provenance infrastructure layer, where the latter is represented by a relational
database management system that plays a role of a relational provenance storage backend. Fig. 3(c) also shows an overview of our
provenance collection framework, where both prospective and retrospective provenance captured are stored and managed in
OPMPRrov.

Because experiment reproducibility and provenance reasoning are known to be vital aspects in scientific workflow
management [16,18], the role of OPMProv in the workflow management system is crucial.

3. The OPQL query language

In this section, we present OPQL, a provenance query language that enables the querying of provenance at the graph level. We
first describe the OPMPRrov provenance model which is used as a fundamental provenance model for OPQL. Next, we define six
types of graph patterns which are the main building blocks of an OPQL query and a provenance graph algebra for OPQL. We then
propose OPQL syntax and semantics. Finally, we discuss how provenance queries can be expressed in OPQL.

3.1. The OPMProv provenance model

We adopt the notion of nodes and edges proposed in OPM [15] to define the opmProvV provenance model. As a result, the
OPMProv provenance model is represented as a directed graph expressing the causal dependencies between nodes. In particular,
a provenance graph is composed of three types of nodes (i.e., Artifact, Process, and Agent) and five types of edges
(i.e., WasGeneratedBy, Used, WasDerivedFrom, WasTriggeredBy, and WasControlledBy), which represent causal dependencies
between nodes. For example, in Fig. 1(b), an artifact (an immutable piece of state), process (an action or a series of actions), and
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agent (a contextual entity acting as a catalyst of a process) are represented as an ellipse, rectangle, and octagon shape, respectively,
and an edge is represented by an arc and denotes the presence of a causal dependency between the source of the arc (the effect)
and the destination of the arc (the cause). Each node and edge has a set-valued Account attribute, which allows to associate it with
multiple accounts. In Fig. 1(b), the edges represent the following causal dependencies: (1) edge Used (u;-u12): p; used ay, p, used
a, and ay, p3 used as, and so on; (2) edge WasGeneratedBy(g1-gs): a, was generated by p1, as was generated by p,, a4 was generated
by ps, and so on; (3) edge WasDerivedFrom (d+, d): a, was derived from a; and as was derived from a,; (4) edge WasTriggeredBy
(t1): p2 was triggered by p,; and (5) edge WasControlledBy (c1, ¢2): p1 and p, were controlled by ag;.
We formalize a provenance graph as follows. A provenance graph PG = (N, E) consists of:

1 asetof nodes N = A U P U AG, where A is a set of artifacts, P is a set of processes, and AG is a set of agents;

2 a set of directed edges E = E, U E; U Eq U E; U E., where i) E, € P x A and (p, a) € E, states that process p used artifact a,
ii) E; € A x P and (a, p) € E, states that artifact a was generated by process p, iii) E; € A x A and (a3, a;) € Eq4 states that
artifact a; was derived from artifact ay, iv) E; € P x Pand (py, p2) € E, states that process p; was triggered by process p,, and v)
E. € P x AG and (p, ag) € E. states that process p was controlled by agent ag.

Moreover, in the OPMProv provenance model, each node and edge have arbitrary properties; thus, we use a tuple, a list of
name and value pairs, to denote these properties. Fig. 4 shows a provenance graph that represents dependencies associated with
process p, in Fig. 1(b).

3.2. Graph patterns

We extend the notion of graph pattern proposed in [19] to support provenance queries over a provenance graph. In this work,
we define six types of graph patterns, which are the main building blocks of an OPQL query.

Definition 1. Graph pattern: type B.

A graph pattern Py is a pair (M, C), where M is a graph motif and C is a predicate on the properties of the motif.

A sample graph pattern P, is shown in Fig. 5. It includes the two node graph motif and the predicate stating specific values of the nodes.

Definition 2. Graph pattern: type Q.

A graph pattern P, is a triple (M, O, C), where M is a graph motif, O is an inverse-functional one-to-many mapping that returns a set
of nodes that have direct causal dependencies associated with a node, and Cis a predicate on the properties of the motif. To handle five
causal dependencies (i.e., WasGeneratedBy, Used, WasDerivedFrom, WasTriggeredBy, and WasControlledBy) in a provenance graph, O is
composed of ten types of mapping functions (i.e.,05{0y, 0y, Og, 05,04, 0, O, 0;, Oc, O¢ }) as defined below:

Ou(p) = {a|(p,a)EEu}

0;(a) = {pl(p,a)€E, }

Og4(a) = {pl(a.p)EE,}

Og(p) = {al(a, p)<Eg}
0q4(ay) = {ay|(ay,a3)EE} 1)
0;(az) = {ay|(ay,a,)EEq}

O¢(p1) = {P2|(P1.P2)EE}

0;(p2) = {P11(P1.p2)EE}

O.(p) = {ag|(p, ag)<E. }

0O;(ag) = {p|(p, ag)EE.}.

graph PG {
node v,<id="‘a,’, value="">;
node v,<id=‘a;’, value="">;
node v;<id="‘p,’, value=‘IsCSVReadyFileExists’>;
node v,<id="‘p,’, value=‘ReadCSVReadyFile’>;
node vs<id=‘ag;’, value=‘John’>;
edge ¢, (v4,v))<id=‘uy’, role=‘used’>;
edge ¢,(v,,v4)<id=‘g,’, role= ‘wasGeneratedBy’>;
edge e3(v4,v3)<id="‘1,’, role=‘wasTriggeredBy’>;
edge e4(v4,v5)<id=‘c,’, role=‘wasControlledBy’>;

I3

Fig. 4. A provenance graph representing dependencies associated with process p, in Fig. 1(b).
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graph P, {
node vq;
node v,;
}
where v;.value = ‘butter’
and v,.value = ‘bake’;

Fig. 5. Sample graph pattern Py,

Graph pattern P, is a derived graph pattern. It enables users to formulate provenance queries that find direct causal
dependencies associated with a node. Fig. 6 shows a sample graph pattern P, that includes the two node graph motif, the mapping
function (0,), and the predicate stating the identifier of node v;.

Next, we define the following four graph patterns to support tracking of ancestor nodes.

Definition 3. Graph pattern: type D.

A graph pattern P, is a triple (M, D, C), where M is a graph motif, D is an inverse-functional one-to-many mapping that returns a set
of artifacts that were applied to derive an artifact, and C is a predicate on the properties of the motif. To support tracking of ancestor
nodes associated with artifacts forward and backward, D is composed of two types of mapping functions (i.e., D € {D*¢, D"*9}) as
defined below:

pM@= U DM@)uoy 2)
p" <a) = aeou(a')Dde(a) U0,(d). 3)

Graph pattern P, is a derived graph pattern. It enables users to formulate recursive queries to track ancestor nodes associated
with artifacts. For example, Fig. 7 shows a sample graph pattern P, that includes the two node graph motif, the mapping function
(D), and the predicate stating the identifier of node v.

Definition 4. Graph pattern: type T.

A graph pattern P, is a triple (M, T, C), where M is a graph motif, T is an inverse-functional one-to-many mapping that returns a set
of processes that were applied to trigger a process, and C is a predicate on the properties of the motif. To support tracking of ancestor
nodes associated with processes forward and backward, T is composed of two types of mapping functions (i.e., T € {T"9, T®"9}) as
defined below:

™py = u ™@E)uop) 4)
P <0(p)
graph P, {
node vq;
node v,;

}
mapping O, : v, el 123

where v,.id = ‘p;’;

Fig. 6. A sample graph pattern P,,.
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graph P, {
node v;
node v,;

. *
wasDerived From

mapping D/ 1y, ———— v,
where v,.id = ‘a,’;

Fig. 7. A sample graph pattern P.

™ p)= U ,)T”W%p) Uo(p). (5)

Graph pattern P; is also a derived graph pattern. It enables users to formulate recursive queries to track ancestor nodes
associated with processes. Fig. 8 shows a sample graph pattern P, that includes the two node graph motif, the mapping function
(T"4), and the predicate stating the identifier of node v;.

Definition 5. Graph pattern: type G.

A graph pattern Py is a triple (M,G,C), where M is a graph motif, G is an inverse-functional one-to-many mapping that returns a
set of processes that were applied to generate an artifact, and Cis a predicate on the properties of the motif. G is defined as:

Ga= U T"@) U o). (6)

Definition 6. Graph pattern: type U.

A graph pattern P, is a triple (M,U,C), where M is a graph motif, U is an inverse-functional one-to-many mapping that returns a
set of artifacts that were used by a process, and C is a predicate on the properties of the motif. U is defined as:

up) =,y DM (@) U0, )

Graph patterns P, and P, are derived graph patterns. These graph patterns enable users to formulate recursive queries to track
ancestor nodes associated with processes and artifacts, respectively. It can be shown that graph patterns P, and P, can be derived
by graph pattern P, similarly to the previous examples.

Next, we define three types of graph pattern matching which generalize subgraph isomorphism over six graph patterns.

Definition 7. Graph pattern matching o.

A graph pattern Py, is matched with a graph PG if there exists an injective mapping ¢,: N(M) — N(PG) such thati) For V e(u,v) € E(M),
(a(u1).a(v))is an edge in PG, and ii) predicate C4, (PG) holds.

graph P, {
node vy;
node v,;

. fwd wasTriggeredBy*
mapping 7/ : vy ——— v,

where v,.id = ‘p,,’;

Fig. 8. A sample graph pattern P.

Please cite this article as: C. Lim, et al., OPQL: Querying scientific workflow provenance at the graph level, Data Knowl. Eng. (2013),
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Definition 8. Graph pattern matching .

A graph pattern P, is matched with a graph PG if there exists an injective mapping ¢z: N(M) — N(PG) such that i) for
Y e(u,v) € E(M), (¢p(u).pp(v)) is an edge in PG, ii) function Oy, (PG) holds, and iii) predicate Oy, (PG) holds.

Definition 9. Graph pattern matching .

Each of graph patterns (Py, Py, P, and P,) is matched with a graph PG if there exists an injective mapping ¢,: N(M) — N(PG)
such that i) For V e(u,v) & E(M), (¢y(u),dy(v)) is an edge in PG, ii) each function (D, (PG), Ty (PG), G4 (PG), and U, (PG)) holds,
and iii) each predicate Cy4, (PG) holds.

To denote the binding between a graph pattern and a provenance graph, we define a matched graph as follows.

Definition 10. Matched graph.

Given an injective mapping ¢ € {¢q, ¢p, ¢} between a pattern P € {Py, P,, Py, Py, Pg, P,} and a provenance graph PG, a matched
graph is a triple (¢, P, PG) and is defined as ¢p(PG).

3.3. Provenance graph algebra

We propose a provenance graph algebra for the OPQL query language. The provenance graph algebra is based on four
operators, which operate on a provenance graph. Each operator takes a provenance graph as input and produces another
provenance graph as output. Our union, intersection, and difference operators take two provenance graphs that are subgraphs of
the same provenance graph produced by other queries as input and produce a provenance graph as output. We define the
following four operators to manipulate and query a provenance graph.

3.3.1. Extract operator (6)

One of the most frequent operations performed on a provenance graph is the extraction of a set of nodes and edges. An extract
operator is defined using a graph pattern P. It takes a provenance graph (PG) as input and produces a new provenance graph that
matches the graph pattern as output, denoted by 6,(PG). For example, let Fig. 1(b) be a provenance graph (PG). You might want to
find all artifacts that contributed to derive artifact ag. Using the extract operator, this query can be expressed as:

8(p, 0 ay)] (PG). )

This query first generalizes a matched graph which consists of a set of artifacts (a; — ag) and a set of edges (d; — ds) via the
graph pattern matching vy (i.e., ¢y) and then it produces a new provenance graph by combining information from the matched
graph. The output of the extract operator is a provenance graph:

8,(PG) = ¢p(PG). )

Next, we define set operators, union, intersection, and difference. These operators are operated on a provenance graph, but they
take two subgraphs produced by other queries as input and produce a provenance graph as output. Let PG be a provenance graph, and
let PGy and PG, be the output of 6p, (PG) and 6p, (PG), respectively. Given two subgraphs PG; = (N, E;) and PG, = (Na, E>), where PG,
and PG, c PG, these operators are defined as follows.

3.3.2. Union operator (U)
The union operator calculates the union of two subgraphs. A union operation is defined by PG; U PG,, resulting in a
provenance graph PG’ = (N’, E’), where

N ={n|neN; or nEN,}
E'={e|ecE, or e€E,}.

(10)

For example, let Fig. 9(a) be a provenance graph (PG). Then, Fig. 9(b) and (c) represents the output of S[Pd:DM(aQ] (PG) and
6[Pdmd(ag)] (PG), respectively. You might want to find all artifacts that contributed to derive either artifact as or artifact ag over
provenance graph G. Using the union operator, this query can be expressed as S[Pd:wad (@)] (PG) U B[Pd:DM (@) (PG). The result of the
query is shown in Fig. 9(d).
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(a)

(b)

(c)

(d)

(e)

()

Fig. 9. The output produced by the operation of different operators: (a) an example provenance graph PG; (b) 6[,,(’:[‘/“@ (@) (PG); (c) 6[,,(’:[,%(“8 ) (PG); (d) 8[Pd:D/wd

(as)]
(PG)UB 1, v gyy] (PG (€) Bip, g (PG) B, i gy)] (PG); and. (F) 1p, s g, (PG) —Bp, e gy (PG).

3.3.3. Intersection operator (N)
The intersection operator calculates the intersection of two subgraphs. An intersection operation is defined by PG; N PG,
resulting in a provenance graph PG’ = (N’, E’), where

N'={n|n€N; and nEN,} (11)
E'={e|e<€E; and e€E,}.

For example, you might want to find all artifacts that contributed to derive both artifact as and artifact ag over provenance
graph PG. Using the intersection operator, this query can be expressed as 5[9 D™ (gs)] (PG)ﬂ(S[Pd:D/W.j (@s)] (PG). The result of the query is
shown in Fig. 9(e).

3.3.4. Difference operator (—)
The difference operator calculates the difference of two subgraphs. A difference operation is defined by PG; — PG, resulting in
a provenance graph PG’ = (N/, E’), where

E'={e|e€E, and e<E,} (12)
N’ ={n| nEnodes(E")}.

Here, nodes denotes a function returning a set of all nodes in E’. For example, you might want to find all artifacts that
contributed to derive artifact as, but not artifact ag over provenance graph PG. Using the difference operator, this query can be
expressed as 6[,, DMd(g ](PG) 8[[, Did(g ](PG) The result of the query is shown in Fig. 9(f).

3.3.5. Example provenance queries expressed using the provenance graph algebra

To evaluate the feasibility of the operators defined in the provenance graph algebra, we use eight example provenance queries
(see Table 1), which require the computation of transitive relationships to track ancestor nodes. These queries, including four
queries (Q1-Q4) for the Load Workflow defined in the Third Provenance Challenge [9] and four queries (Q5-Q8) for a synthetic
workflow consisting of a large number of steps, can be expressed using our provenance graph algebra (these queries can be also
expressed in OPQL as shown later in Fig. 15). First, let PG; and PG, be the provenance graphs produced by the execution of the

Table 1
The example provenance queries expressed using the provenance graph algebra.

Q1: For a given detection (detectID), which CSV files contributed to it? = Olp,e 54 rdetectin' (PG1) N 8(p, vatue—scsvs | (PC1)

Q2: Which steps were completed successfully before the halt occurred? = O[pyc( ssuccess )] (PG1)

Q3: Why is this entry (ccdID) in the database? = ﬁ[Pq:G(’cchD’)]<Pcl>

Q4: Which operation executions were necessary for the Image table to contain a particular value? = B[py-c( smagex')) (PG1)

Q5: Display dependencies of all the data products that contributed to derive the last data product (id = a,). = 5[Pd.Dﬁ“’ @] (PGy)
Q6: Display dependencies of all the steps that were applied to trigger the last step (id = p,). = [P ™, ](PGZ)

Q7: Display dependencies of all the data products that were used by the last step (id = p,). = 6p,.u(p,) (PG2)

Q8: Display dependencies of all the steps that contributed to generate the last data product (id = an) b[P Glan) ](PGZ)

Please cite this article as: C. Lim, et al., OPQL: Querying scientific workflow provenance at the graph level, Data Knowl. Eng. (2013),
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query :: = basic-query
| query UNION query
| query INTERSECT query
| query MINUS query
basic-query :: = single-node construct (arg)
| single-step-edge-forward construct (arg)
| single-step-edge-backward construct (arg)
| multi-step-edge construct (arg)
single-node construct :: = A | P | AG
single-step-edge-forward construct :: =
USD | WGB | WCB | WDF | WTB
single-step-edge-backward construct :: =
USD" | WGB" |WCB" | WDF" | WTB"
multi-step-edge construct :: =
USD* | WGB* | WDF* | WTB*
arg :: = basic-query | node-expression (X,,)
node-expression (X,,) :: = artifact-node-expression (X,)
| process-node-expression (X,,)
| agent-node-expression (X ,)
artifact-node-expression (X,) :: =

A(X,) ={an | an € X4}
P(Xp) = {pn | pn € Xp}
AG(Xag) = {agn | agn € Xag}

USD(X,) ={an | pn € X, and (py,a,) € Ey}
WGB(Xa) = {pn | an € Xo and (an,pn) € Ey}
WCB(Xp) = {agn | pn € Xp and (pn,agn) € Ec}
WDF(X,) = {an2 | an, € Xy and (an,,an,) € E4}
WTB(Xp) = {pn2 | pn, € Xp and (pn,,pp,) € Et}
USDNX,) = {pn | an € Xa and (pn,an) € Ey}

WGBNX,) = {an | pn € Xp and (an,pn) € Eg}

WOBA(Xag) = {pn | agn € Xog and (pn,agn) € E.}
WDF"X,) = {an, | an, € Xo and (an,,an,) € Eq}
WTBXp) = {pn, | pry € Xp and (pny,Pn;) € Ei}

(©)

artifact-identifier (a,) | %artifact-value% (a,) | a*
process-node-expression (X)) :: =

process-identifier (p,,) | %process-value% (p,) | p*
agent-node-expression (X,g) 1 =

agent-identifier (ag,) | %agent-value% (ag,) | ag* WDF*(X,) = {an | U WDF*(a,) U WDF(X,)}
a, EWDF(X,)
(@) WTB*(Xp) = {pn | U wrB*(pa) U WIB(X,)}
llanll = {an} pn€WTB(X,)
Pnll = {pn} WGB (X)) ={p.| |J WTB'(p.) U WGB(X,)}
lagnll = {agn} BSH R
llav|| = {an | an € ids(a,) and a, € A} USD*(Xp) = {an | U WDF*(an) U USD(X,)}
HPVH = {pn | Pn € ’idé’(pu) and p, € P} EIRDRG
llagy|l = {agn | agn € ids(ag,) and ag, € AG} WDF"(X,) = {ay | U WDF"(a,) U WDF(X,)}
la*ll = {an | an € 4} e e
"Il = {pn | pn € P} WTB(X,) = {pn | U  WTB™(p.) U WTBAX,)}

PnEWTBN(X,)

llag™|l = {agn | agn € AG}
(b) (d

Fig. 10. OPQL syntax and semantics: (a) the OPQL syntax; (b) the semantics of node expression X,; (c) the semantics of the single-node constructs,
single-step-edge-forward constructs, and single-step-edge-backward constructs; and (d) the semantics of the multi-step-edge constructs.

Load Workflow and synthetic workflow, respectively. Then, as depicted in Table 1, query Q1, which asks for CSV files that
contributed to a given detection, can be answered by a query expressed as S[Pdmd(,dewmy)] (PG1)NS}p, vatue—rzcsvsr] (PG1)- 1t first finds

all artifacts that contributed to derive the artifact with the value “detectID” by S[Pd:md(,detemy)] (PGy), and then it retains those
artifacts whose values contain the CSV literal via the intersection with 61p, vatue—scsvi) (PG1)- Similarly, query Q5 can be answered
by S[Pd:wad(un)} (PG,). Second, query Q2, which asks for steps that were completed successfully before the halt occurred, can be
answered by a query expressed as B1p, . 2successt')] (PG1) to find all processes that contributed to generate artifacts with the value

“%success%”. In a similar fashion, the answers of queries Q3, Q4, and Q8 can be expressed as depicted in Table 1. Finally, query Q6,
which asks for a process dependency view for all the steps that contributed to trigger the last step (id = P,), can be satisfied by
using 6[,,{:TM v)] (PG>) and query Q7, which asks for a data dependency view for all data products that were directly or indirectly

used by the last step (id = P,), can be satisfied by using &p,.u(p,) (PG2).

3.4. OPQL syntax and semantics

We present an OPQL syntax that is required to formulate OPQL queries and a formal semantics for OPQL constructs. OPQL
queries are formulated against a provenance graph displayed by a graphical user interface.

Please cite this article as: C. Lim, et al., OPQL: Querying scientific workflow provenance at the graph level, Data Knowl. Eng. (2013),
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3.4.1. OPQL syntax

OPQL queries are built from the syntax in Fig. 10(a). An OPQL query is composed of either a basic query or a set operation of
two queries via set operators (i.e., UNION, INTERSECT, and MINUS). A basic query can be one of the single-node constructs (A, P,
and AG), one of the single-step-edge-forward constructs (USD, WGB, WCB, WDF, and WTB), one of the single-step-
edge-backward constructs (USD*, WGB*, WCB*, WDF*, and WTB"), or one of the multi-step-edge constructs (USD*, WGB*,
WDF*, WTB*, WDF**, and WTB**). Each of these constructs has an argument (arg) that can be either a node expression (X,) or a
basic query. If a construct has a basic query as an argument, it means a nested OPQL query; otherwise, it means a simple OPQL
query. A node expression (X;) can be expressed by an artifact node expression (X,), a process node expression (X;), or an agent

Construct Description Graphical Query Result
A (a) Find artifacts satisfying artifact a
P(p) Find processes satisfying process p

AG (ag) Find agents satisfying agent ag

USD (p) Find artifacts that process p used

USD” (a) Find processes that used artifact
WGB (a) Find processes that generated artifact a
WGB* (p) Find artifacts that process p generated
WCB (p) Find agents that controlled process p

WCB" (ag) Find processes that agent ag controlled

: y 4 P
WDF (a;) Find artifacts that derived artifact a; . «WasDerivedFrom ;/' a “‘.
WDF” (a5) Find artifacts that artifact a, derived :" az\\‘u wasDerivedFrom .

WTB (p;) Find processes that triggered process p; wasTriggeredBy b py

WTB" (p,) Find processes that process p, triggered Lop

WDEF* (a5) Find all the artifacts
that were applied to derive artifact a;

WTB* (ps) Find all the processes
that were applied to trigger process ps

USD* (ps) Find all the artifacts e
that process p; used directly or indirectly ° P

WGB* (as) Find all the processes
that were applied to generate artifact a;

WDF** (a;) Find all the artifacts
that were derived by artifact a;

WTB™ (p)) Find all the processes
that were triggered by process p;

Fig. 11. The description of the OPQL constructs and the graphical query results.

Please cite this article as: C. Lim, et al., OPQL: Querying scientific workflow provenance at the graph level, Data Knowl. Eng. (2013),
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node expression (X,g). The node expressions of an artifact, process, and agent can be a node identifier (i.e., an, p,, or ag,), a node
value (i.e., a,, py, or ag,) starting and ending with %, or a wildcard (i.e., a*, p*, or ag*), respectively.

3.4.2. OPQL semantics

Let PG = (N, E) be a provenance graph such that N =AU PUAGandE = E, U E; U E. U E4 U E,, as defined in Section 3.1. First,
each node expression X;, (i.e., X, {Xa, Xp, Xqg}) is defined as a function that maps a provenance graph (PG) to a set of nodes such that
X,(PG) returns a subset of N as depicted in Fig. 10(b), where ids(n,,) returns those nodes satisfying node value n, € {a,, P,, ag,}.

We define the following three types of OPQL constructs including single-node constructs, single-step-edge-forward constructs,
and single-step-edge-backward constructs. First, the single-node constructs play a role to retrieve nodes in a provenance graph,
and they are defined as functions that take a provenance graph PG = (N, E) and a node expression X,, and return those nodes
satisfying node expression X, such that X,(PG) < N. Specifically, given single-node construct G, (i.e., C, € {A, P, AG}), provenance
graph PG = (N, E), and node expression X, the semantics of the single-node constructs are defined by C,(X,,, PG) = {n | n € X,
(PG) < N}. For convenience, we generally omit PG when writing OPQL constructs and node expressions (as in Figs. 10(b), (c), (d),
11, and 15). Second, the single-step-edge-forward constructs and single-step-edge-backward constructs play a role to retrieve the
cause node (the destination of an arc) and the effect node (the source of an arc) representing a causal dependency between two
nodes in a provenance graph, respectively. The single-step-edge-forward constructs are defined as functions that take a
provenance graph PG = (N, E) and a node expression X,, for effect nodes and return cause nodes which have causal dependencies
with effect nodes satisfying X,(PG), while the single-step-edge-backward constructs are defined as functions that take a
provenance graph PG = (N, E) and a node expression X, for cause nodes and return effect nodes which have causal dependencies
with cause nodes satisfying X,(PG). Specifically, given single-step-edge-forward construct C, (i.e., C. € {USD, WGB, WCB, WDF,
WTB}), single-step-edge-backward construct C; (i.e., C; € {USD*, WGB*, WCB*,WDF*, WTB"}), provenance graph PG = (N, E), and
node expression X, the semantics of the single-step-edge-forward constructs and single-step-edge-backward constructs are
defined by Ce(Xm PG) — {ncause |nejfect e X, and (nejfect, nCaLlSE) = E} and C@(Xn, PG) — {neffect | peause = X, and (neffect' ncuu59) = E},
respectively. More details on the semantics of these constructs are shown in Fig. 10(c).

Given provenance graph PG,
DG = WDF*(ag);

(a)

with graph P, as A {
node A.vy;
node A.v,;
}
where A.e;(A.vy, A.vy).role = ‘wasDerivedFrom’
and A.v,.id = ‘ag’;
union all
graph P, as R {
node R.v;;
node R.v,;
}
where R.e;(R.v{, R.v;).role = ‘wasDerivedFrom’
and R.v;.id = A.v,.id;

DG = graph { };
for A in doc (PG)
let DG: = graph {
graph DG;
node A.v,, A.v,;
edge A.e;(A.vy, Avy);
unify DG.v,, A.v; where DG.v,.id = A.vy;

(b)

Fig. 12. Two different query expressions that generate a data dependency graph (DG) associated with artifact ag over the sample provenance graph (PG)
presented in Fig. 1(b): (a) an OPQL query expression and (b) a GraphQL query expression.
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Next, we define the multi-step-edge constructs (i.e., WDF,WTB,*"WGB*,USD*,WDF**, and WTB"*) as functions that take a
provenance graph PG = (N, E) and a node expression X, and return all the nodes which have direct or indirect causal
dependencies (i.e., transitive relationships) with those nodes satisfying X,(PG). These constructs allow user to track ancestor
nodes without formulating recursive queries. For example, let Fig. 9(a) be a provenance graph (PG) as input. Then,
multi-step-edge construct WDF*(as) returns all artifacts that contributed to derive artifact as. That is, it returns a set of artifacts
{ay, ay, as, a4} by the computation of transitive relationships associated with artifact a5 via existing causal dependencies (i.e., ({(as,
a4),(as,a3),(a4,a3),(as,az),(as,a,),(a,a;)} € Eq)). The semantics of these multi-step-edge constructs are depicted in Fig. 10(d).

A simple OPQL query is formulated by only an OPQL construct which has a node expression as an argument. Then, through
graph pattern matching over the nodes returned by the computation of a single construct, a new provenance graph as output is
extracted. In a similar way, a nested OPQL query is formulated by a combination of the OPQL constructs, and a new provenance
graph as output is extracted via graph pattern matching over all the nodes that were returned by the computation of all the
constructs in a nested OPQL query. To give a better understanding, we present simple OPQL query examples in Fig. 11, where the
description of the OPQL constructs and the graphical query results are provided. In addition, an OPQL query can be expressed using
a set operator between two OPQL queries since the result of a basic query is a provenance graph which consists of a set of nodes
and a set of edges. For example, given two OPQL queries Q; and Q,, a new OPQL query combining these two queries can be
formulated using set operators UNION, INTERSECT, and MINUS (e.g., Q; UNION Q,, Q; INTERSECT Q,, and Q; MINUS Q). More
details on the OPQL query expression are discussed in the following section.

3.5. Expressing provenance queries in OPQL

We discuss how provenance queries can be expressed in OPQL. As described in Section 3.4, an OPQL query is expressed as a
combination of OPQL constructs, each of which corresponds to each of the graph patterns. The OPQL query language provides users
with effective query formulation. For example, Fig. 12 shows two different query expressions that generate a data dependency graph
(DG) for artifact ag over the provenance graph depicted in Fig. 1(b). First, Fig. 12(a) shows an OPQL query expression to answer the
query via an OPQL construct, and then Fig. 12(b) shows a GraphQL query expression [19], which is expressed by a graph pattern and a
FLWR (For, Let, Where, Return) expression in XQuery. Although the query expressed in GraphQL results in the same output as that of
the OPQL query, the GraphQL query requires users to directly write a recursive query with a graph pattern; on the other hand, OPQL
allows users to effectively formulate the query with just writing WDF* (ag). OPQL supports graph queries at a higher level than
GraphQL. Therefore, OPQL is not tightly coupled to any particular storage strategy and, as we show in the following example, enables
simpler provenance queries than queries expressed in SQL, XQuery, and SPARQL. Fig. 13 shows query CQ1, which asks for CSV files
that contributed to a given detection (detectID) expressed in OPQL, SQL, XQuery, and in SPARQL. The four queries are meant for the
same provenance graph. As shown in Fig. 13, query languages SQL, XQuery, and SPARQL are closely coupled to the physical storage
strategies and their query expressions are more complex than OPQL. SQL query uses relation MultiStepWasGeneratedBy to find all
process identifiers contributed to the generation of the artifact with the value ‘detectID’ and then it retrieves artifacts that are CSV files
used by those processes. To accomplish the latter, SQL query uses the string ‘%Detection.csv’ as a pattern that matches against any

CQI: For a given detection (detectld), which CSV files contributed to it?

<OPQL>
USD(WGB*(%detectID%)) INTERSECT A(%Detection.csv)

<SQL>

SELECT DISTINCT A2.Value FROM Artifact A2, Used U,

(SELECT DISTINCT TG.Processld FROM MultiStepWasGeneratedBy TG, Artifact A

WHERE TG.Artifactld = A.Artifactld AND A.Value = ‘detectID’) As Pv

WHERE U .Processld = Pv.Processld AND U.Artifactld = A2.Artifactld AND A2.Value LIKE ‘%Detection.csv’

<XQuery>

let $d := doc(‘workflow_trace.xml’);

let $a := $d//artifact[value/function/parameter/ @val = *Detection’];

return local:derivedFrom($d, $a)[ends-with(value/function/parameter/ @val, ‘Detection.csv’)]

<SPARQL>

SELECT ?value

WHERE {?wgb PC3Prov:wgbSource pc3:DBEntryP2Detection_IterNumber3.

?wgb PC3Prov:wgbSource pc3:DBEntryP2Detection_IterNumber3. ?wgb PC3Prov:wgbTarget ?sxn.
?usd PC3Prov:usdSource ?sxn. ?usd PC3Prov:usdTarget ?var. ?var PC3Prov:hasType ?type.
FILTER(?type = “CSVFileEntry”) ?var PC3Prov:hasValue ?value}

Fig. 13. A sample provenance query expressed by query languages OPQL, SQL, XQuery, and SPARQL, respectively.
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content of column A2.Value that ends with ‘Detection.csv’. XQuery first reads an XML document (i.e., workflow_trace.xml), which
contains workflow provenance data. Then it finds artifacts that have the detection value from the XML document and returns all the
artifacts upstream containing a ‘Detection.csv’ file. In a similar way, SPARQL requires multiple triple patterns (resulting in multiple
joins) with filtering ‘CSVFileEntry’ to find all the artifacts associated with CSV files. Thus, in these four queries ‘Detection.csv’ is not the
artifact name, but rather a string used to find artifacts associated with CSV files. On the other hand, OPQL uses construct WGB* to find
all processes that contributed to generate an artifact whose value is ‘detectID’, and then it uses construct USD to find artifacts used by
those processes, and then it intersects with construct A(%Detection.csv) to retrieve artifacts that are CSV files. As a result, in terms of
usability, OPQL supports more effective query formulation than SQL, XQuery, and SPARQL. Furthermore, as depicted in Fig. 14, a query

& artifacts whose value

oy : 658 o (J contains CSV files

> i

. .
[

: "“’y '
. .

ReaﬁCSVFihmg A
% IsMatchCSVFile s

v

«

\

PR
GRS
. .
.

Yy W ¢ an artifact whose value is
X m) "261887437010025730" (detectID)

[y

Nodeld Value
2080 261887437010025730
LoadCSVFilelntoTable:3 LoadCSVFilelntoTable
IsMatchCSVFileColumnNames:3 IsMatchCSVFileColumnNames
ReadCSVFileColumnNames:3 ReadCSVFileColumnNames
1704 /Users/manish/Desktop/pc3/datasets/J062941-success/P2_J062941 _B001 _P2fits0_20081115_P2Detection.csv
1745 1240629487139
1686 /Users/manish/Desktop/pc3/datasets/J062941-success/P2 _J062941 B001 P2fits0_20081115 P2Detection.csv
1701 1240629486891
(a)
WALUE =

Msers/manish/Desktopipc3idatasets/J062941-success/P2_J062941_B001_P2fits0_20081115_P2Detection.csv

(b)

<?xml version="1.0" encoding="UTF-8" ?>
- <artifact id="a77">

- <value>

- «function id="1" name="file">

<parameter alias="" id="1" name="" type="edu.wayne.swf.test.basic:File"
val="/swf_test/pc3/sampledata/1062945/P2_J062945_B001_P2fits0_20081115_P2Detection.csv" />
</function=

</values=

<account id="accO1" /=
<fartifact>

./Data/3062941,/pP2_3062941_B001_P2fits0_20081115_P2Detection.csv-P2Detection
./Data/3062942,/pP2_3062942_B002_P2fits2_20081116_P2Detection.csv-P2Detection

Fig. 14. Sample OPQL, SQL, XQuery, and SPARQL query results: (a) a provenance graph retrieved by an OPQL query; (b) a relation with a single attribute retrieved
by an SQL query; (c) an XML document returned by an XQuery query; and (d) a set of variable bindings returned by a SPARQL query.
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result of an OPQL query is displayed as a provenance graph to give a better understanding to users while SQL returns a set of
tuples (i.e., a table), XQuery returns a sequence of XML nodes or an XML document, and SPARQL returns a set of variable
bindings.

In addition, to demonstrate the expressiveness of OPQL, we use 16 provenance queries, including three core queries (CQ) and
13 optional queries (OQ) defined in the Third Provenance Challenge [9]. In particular, we express some of these queries in OPQL
that are executable over our OPMProv system. Fig. 15 (which is extended from a figure presented in [16]) shows 13 provenance
queries in English, SQL, and OPQL, respectively (we omit the description of these queries and their answers. More details on these

CQIl:  For a given detection, which CSV files contributed to it?
SQL: SELECT DISTINCT A2.Value FROM Artifact A2, Used U,

(SELECT DISTINCT TG.OPMGraphld, TG.Processld FROM MultiStepWasGeneratedBy TG, Artifact A WHERE TG.OPMGraphld = A.OPMGraphld AND
TG.Artifactld = A.Artifactld AND A.Value ='261887437010025730' ) As Pv WHERE U.OPMGraphId = Pv.OPMGraphld AND U.Processld = Pv.Processld AND
U.OPMGraphld = A2.OPMGraphld AND U.Artifactld = A2. Artifactld AND A2.Value LIKE '%Detection.csv' AND U.OPMGraphld ="1"

OPQL: USD ( WGB* (%261887437010025730%)) INTERSECT A (%Detection.csv%)

CQ2:  The user considers a table to contain values they do not expect. Was the range check (IsMatchTableColumnRanges) performed for this table?
SQL: SELECT'YES' AS Answer
FROM (SELECT COUNT(G.Artifactld) AS Number FROM WasGeneratedBy G
WHERE G.Processld LIKE '%lIsMatchTableColumnRanges%' AND G.OPMGraphld ='1') AS Output WHERE Output.Number > 0
OPQL: WGB" (%IsMatchTableColumnRanges%)

CQ3:  Which operation executions were strictly necessary for the Image table to contain a particular (non-computed) value?
SQL:  SELECT Cp.Value As Operation, SUM(Cp.Number) As Count
FROM (SELECT DISTINCT TT.OPMGraphld, TT.CauseProcessld, P.Value, 1 As Number FROM MultiStepWasTriggeredBy TT, Artifact A, Process P,
WasGeneratedBy G WHERE TT.OPMGraphld = G.OPMGraphld AND G.OPMGraphld = A.OPMGraphld AND TT.EffectProcessld = G.Processld AND
G.Artifactld = A. Artifactld AND A.Value LIKE "%lmage%' AND TT.OPMGraphld = P.OPMGraphld AND TT.CauseProcessld = P.Processld) As Cp WHERE
Cp.OPMGraphld ='1' GROUP BY Cp.Value
OPQL: WTB* (WGB (%Image%)) INTERSECT P (%LoadCSVFileIntoTable%)

OQI: How many tables successfully loaded before the workflow halted due to a failed check?
SQL:  SELECT COUNT(*) AS Count FROM Artifact A, WasGeneratedBy G
WHERE A.OPMGraphld = G.OPMGraphld AND A Artifactld = G.Artifactld AND G.Processld LIKE 'IsMatchTableColumnRanges%' AND A.Value LIKE
'%success%' AND A.OPMGraphld ='1"
OPQL: WGB" (“%IsMatchTableColumnRanges%) INTERSECT A (%osuccess%)

0Q4:  Why is this entry in the database?
SQL:  SELECT Pv.Value, SUM (Pv.Number) As Count FROM (SELECT DISTINCT TT.OPMGraphld, TT.CauseProcessld, P.Value, 1 As Number
FROM MultiStepWasTriggeredBy TT, Artifact A, WasGeneratedBy G, Process P WHERE TT.OPMGraphld = G.OPMGraphld AND TT.EffectProcessld =
G.Processld AND TT.OPMGraphld = P.OPMGraphld AND TT.CauseProcessld = P.Processld AND A.OPMGraphld = G.OPMGraphld AND A.Artifactld =
G.Artifactld AND A.Value ="'261887437010025730") AS Pv WHERE Pv.OPMGraphld ='1' GROUP BY Pv.Value
OPQL: WTB* (WGB (%261887437010025730%))

OQ5: A user executes the workflow many times (say 5 times) over different sets of data (j062941, ..., j062945). He wants to determine, which of the execution halted?
SQL:  SELECT A.OPMGraphld, A.Value AS NameOfDataset
FROM Artifact A, WasGeneratedBy W WHERE A.OPMGraphld = W.OPMGraphld AND A.Artifactld = W.Artifactld AND A.Value LIKE 'J%halt%'
OPQL: WGB (%J%halt%)
0Q6:  Determine the step where Halt occurred?
SQL:  SELECT Hp.Value As HaltStep, SUM(Hp.Number) As Count FROM (SELECT DISTINCT P.OPMGraphld, P.Processld, P.Value, 1 As Number
FROM Artifact A, WasGeneratedBy G, Process P WHERE A Value LIKE '%halt%' AND A.OPMGraphld = G.OPMGraphld AND A.Artifactld = G.Artifactld AND
G.OPMGraphld = P.OPMGraphld AND G.Processld = P.Processld) As Hp WHERE Hp.OPMGraphld ='l' GROUP BY Hp.Value
OPQL: WGB (%halt%)

0OQ7: Determine data and associated granularities of the data being processed, when halt occurred?
SQL: SELECT DISTINCT A2.Artifactld, A2.Value FROM Artifact A1, WasGeneratedBy G, Artifact A2, Used U
WHERE Al.Value LIKE '"%halt%occurred%' AND A1.OPMGraphld = G.OPMGraphld AND A1.Artifactld = G.Artifactld AND U.OPMGraphld = G.OPMGraphld
AND U.Processld = G.Processld AND A2.OPMGraphld = U.OPMGraphld AND A2.Artifactld = U.Artifactld AND A2.OPMGraphld ="'l
OPQL: USD (WGB (%halt%occurred %))

0OQ8:  Which steps were completed successfully before the halt occurred?
SQL:  SELECT Sp.Value As Step, SUM (Sp.Number) As Count
FROM (SELECT DISTINCT TW.OPMGraphld, TW Processld, P.Value, 1 As Number FROM MultiStepWasGeneratedBy TW, Artifact A, Process P WHERE
TW.OPMGraphld = A.OPMGraphld AND TW.Artifactld = A Artifactld AND A.Value LIKE "%osuccess%' AND TW.OPMGraphld = P.OPMGraphld AND
TW.Processld = P.Processld) As Sp WHERE Sp.OPMGraphld ='1' GROUP BY Sp.Value
OPQL: WGB* (%success%)
0Q10: For a workflow execution, determine the user inputs?
SQL: SELECT A.Value FROM Used U, Artifact A WHERE U.OPMGraphld = A.OPMGraphld AND U.Artifactld = A. Artifactld AND NOT EXISTS (SELECT * FROM
WasGeneratedBy G WHERE G.OPMGraphld = A.OPMGraphld AND G.Artifactld = A Artifactld) AND A.OPMGraphld ="1'
OPQL: A (a*) MINUS WGB" (p*)

OQIl1: For a workflow execution, determine steps that required user inputs?

SQL: SELECT DISTINCT P.Processld, P.Value FROM Used U, Artifact A, Process P
WHERE U.OPMGraphld = A.OPMGraphld AND U.Artifactld = A. Artifactld AND U.OPMGraphld = P.OPMGraphld AND U.Processld = P.Processld AND NOT
EXISTS (SELECT * FROM WasGeneratedBy G WHERE G.OPMGraphld = A.OPMGraphld AND G. Artifactld = A.Artifactld) AND P.OPMGraphld ="'1'

OPQL: USD" (A (a*)) MINUS WGB" (p*)
0OQI12: For a workflow execution that halted, which files where processed successfully?

SQL: SELECT DISTINCT A2.Artifactld, A2.Value FROM WasGeneratedBy G, Artifact Al, Used U, Artifact A2 WHERE G.OPMGraphld = A1.OPMGraphld AND
G.Artifactld = Al.Artifactld AND Al.Value LIKE '%success%' AND U.OPMGraphld = G.OPMGraphld AND U.Processld = G.Processld AND A2.OPMGraphld =
U.OPMGraphld AND A2 Artifactld = U.Artifactld AND A2.Value LIKE '"%CSVFileEntry%' AND A2.OPMGraphld ='1'

OPQL: USD (WGB (%success%)) INTERSECT A (%CSVFileEntry%)
OQ13:  Display the following provenance views: data dependency view and step dependency view.

SQL: SELECT EffectProcessld, CauseProcessld FROM MultiStepWasTriggeredBy WHERE OPMGraphId ='1";

SELECT EffectArtifactld, CauseArtifactld FROM MultiStepWasDerivedFrom WHERE OPMGraphld ='1";
OPQL: WDF* (a*); WTB* (p*)

Fig. 15. Provenance queries expressed by OPQL for the Third Provenance Challenge questions.
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query processing can be found in [16]). As presented in Fig. 15, OPQL queries support simpler query expressions than SQL queries
although query results are the same.

4. Implementation of OPQL

In this section, we discuss how our OPQL is implemented via OPMProv. As described in Section 2, OPMProv employs relational
database technologies to manage and query scientific workflow provenance. As a result, the provenance store of OPMProv is
implemented using RDBMS DB2 (v9.7.0.441). We implement OPQL, a graph-level provenance query language as a Web service
using Java and Axis2. The OPQL Web service takes an OPQL query as input, translates an OPQL query to an equivalent SQL query
and executes the SQL query translated in OPMPRrov, and returns a provenance graph as output. To invoke the OPQL Web service,
we implement two kinds of user-friendly GUIs that allow users to formulate and execute OPQL queries over a provenance graph:
one is OPMProVis? (desktop version) implemented in Java and JGraph and the other is OPMProVis" (web version) implemented
in JSP and mxGraph [33]. As the need often arises to display provenance graphs or query results it is important to reduce response
time for provenance querying and OPM graph reconstruction. To this end, we present an algorithm, called GraphConstruct to
reconstruct an OPM provenance graph by translating provenance data stored in relational database into OPM-compliant XML
serialization of the provenance graph. We present the details of this algorithm in Section 6. At the high level, the algorithm
retrieves provenance graph constituents from the corresponding tables in OPMPRrov, creates nodes and edges for a provenance
graph, and constructs a provenance graph. The algorithm is implemented in both OPMProVis? and OPMProVis" to visualize not
only a whole provenance graph but also the result of an OPQL query. Fig. 16(a) shows the output of OPQL query WDF*(a4) in
OPMProVis? and Fig. 16(b) shows the output of OPQL query WTB*(ps) in OPMProVis".
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Fig. 16. Visualizing provenance graphs: (a) the output of OPQL query WDF* (a4) in opmprovis® and (b) the output of OPQL query WTB* (p3) in opmprovis™.
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5. Provenance graph reconstruction

Algorithm 1 shows an algorithm that retrieves an OPM graph constituents from OPMPRrov store and builds a provenance graph
data structure PG. We illustrate the procedure for building a graph associated with one corresponding account as described in
[15]. The account identifier accld is retrieved from the graphical user interface. The algorithm can be easily extended to handle
multiple accounts. GraphConstruct algorithm contains four steps. First, GraphConstruct takes as input results obtained from a
relational database storing OPM-compliant provenance data (lines 5-12), and creates sets Rq, Ry, Rag, Rus R, Ry, R, and R; that
correspond to three OPM nodes and five OPM edges, respectively. During the second step (lines 13-22) vertices are created that
represent artifacts, processes and agents of an OPM graph (sets V,, V,, Vg respectively). The third step (lines 23-38) in the
algorithm creates edges of an OPM graph. In particular edges Used, WasGeneratedBy, WasDerivedFrom, WasControlledBy, and
WasTriggeredBy are created by retrieving elements from the sets Ry, Rg, R4, R, and R, respectively. Finally, the fourth step (lines
39-44) builds a graph data structure PG, which is a tuple (N, E), where sets N and E represent vertices and edges of the OPM graph
respectively. The obtained tuple PG is then returned as the final result of the algorithm.

6. Experimental study

The goal of our experimental study is to confirm the feasibility of using OPQL to query provenance graphs stored in a relational
database. As we shall explain shortly, this can be achieved by verifying that the performance of SQL queries produced by OPMProv
as well as the performance of our graph reconstruction algorithm is reasonable. The experiments presented below were
conducted on a PC with one 2.27 GHz dual core processor and 4 GB main memory, running the Windows 7 operating system. In
all the experiments, we show the results as the average of 20 trials.

Fig. 17 shows the process of provenance querying in OPMProv in detail. The querying lifecycle consists of five steps: 1) at the
client side, obtain an OPQL query from the user via a GUI form and submit it to the server as a SOAP Web service request,
2) translate the OPQL query into an equivalent SQL query, 3) evaluate this SQL query against the relational provenance storage,
4) reconstruct the OPM graph, and send the generated provenance graph serialized as an XML document to the client as a Web
service response, and 5) visualize the OPM-compliant XML document as a graph at the client side.

In the querying lifecycle, step one is trivial, and step five, which involves drawing the graph is accomplished by a third-party
library JGraph [33]. Optimizing graph visualization performance as well as minimizing network overhead are distinct problems
that are beyond the scope of this work.

Thus, from the perspective of querying provenance, which is the focus of this work, the crucial steps are two, three, and four.
Of these three steps, the first one takes virtually no time. Indeed, translating OPQL to SQL involves manipulating a handful of
objects that represent lexical constituents of a query, which is done momentarily in the main memory. Consequently, the most
time consuming steps are (1) executing the SQL query and (2) reconstructing graph data structure from the obtained results.
Therefore, to validate the feasibility of our approach, in our experimental study we show that OPMProv performs both of these
steps in a reasonable time.

6.1. Provenance query performance

To ensure that our OPQL-to-SQL mapping returns queries with reasonable execution times, we evaluated the query
performance of obtained SQL statements. To this end, we selected eight representative provenance queries and measured their
execution time against a popular UCDGC (UC Davis Genome Center) dataset, used in the Third Provenance Challenge [9], which
we placed in the storage of OPMPRrov (step three in Fig. 17). The UCDGC is a dataset that represents a provenance graph in which
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Fig. 17. Provenance querying lifecycle in OPMPRrov. Each step is labeled with a number in the top left corner.
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the total number of nodes and edges is 2909. Queries Q1-Q4 used in our experimental study are from the Third Provenance
Challenge (CQ1, 0Q8, 0Q4, and CQ3 respectively). Queries Q5-Q8 were written for a synthetic workflow with large number of
components.

Fig. 18(a) and (b) shows reasonable performance of our OPMPRrov implementation using off-the-shelf database system DB2.
Given eight representative provenance queries from Table 1, our OPQL-to-SQL translation algorithm produced SQL queries with
reasonable execution times of less than 0.06 s, as shown in Fig. 18(a).

Moreover, to explore the scalability of queries Q5, Q6, Q7, and Q8 that required more expensive computation of transitive
relationships in the provenance graph, we used four provenance datasets generated via the simulation over four synthetic
workflows. In these workflows, a workflow step was connected to only one other workflow step and the total number of steps (s)
were 1000, 2000, 3000, and 4000, respectively. Note that the larger the number of steps in a workflow, the more expensive the
computation of transitive relationships in its corresponding provenance graph. Queries Q5, Q6, Q7, and Q8 were evaluated on
these larger datasets. The query evaluation times for these queries are reported in Fig. 18(b). Overall, these queries showed
reasonable performance, returning results within around 12 s for the provenance dataset with 20,000 nodes and edges.

6.2. OPM graph reconstruction performance

To show that OPMPRrov reconstructs an OPM graph data structure in a reasonable time, we conducted experiments in which
we selected five provenance datasets (that represent provenance graphs) generated by different participants of the Third
Provenance Challenge [9], and inserted these datasets into OPMPRrov. We measured the time taken by our GraphConstruct
algorithm to reconstruct each graph, that is to build the graph data structure from the relational database, and serialize it as an
OPM compliant XML document. The graph reconstruction performance for these datasets is reported in Fig. 18(c), where the
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datasets are shown in the ascending order of the total number of nodes and edges. The obtained results show that OPMPRrov is
able to reconstruct provenance graphs for each of the five datasets in less than 2 s (Fig. 18(c)).

To explore provenance graph reconstruction performance and scalability on larger datasets, we used five provenance datasets
representing several provenance graphs with varying complexity. The complexity of each graph is measured in terms of the total
number of nodes and edges in it. The higher the number is, the more complex the graph is. We vary complexity of a provenance
graph by changing the total number of nodes and edges. Thus, in the five graphs we use in our study, the complexities vary as
follows (from the simplest to the most complex dataset): 5000, 10,000, 15,000, 20,000, and 25,000, respectively. Thus, the last
graph, which has a total 25,000 nodes and edges is the most complex of the five. The times taken by OPMProv to reconstruct each
graph are reported in Fig. 18(d). Fig. 18 confirms that OPMProv shows reasonable performance when reconstructing graphs from
the larger datasets, taking under 26 s to reconstruct the provenance graph with 25,000 nodes and edges.

7. Related work

In this section, we discuss related work on provenance query processing in existing systems. VisTrails [10] captures
provenance of both the workflow evolution and associated data products by a change-based mechanism and visualizes the
workflow evolution provenance as a version tree. VisTrails has the ability to visualize query results by highlighting workflow
versions that match query conditions by using the VisTrails query language, called vtPQL. Kepler [11,12] implements an
interactive provenance browser to visualize and query its proprietary workflow trace. In the provenance browser, users can create
different views and express complex and recursive provenance queries by the Kepler's query language, called QLP. The QLP query
language is defined on its proprietary provenance model, which explicitly supports workflow steps that process XML data and
employ update semantics; thus, QLP allows users to use XML data structures and XPath expressions when provenance queries are
formulated. A QLP query takes as input a workflow trace (T) defined as: T = <V, F, L>, where V is a set of vertices, which consists
of a set of XML data structures and a set of invocation, F is a set of flow edges, and L is a set of lineage edges [11] and returns a set
of lineage edges as output. In general, QLP can be useful in the situation where data is structured into nested collections like XML
data and dependencies are defined among data nodes. ZOOM [20] enables users to construct appropriate user views for
provenance graphs, and it provides users with an interface to query provenance information. Taverna [13] implements a semantic
provenance infrastructure and visualizes semantic, RDF-based provenance graphs based on a provenance ontology. Taverna
supports provenance queries using the SPARQL query language. Karma [14] presents an integrated provenance management
architecture that supports automated data provenance collection, annotated provenance, and provenance visualization. Karma
supports provenance queries in SQL and XPath. GraphQL [19] is a graph-based query language for graph databases. GraphQL is
defined over a data model representing attributes of a generic graph, and a GraphQL query takes a collection of graphs as input
and produces a collection of graphs using graph patterns. Like SQL, SPARQL, and XQuery, GraphQL requires users to directly
formulate recursive queries to track ancestor nodes. Another graph query language is discussed in [31], in which authors propose
Regular Path Queries variants that return provenance of graph queries. Other efforts to capture provenance of queries include
querying semiring-annotated data [28], storing provenance of database queries [29], and provenance and evaluation of SPARQL
queries on annotated RDF graphs [30]. However, the focus of these papers is distinct from our work, as the authors of [28-31]
focus on capturing the provenance of queries, i.e. how the resulting tuples were obtained from the input data source, whereas we
focus on querying provenance. In [34] authors propose algebraic operators as query language constructs to help users query
provenance graph. Our work on the other hand, focuses on the query language OPQL including graph patterns and provenance
graph algebra and presents its syntax and semantics. Finally, [32] discusses how data provenance can be used to empower
integration process and does not focus on the querying aspect.

View [18] supports both prospective and retrospective provenance collection [17] and develops two independent systems, called
RDFProv [1,21] and OPMProv [16], for provenance storage and querying. The OPMProv provenance model for the OPQL query
language is developed based on our previous work on RDFProv and the Open Provenance Model (OPM) [15], which aims to define a
standard provenance model to facilitate and promote provenance interoperability among heterogeneous systems. However, RDFProv
uses the general semantic Web language, SPARQL, to query provenance, while OPM does not provide a provenance query language.

Recently, W3C Provenance Working Group [22] has been created to produce a set of documents that define data model, serialization
formats and other definitions to provide a middle ground between various domain or software specific provenance models. As their effort
is still ongoing, in the future we will ensure that our work complies with W3C provenance standards once they are completed.

Using OPQL together with OPMProv provides the following advantages for querying provenance over generic graph database
language or other languages such as SQL or SPARQL: 1) OPQL is geared specifically towards provenance, featuring edges such as
WasGeneratedBy, WasDerivedFrom, WasTriggeredBy and others, not available in other languages. Thus, OPQL offers conciseness
and simplicity that neither generic languages nor SQL nor SPARQL can provide. For example, Fig. 13 presents the same query
written in SQL, XQuery, SPARQL and OPQL. From the figure it is clear that OPQL is by far the easiest and the most natural of the
four, 2) the fact that OPQL relies on the popular OPM provenance model minimizes the learning curve for the user. Indeed, as more
and more scientists become familiar with OPM model, it is easier and more natural to use this knowledge to query provenance
rather than to learn a new query language. 3) Unlike SQL, OPQL does not require the user to know the underlying storage schema.
If the schema changes, the original OPQL query still produces the same result, whereas the SQL query needs be edited. 4) OPQL
is technology-independent, and therefore can be integrated with any scientific workflow system. SQL on the other hand is
only compatible with relational database technology which limits its use in workflow systems with non-relational storage.
5) OPMProv reconstructs provenance graph from the results obtained from executing an SQL query. Without OPMPRrov the user
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would be forced to translate returned row sets into graphs himself, which is tedious. In summary, OPQL together with OPMPRrov
free users from low-level details of provenance storage and querying a simple query language and intuitive results in the form of a
graph. This paper provides OPQL to support the querying of scientific workflow provenance at the graph level, covering six types
of graph patterns, a provenance graph algebra, OPQL syntax and semantics, implementation, and evaluation. This paper extends
[23] with the following additional contributions:

1 We introduce five new mapping functions (i.e., 03,04, 0;,0;,0;) for graph pattern P, in Section 3.2. These mapping functions
enable users to retrieve causal dependencies between nodes using our mphOPQL language.

2 We propose an OPQL syntax that is required to formulate OPQL queries and a formal semantics for OPQL constructs, resulting in
a new Section 3.4. This provides a formal foundation for OPQL.

3 We present the architecture of our OPMPRrov system in the context of the scientific workflow management system.

4 We present 13 queries out of 16 queries defined in the Third Provenance Challenge [9] in OPQL to demonstrate the
expressiveness of OPQL in Section 3.5. These queries expressed in OPQL are executable in the OPMProv system.

5 We implement the OPQL Web service to provide users with a provenance querying service for scientific workflows in Section 4.
In addition, we implement user-friendly GUIs, such as OPMProVis* (web version) and OPMProVis? (desktop version), to invoke
the OPQL Web service. This expands applicability of OPQL.

8. Conclusions and future work

In this paper, we designed the OPQL query language, including six types of graph patterns, a provenance graph algebra, and
OPQL syntax and semantics, that enables querying of provenance at the graph level. We then implemented OPQL using a Web
service via our OPMProv system; therefore, users can invoke the Web service to execute OPQL queries in user-friendly GUIs, such
as OPMProVis” and OPMProVis™. Finally, we conducted experiments to evaluate the performance and feasibility of OPMPRov on
OPQL provenance querying, and the experimental results showed reasonable performance.

In the future we plan to continue our research with OPMProv in four major directions. First, we plan to benchmark the
performance of OPMProv using tools such, as the University of Texas Provenance Benchmark [24], as well as to compare the
querying performance of our system with other provenance querying systems. Second, while in this paper we focused on
querying a single provenance graph, in the future we will explore querying multiple provenance graphs. For example, if several
workflow runs used the same artifact as a workflow input, the need may arise to find all artifacts derived from this artifact across
provenance graphs representing several workflow runs. Third, we plan to explore query optimization [27], in which among other
things we will study the performance of all 14 queries from the Third Provenance Challenge. Finally, we plan to study provenance
security [25], particularly compliance management. This may include, for example managing permissions to read, write and
modify artifacts, as well as history of reads, writes and modifications.

While much research has been done on database usability, usability research in provenance querying is still in its infancy [26].
This paper takes one of the first steps to query provenance at the graph level. More study about usability, especially from an end
user perspective is needed in the future.
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Appendix A. Database schema

This appendix details our database schema that we use for storing, reasoning, and querying the OPM-compliant provenance
data. Fig. A.1 presents the schema, which includes 29 relations, where the first twenty four of them are materialized relations and
the remaining five are non-materialized views.

Each relation contains an OPM graph identifier (i.e., attribute OPMGraphld) that identifies multiple workflow runs of a certain
workflow. We require every row in relations Artifact, Process, Agent, Used, etc. to have at least one account and thus at least one
row in the corresponding xxxHasAccount relations. This participation requirement eliminates the burden of dealing with missing
values when computing relational joins and can be met on the data insertion stage by introducing a default account.

The primary keys of these twenty four relations are also included in Fig. A.1. For example, the ArtifactHasAccount relation has
(OPMGraphld, Artifactld, Account) as the primary key and (OPMGraphld, Artifactld) as the foreign key referencing the Artifact
relation. Similarly, the ArtifactAnnotation relation has the primary key (OPMGraphld, Artifactld, Property, Value) since according
to OPM single property can have multiple values, and it has the foreign key (OPMGraphld, Artifactld) referencing the Artifact
relation. We also define a number of views in our schema. While the view WasTriggeredBy implements single-step inference
(i.e., completion rule) defined in OPM [15], views MultiStepWasDerivedFrom, MultiStepWasTriggeredBy, MultiStepUsed, and
MultiStepWasGeneratedBy implement multi-step inferences (i.e., multi-step versions of existing edges) presented in OPM [15].
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. Artifact (OPMGraphld, Artifactld, Value)
. Process (OPMGraphld, Processld, Value)
. Agent (OPMGraphld, Agentld, Value)

. Used (OPMGraphld, Processld, Role, Artifactld, OTimeLower, O TimeUpper)

. WasGeneratedBy (OPMGraphld, Artifactld, Role, Processld, OTimeLower, OTimeU pper)

. WasControlledBy (OPMGraphld, Processld, Role, Agentld, O TimeStartLower, O TimeStartUpper,

OTimeEndLower, OTimeEndUpper)

. ProcessHasAccount (OPMGraphld, ProcessId, Account)
. AgentHasAccount (OPMGraphld, Agentld, Account)
. UsedHasAccount (OPMGraphld, Processld, Role, Artifactld, Account)

. WasDerivedFrom (OPMGraphld, EffectArtifactld, CauseArtifactld, OTimeLower, O TimeUpper)
. ExplicitW asTriggeredBy (OPMGraphld, EffectProcessld, CauseProcessld, OTimeLower, O TimeU pper)
. ArtifactHasAccount (OPMGraphld, Artifactld, Account)

. WasGeneratedByHasAccount (OPMGraphld, Artifactld, Role, Processld, Account)

. WasControlledByHasA ccount (OPMGraphld, Processld, Role, A gentld, Account)

. WasDerivedFromHasAccount (OPMGraphld, EffectArtifactld, CauseArtifactld, Account)

. ExplicitW asTriggeredByHasAccount (OPMGraphld, EffectProcessId, CauseProcessld, Account)

. ProcessAnnotation (OPMGraphld, Processld, Property, Value)
. ArtifactAnnotation (OPMGraphld, Artifactld, Property, Value)
. AgentAnnotation (OPMGraphld, A gentld, Property, Value)

. UsedAnnotation (OPMGraphld, Processld, Role, Artifactld, Property, Value)

. WasGeneratedByAnnotation (OPMGraphld, Artifactld, Role, Processld, Property, Value)

. WasControlledByAnnotation (OPMGraphld, Processld, Role, A gentld, Property, Value)

. WasDerivedFromAnnotation (OPM Graphld, EffectArtifactld, CauseArtifactld, Property, Value)

. ExplicitW asTriggeredB yAnnotation (OPM Graphld, EffectProcessld, CauseProcessld, Property, Value) // key =
. WasTriggeredBy (OPMGraphld, EffectProcessld, CauseProcessld, Account, OTimeLower, OTimeUpper)

. MultiStepW asDerivedFrom (OPMGraphld, EffectArtifactld, CauseArtifactld, Account)
. MultiStepW asTriggeredBy (OPMGraphld, EffectProcessld, CauseProcessld, Account)

. MultiStepUsed (OPMGraphld, Processld, Artifactld, Account)
. MultiStepW asGeneratedBy (OPMGraphld, Artifactld, Processld, Account)

/I key = {OPMGraphld, Artifactld}

/I ' key = {OPMGraphld, Processld}

/I key = {OPMGraphld, Agentld}

/I key = {OPMGraphld, Processld, Artifactld, Role}
/I 'key = {OPMGraphld, Artifactld, Processld, Role}
/I key = {OPMGraphld, Processld, Agentld, Role}

/I key = {OPMGraphld, EffectArtifactld, CauseArtifactld}
/I key = {OPMGraphld, EffectProcessld, CauseProcessld}
/I key = {OPMGraphld, Artifactld, Account}

/I key = {OPMGraphld, Processld, Account}

/I key = {OPMGraphld, A gentld, Account}

/I 'key = {OPMGraphld, Processld, Artifactld, Role, Account}

/I key = {OPMGraphld, Artifactld, Processld, Role, Account}

/I 'key = {OPMGraphld, Processld, Agentld, Role, Account

/I key = {OPMGraphld, EffectArtifactld, CauseArtifactld, Account}
/I key = {OPMGraphld, EffectProcessld, CauseProcessld, Account}
/I key = {OPMGraphld, Processld, Property, Value }

/I key = {OPMGraphld, Artifactld, Property, Value}

/I key = {OPMGraphld, A gentld, Property, Value}

/I ' key = {OPMGraphld, Processld, Role, Artifactld, Property, Value }

/I ' key = {OPMGraphld, Artifactld, Role, Processld, Property, Value}

/I 'key = {OPMGraphld, Processld, Role, A gentld, Property, Value}

/I 'key = {OPMGraphld, EffectArtifactld, CauseArtifactld, Property, Value}
OPMGraphld, EffectProcessld, CauseProcessld, Property, Value}
/] view

/] view

/I view

/] view

/] view

—_———

Fig. A.1. Database schema.
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