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Fig. 1. We introduce path-space differentiable rendering, a new theoretical framework to estimate derivatives of radiometric measurements with respect
to arbitrary scene parameters (e.g., material properties and object geometries). By directly differentiating full path integrals, we derive the differential path
integral framework, enabling the design of new unbiased Monte Carlo methods capable of efficiently estimating derivatives in virtual scenes with complex
geometry and light transport effects. This example shows a dinning room scene lit by the sun from outside the window. On the right, we show the corresponding
derivative image with respect to the vertical location of the sun. (Please use Adobe Acrobat to view the teaser images to see them animated.)

Physics-based differentiable rendering, the estimation of derivatives of ra-

diometric measures with respect to arbitrary scene parameters, has a diverse

array of applications from solving analysis-by-synthesis problems to train-

ing machine learning pipelines incorporating forward rendering processes.

Unfortunately, general-purpose differentiable rendering remains challenging

due to the lack of efficient estimators as well as the need to identify and

handle complex discontinuities such as visibility boundaries.

In this paper, we show how path integrals can be differentiated with

respect to arbitrary differentiable changes of a scene. We provide a detailed

theoretical analysis of this process and establish new differentiable rendering

formulations based on the resulting differential path integrals. Our path-

space differentiable rendering formulation allows the design of new Monte

Carlo estimators that offer significantly better efficiency than state-of-the-art

methods in handling complex geometric discontinuities and light transport

phenomena such as caustics.

Authors’ addresses: Cheng Zhang, University of California, Irvine, chengz20@uci.edu;

Bailey Miller, Carnegie Mellon University, baileymark.miller@gmail.com; Kai Yan,

University of California, Irvine, kyan8@uci.edu; Ioannis Gkioulekas, Carnegie Mellon

University, igkioule@andrew.cmu.edu; Shuang Zhao, University of California, Irvine,

shz@ics.uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2020/7-ART143 $15.00

https://doi.org/10.1145/3386569.3392383

We validate our method by comparing our derivative estimates to those

generated using the finite-difference method. To demonstrate the effective-

ness of our technique, we compare inverse-rendering performance with a

few state-of-the-art differentiable rendering methods.
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1 INTRODUCTION
Physics-based light transport simulation, a core research topic in

computer graphics since the field’s inception, focus on numerically

estimating radiometric sensor responses in fully specified virtual

scenes. Previous research efforts have led to mature forward ren-
dering algorithms that can efficiently and accurately simulate light

transport in virtual environments with high complexities.

Differentiable rendering computes the derivatives of radiometric

measurements with respect to differential changes of such environ-

ments. These techniques can enable, for example: (i) gradient-based
optimization when solving inverse-rendering problems; and (ii) ef-

ficient integration of physics-based light transport simulation in

machine learning and probabilistic inference pipelines.
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Unfortunately, unlike forward rendering, differentiable render-

ing remains challenging. One key challenge is the lack of efficient

Monte Carlo estimation techniques. In the forward case, the path
integral formulation introduced by Veach [1997] has opened the

door to the design of sophisticated rendering algorithms including

bidirectional path tracing and many Markov-Chain Monte Carlo

(MCMC) rendering techniques (e.g., [Jakob and Marschner 2012;

Pauly et al. 2000; Veach and Guibas 1997]). Similar formulations are

lacking for differentiable rendering, causing state-of-the-art tech-

niques [Li et al. 2018a; Loubet et al. 2019; Zhang et al. 2019] to rely

on unidirectional path tracing, which has been demonstrated to

be inefficient in handling complex light transport effects such as

indirect-dominated illumination and caustics.

Another challenge, which is unique to differentiable rendering,

is the need to handle discontinuities via edge or boundary inte-

grals. Previously, this was handled by either tracing expensive “side

paths” [Li et al. 2018a; Zhang et al. 2019] or using approximate

reparameterizations that introduce bias [Loubet et al. 2019]. To our

knowledge, there does not exist any prior solution to this problem

that is both efficient and unbiased.

In this paper, we address both challenges by (i) introducing the

differential path integral formulation, the differentiable-rendering

counterpart of the path integral for forward rendering; and (ii) pro-

viding comprehensive theoretical and empirical analysis.

Concretely, our contributions include:

• The differentiation of full path integrals with respect to arbitrary

scene parameterizations (§5.1), resulting in our differential path
integrals comprised of completely separated interior and boundary
components that can be estimated independently using different

Monte Carlo estimators.

• A reparameterization of the path integral (§5.2) that minimizes the

types of discontinuities to be handled by the boundary integral.

• New unbiased Monte Carlo methods that estimate, respectively,

the interior and boundary components of our differential path in-
tegrals (§6). Our technique greatly outperforms previous methods

for complex scene geometries and light transport effects.

To facilitate the derivation of our main results in §5 and §6, we

utilize mathematical tools from continuum and fluid mechanics

[Cermelli et al. 2005; Gurtin 1981], which we briefly review in §3,

for their generality and rigor. Additionally, as a warm-up, we apply

these tools to differentiate direct-illumination integrals in §4.

To validate our theory and algorithms, we compare our derivative

estimates with those produced using finite differences (Figures 12

and 13). To demonstrate the effectiveness of our method, we com-

pare (i) derivative images generated with our technique and state-

of-the-art approaches (Figures 14 and 17); and (ii) inverse-rendering

performance using gradients estimated with these methods (Fig-

ures 15, 16, and 18).

2 RELATED WORK
Path-space rendering. Veach [1997] introduced the path integral

formulation arising from recursively expanding the rendering equa-

tion [Kajiya 1986]. This formulation expresses radiometric mea-

surements as high-dimensional integrals (instead of solutions to

integral equations), enabling the development of many new Monte

Carlo estimators (e.g., [Jakob andMarschner 2012; Veach and Guibas

1995, 1997]) that are capable of efficiently simulating challenging

effects such as indirect illumination and near-specular transport. In

this paper, we introduce a differential path integral formulation for

differentiable rendering.

Derivatives for rendering. Analytical derivatives have been used

in forward rendering to compute pixel footprints [Igehy 1999], han-

dle specular light paths [Chen and Arvo 2000; Jakob and Marschner

2012], use Hamiltonian Monte Carlo to sample paths [Li et al. 2015],

and enable interactive editing of single-scattering albedo [Hašan and

Ramamoorthi 2013]. Arvo [1994] presented an analytical method for

calculating the gradients of irradiance in diffuse scenes. Ramamoor-

thi et al. [2007] introduced a first-order analysis of light transport,

focusing on effects such as soft shadows. All these derivatives are

specialized for certain types of light transport effects, and most of

them neglect geometric discontinuities.

Physics-based differentiable rendering. Differentiable rendering
for specific light transport effects has been used to solve analysis-

by-synthesis problems in volumetric scattering [Gkioulekas et al.

2016, 2013], cloth rendering [Khungurn et al. 2015], prefiltering of

high-resolution volumes [Zhao et al. 2016], appearance modeling of

human teeth [Velinov et al. 2018], fabrication of translucent materi-

als [Sumin et al. 2019], reflectance and lighting estimation [Azinovic

et al. 2019], and 3D reconstruction [Tsai et al. 2019].

A main challenge towards developing general-purpose differen-

tiable rendering engines has been the differentiation with respect

to scene geometry, which generally requires calculating additional

boundary integrals. To address this problem, Li et al. [2018a] intro-

duced a Monte Carlo edge-sampling method that provides unbiased

estimates of these boundary integrals. This technique was then gen-

eralized by Zhang et al. [2019] to handle volumetric light transport.

Concurrently, Loubet et al. [2019] proposed a reparameterization-

based method to avoid computing boundary integrals altogether,

at the cost of introducing bias. Despite their ability to differentiate

with respect to arbitrary scene parameterizations, all these methods

are obtained by differentiating the rendering equation [Kajiya 1986]

(and the radiative transfer equation [Chandrasekhar 1960]), and rely

on unidirectional path tracing for derivative estimations, which can

be inefficient when handling complex scenes.

Derivatives for vision. Having derivatives of rendered images al-

lows physics-based rendering to be efficiently integrated into deep

learning pipelines (e.g., as the decoder of an auto-encoder architec-

ture [Che et al. 2018]). Many recent works utilize various forms of

rendering losses to regularize the training and improve generaliza-

tion of neural network models [Che et al. 2018; Kato et al. 2018; Li

et al. 2018b; Meka et al. 2018; Sengupta et al. 2018; Wu et al. 2017].

The renderers used in most of these works make restrictive sim-

plifications such as single-bounce illumination [Loper and Black

2014].

Automatic differentiation. Automatic differentiation allows the

derivative of a function specified by a computer program to be

evaluated numerically. These techniques have been widely used in

machine learning and statistical inference [Griewank and Walther
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Table 1. List of symbols commonly used in this paper.

Symbol Definition

𝑓 measurement contribution

Ω path space

𝜕Ω boundary path space

` area-product measure

` ′ differential area-product measure

M(𝜋) evolving surface

B reference configuration

𝒑 material point

X motion

P reference map

�̂� (local or global) surface parameterization

𝒏(𝒙) unit normal of a surface at 𝒙
𝒏𝜕A (𝒙) unit normal of a curve 𝜕A at 𝒙
𝑉 (𝒙) scalar normal velocity of a surface at 𝒙
𝑉𝜕A (𝒙) scalar normal velocity of a curve at 𝒙
ΔM[𝜑] (𝜋) discontinuity curves wrt. 𝜑 inM(𝜋)
𝜕M[𝜑] (𝜋) extended boundary ofM(𝜋)
()• scene derivative

()□ normal scene derivative

2008; McClelland et al. 1986; Wengert 1964] to obtain gradients of

complex functions (e.g., neural networks). Most general-purpose dif-

ferentiable rendering techniques, including ours, utilize automated

differentiation. On the other hand, our main theory and algorithms

are orthogonal to the choice of automated differentiation method

and can benefit greatly from efficient implementations (e.g., [Nimier-

David et al. 2019]).

3 PRELIMINARIES
A main objective of this paper is to differentiate full path inte-

grals, which we review in §3.1, with respect to arbitrary differential

changes of the scene. As a path integral is comprised of nested sur-

face integrals, its differentiation largely boils down to calculating

derivatives of surface integrals. To this end, we utilize mathemat-

ical tools from continuum and fluid mechanics to (i) express the

evolution of surfaces; and (ii) differentiate integrals over evolving

surfaces. We provide a brief recap of these preliminaries in §3.2,

§3.3, and the supplemental document.

Table 1 summarizes commonly used symbols and their definitions.

3.1 The Path-Integral Formulation
We will be focusing on Veach’s path-integral formulation [1997]

of light transport, which has been widely used in physics-based

rendering, where a radiometric measurement 𝐼 is expressed as a

path integral of the form:

𝐼 =
∫
Ω 𝑓 (𝒙) d` (𝒙) . (1)

In this integral, each light path 𝒙 = (𝒙0, 𝒙1, . . . , 𝒙𝑁 ) with 𝑁 ≥ 1

is an ordered sequence of points 𝒙𝑛 ∈ M for 𝑛 = 0, . . . , 𝑁 , where

M is the union of all object surfaces in the scene. The integral

is performed over the path space Ω :=
⋃∞
𝑁=1
M𝑁+1

, and with

respect to the area-product measure ` defined as:

d` (𝒙) :=
∏𝑁
𝑛=0

d𝐴(𝒙𝑛), (2)

where 𝐴 is the surface-area measure. We will additionally be con-

sidering order-𝑁 path integrals of the form:

𝐼𝑁 =
∫
Ω𝑁

𝑓 (𝒙) d` (𝒙), (3)

where the integration domain Ω𝑁 :=M𝑁+1
is constrained to only

light paths
1
with 𝑁 segments and (𝑁 + 1) vertices. Then, it follows

that the full path integral equals 𝐼 =
∑∞
𝑁=1

𝐼𝑁 .

In both integrals (1) and (3), the measurement contribution
function 𝑓 captures the amount of radiant power carried by indi-

vidual light paths, and equals

𝑓 (𝒙) =
(∏𝑁−1

𝑛=0
𝑔(𝒙𝑛+1; 𝒙𝑛−1, 𝒙𝑛)

)
𝑊e (𝒙𝑁 → 𝒙𝑁−1). (4)

In this equation,𝑊e is the sensor importance (response), and

𝑔(𝒙𝑛+1; 𝒙𝑛−1, 𝒙𝑛) := 𝑓s (𝒙𝑛−1 → 𝒙𝑛 → 𝒙𝑛+1)𝐺 (𝒙𝑛 ↔ 𝒙𝑛+1), (5)

for 0 ≤ 𝑛 < 𝑁 . In Eq. (5), 𝑓s is the bidirectional scattering distri-
bution function (BSDF) when 𝑛 > 0, and the source emission
when 𝑛 = 0 (i.e., 𝑓s (𝒙−1 → 𝒙0 → 𝒙1) := 𝐿e (𝒙0 → 𝒙1) with 𝒙−1

being a dummy variable); and 𝐺 is the geometric term:

𝐺 (𝒙𝑛 ↔ 𝒙𝑛+1) = V(𝒙𝑛 ↔ 𝒙𝑛+1)𝐺0 (𝒙𝑛 ↔ 𝒙𝑛+1), (6)

where V is the mutual visibility function (which equals one if

𝒙𝑛 and 𝒙𝑛+1 are mutually visible and zero otherwise), and 𝐺0 is the

visibility-free component of 𝐺 :

𝐺0 (𝒙𝑛 ↔ 𝒙𝑛+1) :=
|𝒏(𝒙𝑛) · 𝝎𝑛 | |𝒏(𝒙𝑛+1) · −𝝎𝑛 |

∥𝒙𝑛+1 − 𝒙𝑛 ∥2
. (7)

In Eq. (7), 𝝎𝑛 = 𝒙𝑛 → 𝒙𝑛+1 := (𝒙𝑛+1 − 𝒙𝑛)/∥𝒙𝑛+1 − 𝒙𝑛 ∥ is the unit
vector pointing from 𝒙𝑛 toward 𝒙𝑛+1; 𝒏 is the unit-normal field; and

“·” indicates vector inner product.
The path-integral formulation has been generalized to also incor-

porate volumetric light transport [Pauly et al. 2000], but we omit

these details as we will be focusing on the surface-only case in the

rest of this paper.

3.2 Surface Evolution and Scene Derivatives
We now briefly review some concepts developed in continuum and

fluid mechanics, which we will use to mathematically describe the

differentiable evolution of surfaces through the three-dimensional

Euclidean space R3
. For more details, please refer to the supplemen-

tal document and Gurtin [1981].

Evolving surfaces. LetB be some abstract 2Dmanifold that we call

the reference configuration. A deformation2 of B is a smooth

and one-to-one function that maps B to some regular surfaceM.

We focus on parametric families of deformations and call each

such family amotion of B, which, formally, is a class C
3
function X

defined on B × R such that, for any fixed parameter value 𝜋 ∈ R,
X(·, 𝜋) is a deformation of B.3
1
We hyperlink many keywords to their definitions.

2
Deformations in classic continuum mechanics operate on volumes. In this paper, we

use definitions adapted for surfaces by Cermelli et al. [2005] in fluid mechanics.

3
In physics, the parameter 𝜋 is typically used to represent time; in our case, on the

contrary, 𝜋 is an abstract parameter controlling the global scene geometry.
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Reference
configuration

Fig. 2. Deformation, motion, and evolving surface: A motion X, for
each 𝜋 ∈ R, provides a deformation X( ·, 𝜋 ) that maps a reference config-
uration B continuously to a regular surface M(𝜋 ) ⊂ R3. The red curve
illustrates the trajectory of a single point (shown as the red dashed curve)
as the images of a material point 𝒑 ∈ B.

Provided a motion X, each deformation X(·, 𝜋) maps the refer-

ence B to the evolving surfaceM(𝜋) := {X(𝒑, 𝜋) : 𝒑 ∈ B} ⊂ R3
,

as illustrated in Figure 2. As deformations are assumed one-to-one,

X(·, 𝜋) has an inverse P(·, 𝜋) : M(𝜋) ↦→ B that is called a refer-
ence map and transforms the evolving surfaceM(𝜋) back to the

reference B.
Lastly, we call the set T := {(𝒙, 𝜋) : 𝒙 ∈ M(𝜋), 𝜋 ∈ R} ⊂ R4

the trajectory of B resulting from the motion X. We note that,

given a reference B, there may exist (infinitely) many X leading to
identical trajectories.

Material and spatial representations. Following the convention in

continuum mechanics, we introduce the following terminology:

• We call 𝒑 ∈ B amaterial point and 𝒙 ∈ M(𝜋) a spatial point.
Given a motion X and 𝜋 ∈ R, the deformation X(·, 𝜋) establishes
a continuous and one-to-one mapping from material points to

spatial ones.

• For a givenmotion X, amaterial field is a function of thematerial

point and parameter 𝜋 with domain B × R; a spatial field, on
the contrary, is a function defined on the trajectory T .

Throughout the paper, we will often encounter situations where

a quantity can be defined with respect to either the evolving sur-

faceM(𝜋), or the reference B; we will use the terms “spatial” and
“material”, respectively, to distinguish between these definitions.

Additionally, the deformation X(·, 𝜋) can be used as a change

of variables to convert surface integrals defined over the evolving

surfaceM(𝜋) to surface integrals over the reference B (and vice-

versa). To distinguish between the two parameterizations, in the

following we will refer to such integrals as spatial-form integrals
andmaterial-form integrals. We will use the same terminology

for integrals whose domain is defined based on the evolving sur-

faceM(𝜋), or the reference B—for instance, when the path space Ω
is defined with respect to an evolving surfaceM(𝜋), we will refer
to the path integral of Eq. (1) as the spatial-form path integral.

Surface parameterizations. In order to define derivatives of an

evolving surfaceM(𝜋) with respect to the parameter 𝜋 , we will

need to first have available a parameterization ofM(𝜋).

Neighborhood
of x

Fig. 3. Local velocity: Provided a surface parameterization �̂� , for any 𝜋
and 𝒙 ∈ M(𝜋 ) , assume 𝒙 to have local coordinates 𝝃 . Then, with 𝝃 fixed,
�̂� (𝝃 , ·) produces the local trajectory of 𝒙 near 𝜋 (illustrated as the red
dashed curve), whose derivative with respect to 𝜋 gives the corresponding
local velocity 𝒗 (𝒙, 𝜋 ) .

We can parameterize the evolving surfaceM(𝜋) locally based on

the corresponding trajectory T : A local parameterization near

fixed (𝒙, 𝜋) ∈ T takes the form
4
of �̂� (𝝃 , 𝜋 ′) that, for some open

O ⊂ R2
, satisfies the following conditions:

• �̂� (O, 𝜋) ⊂ M(𝜋) is a neighborhood of 𝒙 .

• For each fixed 𝜋 ′ near 𝜋 , �̂� (·, 𝜋 ′) is a smooth and one-to-one

function that maps O ⊂ R2
to some open subset ofM(𝜋 ′). For

each fixed 𝝃 ∈ O, �̂� (𝝃 , ·) is smooth near 𝜋 .

Please refer to the supplemental document for example local param-

eterizations of a few simple evolving surfaces.

Alternatively, when we have available a motion X for the evolving
surfaceM(𝜋), a global parameterization, which is effectively a

local one that remains constant for all (𝒙, 𝜋) ∈ T , can be induced via
�̂� (𝝃 , 𝜋) := X(𝒑(𝝃 ), 𝜋) where 𝒑 : O ↦→ B is a smooth and one-to-one

mapping that parameterizes the corresponding reference B.

Velocities. Given any spatial point 𝒙 ∈ M(𝜋) and a surface pa-

rameterization �̂� that is either local to (𝒙, 𝜋) or global, there exists
exactly one 𝝃 ∈ O satisfying �̂� (𝝃 , 𝜋) = 𝒙 . We call 𝝃 the local
coordinates of 𝒙 and use it to define the local velocity of 𝒙 as

𝒗 (𝒙, 𝜋) = 𝜕�̂� (𝝃 , 𝜋 ′)
𝜕𝜋 ′

����
𝜋 ′=𝜋

, (8)

as illustrated in Figure 3.

Assuming the evolving surfaceM(𝜋) to be oriented by a spatial

unit-normal field 𝒏(𝒙, 𝜋), it is well-known that the scalar normal
velocity 𝑉 = 𝒗 · 𝒏 is parameterization-independent, namely, it does

not depend on the choice of surface parameterization �̂� [Grinfeld

2013]. On the contrary, the local tangential velocity 𝒗tan = 𝒗−𝑉𝒏
is parameterization-dependent.

We now consider an evolving curve 𝜕A(𝜋) ⊂ M(𝜋) with a unit-

normal field 𝒏𝜕A (𝒙, 𝜋) defined to be tangent toM(𝜋) and normal

to 𝜕A(𝜋). We use “𝒏𝜕A” to indicate the unit-normal field over a

curve 𝜕A(𝜋) and “𝒏” to denote that over some surface.

The local velocity 𝒗𝜕A of 𝜕A(𝜋) can be defined similarly to

Eq. (8), and𝑉𝜕A = 𝒗𝜕A ·𝒏𝜕A indicates the scalar normal velocity
of 𝜕A(𝜋), which is parameterization-independent.

4
Strictly, a local parameterization should be expressed as �̂� (𝝃 , 𝜋 ′; 𝒙, 𝜋 ) . We omit the

dependency on 𝒙 and 𝜋 for easier readability.
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Tangent plane
at x

Fig. 4. Evolution of discontinuity curves: This example illustrates an
evolving surfaceM(𝜋 ) on which a binary-value scalar spatial field 𝜑 (𝒙, 𝜋 )
is defined. For some fixed 𝜋 ∈ R, assume 𝜑 (𝒙, 𝜋 ) to have discontinuity
curve ΔM[𝜑 ] (𝜋 ) ⊂ M(𝜋 ) with respect to 𝒙 (the orange curves). Assume
𝒙 to have local velocity 𝒗ΔM (𝒙, 𝜋 ) resulting from some surface parameteri-
zation that ensures 𝒙 to stay on ΔM[𝜑 ] near 𝜋 . Then, the parameterization-
independent scalar normal velocity𝑉ΔM (𝒙, 𝜋 ) , which is marked red, equals
𝒗ΔM (𝒙, 𝜋 ) · 𝒏ΔM (𝒙, 𝜋 ) with 𝒏ΔM (𝒙, 𝜋 ) being the curve normal (the pur-
ple arrow) that resides within the tangent plane at 𝒙 (in light purple).

Scene derivatives. For a scalar spatial field 𝜑 (𝒙, 𝜋) onM(𝜋), its
scene derivative (which is parameterization-dependent) and nor-
mal scene derivative (which is parameterization-independent) are

¤𝜑 (𝒙, 𝜋) = 𝜕

𝜕𝜋 ′
𝜑 (�̂� (𝝃 , 𝜋 ′), 𝜋 ′)

����
𝜋 ′=𝜋

, (9)

□
𝜑 = ¤𝜑 − 𝒗tan · gradM (𝜑), (10)

respectively, where 𝝃 is the local coordinates of 𝒙 , and gradM (𝜑)
denotes the surface gradient of 𝜑 .

When the surface parameterization �̂� produces zero tangential

velocity at some 𝒙 ∈ M(𝜋), i.e., 𝒗tan (𝒙, 𝜋) = 0, the normal scene

derivative (𝜑)□ reduces to the scene derivative ¤𝜑 .

3.3 Differentiating Surface Integrals
The path integral formulation of Eq. (1) effectively reduces physics-

based rendering into a problem of evaluating surface integrals. Con-

sequently, central to deriving differentiable rendering is the problem

of differentiating these integrals. Based on the concepts described

in §3.2, we will utilize a so-called transport relation5 that originated
in fluid mechanics [Cermelli et al. 2005].

We consider an evolving surfaceM(𝜋) oriented by a unit-normal

field 𝒏(𝒙, 𝜋). Let 𝜑 (𝒙, 𝜋) be a scalar spatial field defined onM(𝜋).
Assume that, for each fixed 𝜋 , 𝜑 (𝒙, 𝜋) is C

0
-continuous

6
with re-

spect to 𝒙 except along a zero-measure set of discontinuity curves
ΔM[𝜑] (𝜋) ⊂ M(𝜋) that consists of jump discontinuity points of

𝜑 (𝒙, 𝜋) and evolve continuously (see Figure 4). We define the ex-
tended boundary ofM(𝜋) with respect to 𝜑 , which we denote as

𝜕M[𝜑] (𝜋), as the union of the boundary 𝜕M(𝜋) and the discon-

tinuity curves ΔM[𝜑] (𝜋). When the scalar spatial field 𝜑 (𝒙, 𝜋) is
clear from the context, we omit “[𝜑]” and write ΔM(𝜋) and 𝜕M(𝜋)
for notational convenience.

5
Here the term “transport” refers to transport phenomena that are studied by many

sub-fields of physics such as continuum mechanics and thermodynamics.

6
In the rest of this paper, we omit C

0
and use “continuous” to indicate C

0
continuity.

Cermelli et al. [2005] have shown that the derivative of the inte-

gral of 𝜑 (𝒙, 𝜋) over an evolving surfaceM(𝜋) involves an interior
and a boundary term:

d

d𝜋

∫
M

𝜑 d𝐴 =

interior∫
M

(
□
𝜑 − 𝜑 ^𝑉

)
d𝐴 +

boundary∫
𝜕M

Δ𝜑 𝑉
𝜕M dℓ , (11)

where d𝐴 and dℓ are the surface-area and curve-length measures, re-

spectively; ^ is the total curvature (that is, the sum of the principal

curvatures);𝑉 and𝑉
𝜕M are the scalar normal velocity ofM(𝜋) and

that of its extended boundary 𝜕M(𝜋), respectively. Additionally,

Δ𝜑 (𝒙, 𝜋) :=

{
𝜑 (𝒙, 𝜋), for 𝒙 ∈ 𝜕M(𝜋)
𝜑− (𝒙, 𝜋) − 𝜑+ (𝒙, 𝜋), for 𝒙 ∈ ΔM(𝜋)

(12)

where 𝜑− (𝒙, 𝜋) and 𝜑+ (𝒙, 𝜋), respectively, denote the one-sided lim-

its of𝜑 (𝒙, 𝜋)when approaching 𝒙 from−𝒏ΔM (𝒙, 𝜋) and 𝒏ΔM (𝒙, 𝜋).
In a special case where the surfaceM is independent of 𝜋 and,

thus, exhibits no motion, it holds that 𝑉 = 0 and (𝜑)□ = ¤𝜑 . We can

then simplify Eq. (11) to the standard Reynolds [1903] transport

relation used by Zhang et al. [2019]:

d

d𝜋

∫
M 𝜑 d𝐴 =

∫
M ¤𝜑 d𝐴 +

∫
ΔM Δ𝜑 𝑉ΔM dℓ . (13)

Notice that, although 𝑉 = 0, 𝑉ΔM may be nonzero as the disconti-

nuity curves ΔM(𝜋) can still depend on the parameter 𝜋 .

In physics-based rendering, a virtual scene is generally parameter-

ized with a set of (mutually independent) scene parameters 𝝅 =

{𝜋1, 𝜋2, . . .}, where each 𝜋 𝑗 is associated with a motion X𝑗 of the
scene geometry. In the rest of this paper, we tackle the problem of

calculating partial derivatives of radiometric measurements 𝐼 given

by path integrals with respect to individual 𝜋 ∈ 𝝅 .

4 DIFFERENTIAL DIRECT ILLUMINATION
As a warm-up before developing our general theory in §5, we first go

over the case of direct illumination (i.e., one-bounce light transport).

As we will see, results obtained from this section generalize nicely

to the case of full path integrals. Therefore, we can use the direct

illumination case to develop intuition about the general case.

We consider a simple scene configuration with one static ob-

ject with surfaceM
obj

lit by a light source defined on an evolving

surface L(𝜋). Then, given two points𝒚, 𝒚′ ∈ M
obj

, the reflected ra-

diance exiting𝒚 toward𝒚′ resulting from direct illumination equals:

𝐼
direct

=

∫
L
𝐿e (𝒙 → 𝒚) 𝑓s (𝒙 → 𝒚 → 𝒚′)𝐺 (𝒙 ↔ 𝒚)︸                                              ︷︷                                              ︸

=: 𝑓
direct
(𝒙)

d𝐴(𝒙), (14)

where 𝐺 is the geometric term. Our goal is to derive the derivative

of 𝐼
direct

with respect to 𝜋 .

To simplify our derivation, we make two assumptions:

A.1 For all 𝒙 ∈ L(𝜋), there exists a surface parameterization such

that 𝒙 has zero tangential velocity.

A.2 𝐿e (𝒙 → 𝒚) 𝑓s (𝒙 → 𝒚 → 𝒚′) is continuous with respect to 𝒙 in

the interior of L(𝜋) when 𝒚, 𝒚′ ∈ M
obj

are fixed.
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Based on these assumptions, applying the transport relation of

Eq. (11) to the surface integral of Eq. (14) produces:

𝜕𝐼
direct

𝜕𝜋
=

interior∫
L

[ ¤𝑓
direct

− 𝑓
direct

^ 𝑉
]
d𝐴 +

boundary∫
𝜕L

Δ𝑓
direct

𝑉
𝜕L dℓ ,

(15)

where:

• ¤𝑓
direct

is the scene derivative of 𝑓
direct

and equals the normal scene

derivative (𝑓
direct
)□ under Assumption A.1.

• ^ is the total curvature.

• 𝜕L(𝜋) denotes the extended boundary of L(𝜋) comprised of the

boundary 𝜕L(𝜋) and the discontinuity curves ΔL[𝑓
direct
] (𝜋).

• 𝑉 and 𝑉
𝜕L are the scalar normal velocity of L(𝜋) and that of

𝜕L(𝜋), respectively.
• Lastly, Δ𝑓

direct
(𝒙) follows the definition in Eq. (12) and indicates

the difference in 𝑓
direct
(𝒙) across the discontinuity curves ΔL(𝜋).

Under Assumption A.2, this term equals

Δ𝑓
direct
(𝒙) = 𝐿e (𝒙 → 𝒚) 𝑓s (𝒙 → 𝒚 → 𝒚′) Δ𝐺 (𝒙 ↔ 𝒚). (16)

Implications of assumptions. Our derivation of Eq. (15) relies on

two key assumptions (i.e., A.1 and A.2). In what follows, we discuss

the implications of these assumptions.

Our first assumption (A.1) is that, for all 𝒙 ∈ L(𝜋), there exists
a surface parameterization �̂� that produces zero tangential veloc-

ity. In general, writing down such �̂� requires solving differential

equations. On the other hand, we note that, to calculate the scene

derivative
¤𝑓
direct

at some fixed 𝜋 , explicitly expressing the surface pa-

rameterization �̂� is unnecessary: As long as the local velocity 𝒗 (𝒙, 𝜋)
and the local change rate of the surface normal 𝒏(𝒙, 𝜋) can be nu-

merically evaluated at 𝜋 , so can
¤𝑓
direct

. When M(𝜋) allows ray
intersection to be computed analytically, which is usually the case

in practice, these quantities can be computed numerically by dif-

ferentiating the ray tracing process (see Eq. (19) of the work by

Zhang et al. [2019] for more details).

Alternatively, when L is independent of the scene parameter 𝜋 ,

Assumption A.1 is satisfied trivially. As we will show in §4.1, this

can be achieved by leveraging material-form rendering integrals.

Our second assumption (A.2) of (𝐿e 𝑓s) being continuous with

respect to 𝒙 typically implies the emitted radiance 𝐿e (𝒙 → 𝒚) and
the BSDF 𝑓s (𝒙 → 𝒚 → 𝒚′) to both be continuous (with 𝒚 and

𝒚′ fixed). This requires the absence of zero-measure (e.g., point

and directional) sources and ideal specular surfaces such as perfect

reflectors and smooth dielectric interfaces, which are also assumed

by prior works [Li et al. 2018a; Loubet et al. 2019; Zhang et al. 2019].

We notice that 𝐿e and 𝑓s can be discontinuous with respect to

𝒙 in the tangent plane of 𝒚 (i.e., for 𝒙 with 𝒏(𝒚) · (𝒚 → 𝒙) = 0),

violating Assumption A.2. Fortunately, when modulated with the

cosine factor |𝒏(𝒚) · (𝒚 → 𝒙) | from the visibility-free geometry

term 𝐺0, these discontinuities usually vanish.
7

7
With shading normals deviating greatly from geometric ones, discontinuities within

tangent planes may not vanish. We neglect this case for cleaner derivations, and our

theory can be easily generalized by making the extended boundary curves 𝜕L(𝜋 ) to

Reference
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y
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Fig. 5. Ourmaterial direct-illumination integral of Eq. (17) is over the 𝜋-
independent reference configuration B. In this example, if the light source
L is not occluded when viewed from 𝒚 , the boundary integral vanishes as
ΔB[ ˆ𝑓

direct
] (𝜋 ) = ∅.

Sources of discontinuities. In Eq. (15), 𝜕L(𝜋) is determined by the

boundary ofL(𝜋), as well as the discontinuity curvesΔL[𝑓
direct
] (𝜋)

comprised of jump discontinuity points of 𝑓
direct
(𝒙). Under Assump-

tion A.2, these discontinuities are entirely due to geometric term𝐺 .

Thus, ΔL[𝑓
direct
] (𝜋) = ΔL[𝐺 (·↔𝒚)] (𝜋).

Specifically, a discontinuous surface normal can lead to sudden

changes of the term |𝒏(𝒚) · (𝒚 → 𝒙) | with fixed 𝒙 ∈ M
obj

. Addi-

tionally, visibility boundaries correspond to discontinuities of the

mutual visibility function V. Geometrically, the discontinuities due

to surface normals are categorized by Zhang et al. [2019] as sharp
edges, whereas those due to visibility correspond to silhouette edges.

4.1 Material-Form Integrals
Prior works [Loubet et al. 2019; Zhang et al. 2019] have shown

that the boundary term in Eq. (15) can be very costly to estimate

in complex scenes. In what follows, we introduce a reformulation

of the surface integral (14) such that, after differentiation, we can

ignore the boundary 𝜕L(𝜋) of the evolving surface L(𝜋).
We assume L(𝜋) to have a global parameterization induced from

some motion X. Then, as shown in Figure 5, we can reformulate

Eq. (14) to be over the corresponding reference configuration B,
yielding the following reparameterized integral:

𝐼
direct

=
∫
B

ˆ𝑓
direct
(𝒑) d𝐴(𝒑), (17)

where
ˆ𝑓
direct
(𝒑) := 𝑓

direct
(𝒙) 𝐽 (𝒑) with 𝒙 = X(𝒑, 𝜋) and

𝐽 (𝒑) = |d𝐴(𝒙)/d𝐴(𝒑) | , (18)

being the Jacobian determinant for the change of variables from

spatial point 𝒙 to its material representation 𝒑. Following the termi-

nology described in §3.2, we call Eqs. (14) and (17) spatial-form and

material-form direct-illumination integrals, respectively.

Despite the similarity between the spatial-form (14) and the

material-form (17) integrals, the latter enjoys a key advantage that

it can be differentiated using the Reynolds transport relation (13)

because its domain of integration B is independent of 𝜋 , yielding:

𝜕𝐼
direct

𝜕𝜋
=

interior∫
B
( ˆ𝑓

direct
)
•

d𝐴 +

boundary∫
ΔB

Δ ˆ𝑓
direct

𝑉ΔB dℓ , (19)

where ΔB[ ˆ𝑓
direct
] (𝜋) contains the discontinuity curves of ˆ𝑓

direct
(𝒑).

also contain spatial points within the tangent plane of 𝒚 (that is, all 𝒙 ∈ L(𝜋 ) with
𝒏(𝒚) · (𝒚 → 𝒙) = 0).
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Practical advantages. Estimating 𝜕𝐼direct/𝜕𝜋 using thematerial-form

integral of Eq. (19) offers a number of advantages:

• Compared to the spatial form (15), the material form allows the

boundary curves 𝜕B to be excluded from the boundary component,

reducing the computational cost for estimating this term.

• Compared to the solid-angle-integral formulation used by prior

works [Li et al. 2018a; Zhang et al. 2019], the material form gen-

eralizes more easily to the full path integrals (§5.2), enabling the

design of more sophisticated Monte Carlo estimators (§6).

5 DIFFERENTIAL PATH INTEGRALS
We now generalize the analysis in §4 to establish the differential
path integral framework. Our objective is to differentiate radiometric

measurements 𝐼 depicted as path integrals (1) with the path space Ω
defined over evolving surfacesM(𝜋). That is, we aim to calculate

𝜕𝐼/𝜕𝜋 where Ω(𝜋) = ⋃∞
𝑁=1
M(𝜋)𝑁+1.

Preview. The transport relations of Eqs. (11) and (13) presented

in §3.3 have shown that the derivative of a surface integral consists

of an interior and a boundary components. We will show in §5.1

that the derivative 𝜕𝐼/𝜕𝜋 can be expressed in a similar fashion as

the sum of (i) an interior path integral over the original path space,

and (ii) a boundary integral over the boundary path space comprised

of boundary light paths (see Figure 6-b). This result, which we will

refer to as the spatial-form differential path integral, will be shown
in Eq. (29).

Additionally, by applying the reparameterization introduced in

§4.1 to the spatial-form differential path integral, we will derive its
material-form counterpart (36) in §5.2. Similar to the direct illu-

mination case, this reparameterization simplifies both the interior
integral (by having non-evolving surfaces) and the boundary one

(by minimizing the type of discontinuities).

5.1 Spatial-form Differential Path Integral
We start with differentiating, with respect to 𝜋 , measurements 𝐼𝑁
defined as the spatial-form order-𝑁 path integral of Eq. (3) for some

fixed 𝑁 ≥ 1. The derivatives of the spatial-form full path integral 𝐼

will then follow from the relationship 𝐼 =
∑∞
𝑁=1

𝐼𝑁 .

Recursive expression of path integrals. To derive 𝜕𝐼𝑁/𝜕𝜋 , we first
rewrite Eq. (3) recursively. To this end, we define

ℎ𝑁 (𝒙𝑁 ; 𝒙𝑁−1) :=𝑊e (𝒙𝑁 → 𝒙𝑁−1), (20)

and, for 0 ≤ 𝑛 < 𝑁 ,

ℎ𝑛 (𝒙𝑛 ; 𝒙𝑛−1) :=
∫
M 𝑔(𝒙𝑛+1; 𝒙𝑛−1, 𝒙𝑛) ℎ𝑛+1 (𝒙𝑛+1; 𝒙𝑛) d𝐴(𝒙𝑛+1),

(21)

where 𝑔 is defined in Eq. (5). Then, it is easy to verify that

ℎ0 (𝒙0) =
∫
M𝑁 𝑓 (𝒙)∏𝑁

𝑛=1
d𝐴(𝒙𝑛), (22)

𝐼𝑁 =
∫
M ℎ0 (𝒙0) d𝐴(𝒙0) . (23)

Given Eq. (23), calculating 𝜕𝐼𝑁/𝜕𝜋 reduces to differentiating ℎ𝑛 .

Similar to our handling of direct illumination in §4, we assume the

absence of zero-measure sources or ideal specular surfaces. This

ensures that, for all 0 ≤ 𝑛 ≤ 𝑁 ,ℎ𝑛 is continuous at all interior points

𝒙𝑛 ∈ M(𝜋) \ 𝜕M(𝜋). Then, using a surface parameterization that

x0
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x2
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x3
<latexit sha1_base64="wviJKZwsXXiyob/oPiDaF67xSF0=">AAAB/nicbVA9SwNBEJ3zM8avqKXNYhAsJNwlgpYBG8sI5gOSI+xt9pIlu3vH7p4YjgN/g63WdmLrX7H0n7hJrjCJDwYe780wMy+IOdPGdb+dtfWNza3twk5xd2//4LB0dNzSUaIIbZKIR6oTYE05k7RpmOG0EyuKRcBpOxjfTv32I1WaRfLBTGLqCzyULGQEGyt1eoFIn7J+rV8quxV3BrRKvJyUIUejX/rpDSKSCCoN4VjrrufGxk+xMoxwmhV7iaYxJmM8pF1LJRZU++ns3gydW2WAwkjZkgbN1L8TKRZaT0RgOwU2I73sTcX/vG5iwhs/ZTJODJVkvihMODIRmj6PBkxRYvjEEkwUs7ciMsIKE2MjWtgSiMxm4i0nsEpa1YpXq1Tvr8r1yzydApzCGVyAB9dQhztoQBMIcHiBV3hznp1358P5nLeuOfnMCSzA+foF16CWew==</latexit>

x4
<latexit sha1_base64="v6zVpKY0QjPslhLXqfULPlHfJyw=">AAAB/nicbVA9SwNBEJ3zM8avqKXNYhAsJNzFgJYBG8sI5gOSI+xt9pIlu3vH7p4YjgN/g63WdmLrX7H0n7hJrjCJDwYe780wMy+IOdPGdb+dtfWNza3twk5xd2//4LB0dNzSUaIIbZKIR6oTYE05k7RpmOG0EyuKRcBpOxjfTv32I1WaRfLBTGLqCzyULGQEGyt1eoFIn7J+rV8quxV3BrRKvJyUIUejX/rpDSKSCCoN4VjrrufGxk+xMoxwmhV7iaYxJmM8pF1LJRZU++ns3gydW2WAwkjZkgbN1L8TKRZaT0RgOwU2I73sTcX/vG5iwhs/ZTJODJVkvihMODIRmj6PBkxRYvjEEkwUs7ciMsIKE2MjWtgSiMxm4i0nsEpa1Yp3Vane18r1yzydApzCGVyAB9dQhztoQBMIcHiBV3hznp1358P5nLeuOfnMCSzA+foF2TOWfA==</latexit> x0

<latexit sha1_base64="bjw+vm5kHiQTUGt5FPx/ZjRpX08=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tFoNgIeEuCloGbCwjmA9IjrC32UuW7O4du3tiOA78DbZa24mtf8XSf+ImucIkPhh4vDfDzLwg5kwb1/12CmvrG5tbxe3Szu7e/kH58Kilo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjC+nfrtR6o0i+SDmcTUF3goWcgINlbq9AKRPmV9t1+uuFV3BrRKvJxUIEejX/7pDSKSCCoN4VjrrufGxk+xMoxwmpV6iaYxJmM8pF1LJRZU++ns3gydWWWAwkjZkgbN1L8TKRZaT0RgOwU2I73sTcX/vG5iwhs/ZTJODJVkvihMODIRmj6PBkxRYvjEEkwUs7ciMsIKE2MjWtgSiMxm4i0nsEpatap3Wa3dX1XqF3k6RTiBUzgHD66hDnfQgCYQ4PACr/DmPDvvzofzOW8tOPnMMSzA+foF0ueWeA==</latexit>

x1
<latexit sha1_base64="h3mi1Y6H+twSoYYkP86Za+5WDUs=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tFoNgIeEuCloGbCwjmA9IjrC32UuW7O4du3tiOA78DbZa24mtf8XSf+ImucIkPhh4vDfDzLwg5kwb1/12CmvrG5tbxe3Szu7e/kH58Kilo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjC+nfrtR6o0i+SDmcTUF3goWcgINlbq9AKRPmV9r1+uuFV3BrRKvJxUIEejX/7pDSKSCCoN4VjrrufGxk+xMoxwmpV6iaYxJmM8pF1LJRZU++ns3gydWWWAwkjZkgbN1L8TKRZaT0RgOwU2I73sTcX/vG5iwhs/ZTJODJVkvihMODIRmj6PBkxRYvjEEkwUs7ciMsIKE2MjWtgSiMxm4i0nsEpatap3Wa3dX1XqF3k6RTiBUzgHD66hDnfQgCYQ4PACr/DmPDvvzofzOW8tOPnMMSzA+foF1HqWeQ==</latexit>

x2
<latexit sha1_base64="jpN4xVDnjC/OzQ9QPtVVWcPyxmA=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tFoNgIeEuCloGbCwjmA9IjrC32UuW7O4du3tiOA78DbZa24mtf8XSf+ImucIkPhh4vDfDzLwg5kwb1/12CmvrG5tbxe3Szu7e/kH58Kilo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjC+nfrtR6o0i+SDmcTUF3goWcgINlbq9AKRPmX9Wr9ccavuDGiVeDmpQI5Gv/zTG0QkEVQawrHWXc+NjZ9iZRjhNCv1Ek1jTMZ4SLuWSiyo9tPZvRk6s8oAhZGyJQ2aqX8nUiy0nojAdgpsRnrZm4r/ed3EhDd+ymScGCrJfFGYcGQiNH0eDZiixPCJJZgoZm9FZIQVJsZGtLAlEJnNxFtOYJW0alXvslq7v6rUL/J0inACp3AOHlxDHe6gAU0gwOEFXuHNeXbenQ/nc95acPKZY1iA8/UL1g2Weg==</latexit>

(a) (b)

Fig. 6. Boundary light paths: Unlike their regular counterparts (a), each
boundary light path (b) has one of its vertices constrained on a curve. In
this example, the path (𝒙0, 𝒙1, 𝒙2) ∈ 𝜕Ω2,1 has its vertex 𝒙1 ∈ 𝜕M1 (𝜋 ) on
the silhouette with respect to 𝒙0.

produces zero tangential velocity for all 𝒙 ∈ M(𝜋), we can apply

the transport relation of Eq. (11) to express the scene derivative of

ℎ𝑛 as:

¤ℎ𝑛 =
∫
M [(ℎ𝑛+1 𝑔)

• − ℎ𝑛+1 𝑔^ 𝑉 ] d𝐴 +
∫
𝜕M𝑛+1

ℎ𝑛+1 Δ𝑔𝑉𝜕M𝑛+1
dℓ,

(24)

where:

• (ℎ𝑛+1 𝑔)• is the scene derivative of (ℎ𝑛+1 𝑔) and equals the normal

scene derivative (ℎ𝑛+1 𝑔)□ under Assumption A.1.

• 𝜕M𝑛+1 (𝜋) := 𝜕M(𝜋) ∪ ΔM[𝑔(·; 𝒙𝑛−1, 𝒙𝑛)] (𝜋) denotes the ex-
tended boundary ofM(𝜋) comprised of the boundary 𝜕M(𝜋) and
the discontinuity curves ΔM(𝜋) with respect to the function 𝑔

(when 𝒙𝑛−1 and 𝒙𝑛 are fixed).

• 𝑉 and 𝑉
𝜕M𝑛+1

are the scalar normal velocity ofM(𝜋) and that

of 𝜕M𝑛+1 (𝜋), respectively.
• Δ𝑔 follows Eq. (12) and indicates the difference in 𝑔 across the

discontinuity curves. We note that Δℎ𝑛+1 is not needed here, as

ℎ𝑛+1 is assumed to be continuous in the interior ofM(𝜋).

Differentiating order-𝑁 path integrals. With Eqs. (21) and (24)

at hand, we can now differentiate 𝐼𝑁 . To this end, we use the ex-

pression of 𝐼𝑁 in Eq. (23), and repeatedly expand ℎ𝑛 and
¤ℎ𝑛 for

𝑛 = 0, 1, . . . , 𝑁 − 1, resulting in:

𝜕𝐼𝑁 /𝜕𝜋 =
∫
Ω𝑁

[ ¤𝑓 (𝒙) − 𝑓 (𝒙)∑𝑁
𝐾=0

^ (𝒙𝐾 )𝑉 (𝒙𝐾 )
]

d` (𝒙) +∑𝑁
𝐾=0

[∫
𝜕Ω𝑁,𝐾

Δ𝑓𝐾 (𝒙)𝑉𝜕M𝐾
(𝒙𝐾 ) d` ′𝑁,𝐾 (𝒙)

]
,

(25)

where

𝜕Ω𝑁,𝐾 :=M(𝜋)𝐾 × 𝜕M𝐾 (𝜋) ×M(𝜋)𝑁−𝐾 , (26)

d` ′𝑁,𝐾 (𝒙) := dℓ (𝒙𝐾 )
∏

0≤𝑛≤𝑁
𝑛≠𝐾

d𝐴(𝒙𝑛), (27)

Δ𝑓𝐾 (𝒙) = 𝑓 (𝒙) Δ𝑔(𝒙𝐾 ; 𝒙𝐾−2, 𝒙𝐾−1)/𝑔(𝒙𝐾 ; 𝒙𝐾−2, 𝒙𝐾−1) . (28)

As a base case, as ℎ0 is assumed continuous, i.e., ΔM[ℎ0] (𝜋) = ∅,
it holds that 𝜕M0 (𝜋) = 𝜕M(𝜋) and Δ𝑓0 (𝒙) = 𝑓 (𝒙). Please see

Appendix A for a full derivation of this result.

Completing the derivation. Finally, as 𝐼 =
∑∞
𝑁=1

𝐼𝑁 , it holds that

𝜕𝐼/𝜕𝜋 =
∑∞
𝑁=1

𝜕𝐼𝑁/𝜕𝜋 . Thus, we can sum up Eq. (25) for all 𝑁 ≥ 1

into a single expression of 𝜕𝐼/𝜕𝜋 as follows.
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Spatial-form differential path integral

For a radiometric measurement 𝐼 given by a spatial-form path

integral, its derivative with respect to scene parameter 𝜋 can be

expressed as a spatial-form differential path integral:

𝜕𝐼

𝜕𝜋
=

interior∫
Ω

[
¤𝑓 (𝒙) − 𝑓 (𝒙)

𝑁∑︁
𝐾=0

^ (𝒙𝐾 )𝑉 (𝒙𝐾 )
]

d` (𝒙) +

boundary∫
𝜕Ω

Δ𝑓𝐾 (𝒙)𝑉𝜕M𝐾
(𝒙𝐾 ) d` ′(𝒙) ,

(29)

where 𝜕Ω ⊂ Ω is the boundary path space defined as:

𝜕Ω :=
⋃∞
𝑁=1

⋃𝑁
𝐾=0

𝜕Ω𝑁,𝐾 , (30)

and ` ′ is the differential area-product measure given by:

` ′(𝐷) :=
∑∞
𝑁=1

∑𝑁
𝐾=0

` ′
𝑁,𝐾

(
𝐷 ∩ 𝜕Ω𝑁,𝐾

)
, (31)

for any 𝐷 ⊂ 𝜕Ω. We call light paths of this kind as boundary
light paths, and the function Δ𝑓𝐾 as the boundary contribu-
tion function. We also distinguish the segment 𝒙𝐾−1 𝒙𝐾 as the

boundary segment of boundary path 𝒙 .

Analogous to the transport relation of Eq. (11), our spatial-form

differential path integral formulation involves a interior and a bound-
ary term: The interior term is a path integral over the same path

space Ω and with the same area-product measure ` as the original

path integral. By contrast, the boundary term is a path integral over

the boundary path space 𝜕Ω and uses the differential area-product

measure ` ′. This is the space of light paths 𝒙 = (𝒙0, 𝒙1, . . . , 𝒙𝑁 )
with 𝑁 ≥ 1 and one of the vertices 𝒙𝐾 being constrained to be on

the curves given by 𝜕M𝐾 (𝜋) (see Figure 6).

Sources of discontinuities. In Eqs. (24) and (25), for 0 ≤ 𝑛 < 𝑁 ,

𝜕M𝑛+1 (𝜋) is determined by any boundaries ofM(𝜋), as well as
the discontinuity curves of 𝑔(𝒙𝑛+1; 𝒙𝑛−1, 𝒙) with respect to 𝒙𝑛+1,
when holding 𝒙𝑛−1 and 𝒙𝑛 fixed. Similar to the direct-illumination

case, these discontinuities generally arise from sharp and silhouette
edges.

Reciprocity. It is easy to verify that the interior term of our dif-

ferential path integral (29) is reciprocal.
8
The boundary term, on

the other hand, is not. This is primarily due to our “unidirectional”

definition of 𝜕M𝑛 (𝜋): for all 𝑘 > 0, it contains the discontinuity

points of 𝑔 with respect to 𝒙𝑛 , with 𝒙𝑛−2 and 𝒙𝑛−1 fixed. If we de-

fined 𝜕M𝑛 (𝜋) by considering discontinuities with 𝒙𝑛+1 and 𝒙𝑛+2
fixed, we would obtain another boundary term that takes a different

form but is mathematically equivalent.

As we will discuss in §6, the boundary term not providing reci-

procity has little impact on the design of efficient Monte Carlo

8
The presence of refractive interfaces and shading normals can break the reciprocity

of BSDFs and, thus, that of measurement contribution 𝑓 and its scene derivative
¤𝑓 .

Fortunately, the handling of such asymmetry by introducing additional correction

terms [Veach 1997] generalizes naturally to differentiable rendering.

Reference of    

Reference configuration of 

Fig. 7. Alternative parameterization: Given a motion X and a fixed 𝜋0 ∈
R, let P be the reference map of X. Then, composing P( ·, 𝜋0) and X( ·, 𝜋 )
yields a new motion �̂� (�̂�, 𝜋 ) = X(P(�̂�, 𝜋0), 𝜋 ) that reduces to the identity
map at 𝜋 = 𝜋0.

estimators. Thus, we consider the derivation of reciprocal boundary
terms as future work.

5.2 Material-Form Path Integrals
We now generalize our material-form direct-illumination integrals

in Eqs. (17) and (19) to material-form full path integrals. Similar to

the direct illumination case, our material-form differential path inte-

gral minimizes the contribution of the boundary term and improves

the effectiveness of reusing path samples when jointly estimating

the original radiometric measurements 𝐼 (e.g., the original image)

and the corresponding derivatives 𝜕𝐼/𝜕𝜋 (e.g., the derivative images).

Additionally, minimizing the contribution of the boundary term

reduces the computational overhead required for estimating this

term, which previously required tracing expensive “side paths” to

obtain unbiased estimations [Li et al. 2018a; Zhang et al. 2019].

Assume that evolving surfacesM(𝜋) can be parameterized glob-

ally using some motion X with a reference configuration B. By sub-

stituting each 𝒙𝑛 ∈ M(𝜋) using X(𝒑𝑛, 𝜋) with material point 𝒑𝑛 ,
the original spatial-form path integral of Eq. (1) can be expressed as

another material-form path integral:

𝐼 =
∫
Ω̂

ˆ𝑓 (�̄�) d` (�̄�), (32)

where Ω̂ :=
⋃∞
𝑁=1
B𝑁+1 is thematerial path space independent

of 𝜋 . In Eq. (32), for a material light path �̄� = (𝒑0, . . . ,𝒑𝑁 ) ∈ Ω̂,

its material measurement contribution function ˆ𝑓 , which can

be obtained by modifying Eqs. (4–7), equals:

ˆ𝑓 (�̄�) =
(∏𝑁−1

𝑛=0
𝑔(𝒑𝑛+1; 𝒑𝑛−1,𝒑𝑛)

)
�̂�e (𝒑𝑁 → 𝒑𝑁−1), (33)

where

�̂�e (𝒑𝑁 → 𝒑𝑁−1) := 𝐽 (𝒑𝑁 )𝑊e (𝒙𝑁 → 𝒙𝑁−1), (34)

and, for 0 ≤ 𝑛 < 𝑁 ,

𝑔(𝒑𝑛+1; 𝒑𝑛−1,𝒑𝑛) := ˆ𝑓s (𝒑𝑛−1 → 𝒑𝑛 → 𝒑𝑛+1)︸                          ︷︷                          ︸
:= 𝐽 (𝒑𝑛) 𝑓s (𝒙𝑛−1→𝒙𝑛→𝒙𝑛+1)

𝐺 (𝒙𝑛 ↔ 𝒙𝑛+1) . (35)

In Eqs. (34) and (35), 𝐽 is the Jacobian determinant given by Eq. (18),

and 𝒙𝑛 = X(𝒑𝑛, 𝜋) is, for all 𝑛, the spatial representation of the

material point 𝒑𝑛 .
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Material-form differential path integral

Assuming the Jacobian determinant 𝐽 to be continuous,
a
differ-

entiating the material-form path integral of Eq. (32) produces

the following material-form differential path integral:

𝜕𝐼

𝜕𝜋
=

interior∫
Ω̂
( ˆ𝑓 )

•

(�̄�) d` (�̄�) +

boundary∫
𝜕Ω̂

Δ ˆ𝑓𝐾 (�̄�)𝑉ΔB𝐾 (𝒑𝐾 ) d`
′(�̄�) ,

(36)

where:

• The scene derivative ( ˆ𝑓 )
•

of the material measurement con-

tribution
ˆ𝑓 of Eq. (33) is obtained using the global paramteri-

zation ofM(𝜋) induced by the motion X.

• The material boundary path �̄�, its material boundary
contribution Δ ˆ𝑓𝐾 (�̄�), and the material boundary path
space 𝜕Ω̂ are, respectively, defined in a similar fashion as

𝒙 , Δ𝑓𝐾 (𝒙), and 𝜕Ω in Eqs. (28) and (30).

• Lastly, ΔB𝐾 (𝜋) := ΔB[𝑔(·;𝒑𝐾−2,𝒑𝐾−1)] (𝜋) comprises the

discontinuity curves of 𝑔 with respect to 𝒑𝐾 , when 𝒑𝐾−2

and 𝒑𝐾−1 are fixed. We call 𝒑𝐾−1 𝒑𝐾 a material boundary
segment.

a
Eq. (36) also holds when the discontinuity curves ΔB[𝐽 ] are independent of 𝜋 .

Comparison of spatial-form and material-form. Similar to the di-

rect illumination case, estimating the partial derivative 𝜕𝐼/𝜕𝜋 of

radiometric measurements 𝐼 using our material-form differential

path integral offers the advantage of not having to include 𝜕B, which
is independent of 𝜋 , in the boundary term. Furthermore, by leverag-

ing proper parameterizations, the material form allows its boundary
term to involve even fewer types of discontinuities, as we discuss

below.

On the other hand, our material-form integrals of Eqs. (19) re-

quire as input a pre-determined global parameterization induced

from some motion X. For certain applications, such as when the

evolving scene geometryM(𝜋) is expressed implicitly, such global

parameterizations may be difficult to obtain. In these cases, it may

be necessary to resort to the spatial form of Eqs. (15) and (29), which

only impose the following requirements onM(𝜋): (i) it must allow

ray tracing (i.e., ray-surface intersection computation) to be per-

formed in a differentiable fashion; and (ii) it must allow the sampling

of points on the surface (which can be done using particle-based

methods [Witkin and Heckbert 1994] for implicit surfaces). The

second requirement is for the Monte Carlo estimation algorithms

we introduce in §6.

Alternative parameterizations. In practice, when calculating 𝜕𝐼/𝜕𝜋
at some fixed 𝜋0, we can define another motion X̂ that is local to 𝜋0

and has the reference
ˆB = M(𝜋0). Let P be the reference map of

the motion X. For any fixed 𝜋 ′ ∈ R, let
X̂(·, 𝜋) = X(·, 𝜋) ◦ P(·, 𝜋0). (37)

Namely, X̂(�̂�, 𝜋) = X(P(�̂�, 𝜋0), 𝜋) for all �̂� ∈ ˆB (see Figure 7). Then,

X̂(·, 𝜋) reduces to the identity map when 𝜋 = 𝜋0. Thus, when using

the locally defined motion X̂ for the material-form differential path

integral of Eq. (36), the Jacobian determinants 𝐽 from Eq. (18) become

one, allowing the path integral to be efficiently estimated using

previously developed path sampling methods. Notice that the scene

derivatives ¤𝐽 generally remain nonzero.

Another possibility is to have the reference
ˆB set to [0, 1)2 and

the motion X̂(�̂�, 𝜋) determined by the sampling process of points 𝒙
on the surfaceM(𝜋), with �̂� being the random numbers. Then, the

resulting material path space Ω̂ essentially becomes the primary
sample space used by many Markov-Chain Monte Carlo (MCMC)

rendering algorithms (e.g., [Kelemen et al. 2002]). We opt to use the

parameterization of Eq. (37) in this paper due to the advantage of

having unit-valued Jacobian determinants 𝐽 .

Sources of discontinuities. As discussed in §5.1, for the spatial-form
differential path integral (29), discontinuities of 𝑔(𝒙𝑛+1; 𝒙𝑛−1, 𝒙𝑛)
arise from those in surface normal and visibility. This remains the

case for 𝑔(𝒑𝑛+1; 𝒑𝑛−1,𝒑𝑛) in the material-form differential path

integral (36).

Fortunately, since the integral domain B is independent of the

scene parameter 𝜋 , many of the jump discontinuity points of 𝑔 with

respect to 𝒑𝑛+1 no longer moves with 𝜋 . This causes the normal ve-

locity𝑉ΔB𝑛+1 at these points to vanish, allowing them to be omitted

from the boundary integral.

In practice, when M(𝜋) and B are depicted using polygonal

meshes, the motion X or its local variant X̂ given by Eq. (37) usually

maps face edges ofB to those ofM(𝜋). In this case, although surface
normal can be discontinuous across face edges in B, these edges
do not have to be included in ΔB[ ˆ𝑓 ] (𝜋) as they are 𝜋-independent.

Therefore, the only type of discontinuity needed to be handled with

boundary integrals is visibility-related, i.e., the silhouette edges.
We note that the Jacobian determinant 𝐽 given by Eq. (18) is usu-

ally constant within each face of a polygonal mesh but discontinuous

across the face boundaries. Fortunately, because the face bound-

aries of the reference B are independent of 𝜋 , our material-form

differential path integral of Eq. (36) still holds, and the discontinuity

curves ΔB𝑛 (𝜋) do not need to include the face boundaries.

6 MONTE CARLO ESTIMATION OF DIFFERENTIAL
PATH INTEGRALS

Our differential path integral formulations of Eq. (29) and (36) fa-

cilitate the design of efficient Monte Carlo methods for estimating

derivatives of radiometric measurements with respect to arbitrary

scene parameters 𝜋 . We focus our derivations on the material form,

but they can be easily generalized to handle the spatial form as well.

Terminology. In the rest of this section, to simplify terminology,

we omit explicitly specifying that we use path integrals (32) and

differential path integrals (36) in theirmaterial forms.

Preview. Since the interior term integrates over the original path

space, it can be estimated by adapting existing path sampling tech-

niques such as unidirectional and bidirectional path tracing, which

we will discuss in §6.1.

The boundary path integral, on the contrary, operates over the

boundary path space. We will introduce in §6.2–§6.4 a new Monte

Carlo estimator for this term. Our estimator works in a multi-
directional fashion and constructs a boundary light path starting
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with its boundary segment. Then, two original light paths are sam-

pled to connect one endpoint of the boundary segment to the light

source and the other to the detector.

6.1 Estimating the Interior Integral
Thanks to the similarity between the original path integral (32) the

interior component of our differential path integral (36), the latter

can be estimated using previously developed path sampling meth-

ods. Specifically, we draw light paths �̄� from the path space Ω̂ by

applying conventional path sampling methods to the reference con-

figuration B. This allows us to estimate radiometric measurement 𝐼

and its derivative 𝜕𝐼/𝜕𝜋 jointly by reusing the path samples.

In practice, we adopt two commonly used algorithms, unidirec-

tional and bidirectional path tracing, to obtain unbiased estimates of

the interior integral. Algorithm 1 outlines the unidirectional variant

of our algorithm. For notational clarity, we omit multiple importance

sampling (MIS) in this algorithm.

In this algorithm, we calculate the scene derivatives based the

relation between spatial and material points: 𝒙𝑛 = X(𝒑𝑛, 𝜋) for
𝑛 = 0, 1, 2. For instance, the scene derivatives of the BSDF equals

[𝑓s (𝒙0 → 𝒙1 → 𝒙2)]• = 𝜕
𝜕𝜋 𝑓s (X(𝒑0, 𝜋) → X(𝒑1, 𝜋) → X(𝒑2, 𝜋)),

(38)

with the material points 𝒑0, 𝒑1, and 𝒑2 fixed.

Proper use of automatic differentiation. In practice, all the scene

derivatives from Lines 3, 8, and 15 of Algorithm 1 can be computed

numerically using automatic differentiation (autodiff) techniques.

However, precaution is needed when applying autodiff to exist-

ing path tracing implementations: When differentiating 𝛼
direct

in

Line 10, for instance, we should ensure that the differentiation in-

volves the full representation of the source emission 𝐿e, the surface

BSDF 𝑓s, and the geometric term 𝐺 . Traditional path tracers usu-

ally have certain components, such as the cosine factors from 𝐺 ,

omitted, as they are canceled out by the PDF term P
direct

. Directly

applying automatic differentiation to such implementations can pro-

duce incorrect derivative estimates. These risks can be alleviated by

designing differentiable renderers in a way that allows completely

separating the computation of the measurement contribution and

PDF terms, and detaching the latter from the automatic differentia-

tion process.

6.2 Multi-Directional Form of the Boundary Integral
An important distinction between our differential path integral

formulations of Eqs. (29) and (36) and prior works [Li et al. 2018a;

Loubet et al. 2019; Zhang et al. 2019] is the complete decoupling of

the boundary integral from its interior counterpart. Leveraging this

flexibility, we introduce a new unbiased Monte Carlo method to

estimate the boundary integral in the rest of this section.

We consider amaterial boundary path �̄� = (𝒑0,𝒑1, . . . ,𝒑𝑁 ) ∈ 𝜕Ω̂,
with 𝒙𝑛 := X(𝒑𝑛, 𝜋) being the corresponding spatial points on the

evolving surfaceM(𝜋). As discussed in §5.2, we assume that one

vertex of the boundary segment of �̄� is a jump discontinuity point

of the visibility function when the other vertex is fixed. This creates

complications when building the boundary path: Constructing its

boundary segment, for instance, could require sampling one of its

ALGORITHM 1: Estimating the interior integral of Eq. (36) using
unidirectional path tracing

1 MaterialDifferentiablePathTracing(𝒙1, 𝒙2)
Input: Two spatial points 𝒙1, 𝒙2

Output: 𝐿 (𝒙1 → 𝒙2) and its scene derivative ¤𝐿
2 begin
3 (𝐿, ¤𝐿) ← (𝐿e (𝒙1 → 𝒙2), [𝐿e (𝒙1 → 𝒙2) ]•) ;
4 (𝑇, ¤𝑇 ) ← (1, 0) ; // path throughput

5 while true do
/* Direct illumination (light sampling) */

6 Draw 𝒑0 ∼ Plight
(𝒑0) ; // area measure

7 𝒙0 ← X(𝒑0, 𝜋 ) ;
8 Compute 𝛼

direct
and ¤𝛼

direct
as, respectively, the value and

scene derivative of:

𝐿e (𝒙0 → 𝒙1) 𝑓s (𝒙0 → 𝒙1 → 𝒙2)𝐺 (𝒙0 ↔ 𝒙1) 𝐽 (𝒑0) ;
9 𝐿 ← 𝐿 +𝑇 𝛼

direct
/P

light
(𝒑0) ;

10 ¤𝐿 ← ¤𝐿 + (𝑇 ¤𝛼
direct

+ ¤𝑇 𝛼
direct
)/P

light
(𝒑0) ;

/* Indirect illumination (BSDF sampling) */

11 Draw 𝝎i ∼ Pbsdf
(𝝎i) ; // solid-angle measure

12 𝒙0 ← rayTrace(𝒙1,𝝎i) ;
13 if 𝒙0 is valid then // Ray tracing hits
14 𝒑0 ← P(𝒙0, 𝜋 ) ;
15 Compute 𝛼

indirect
and ¤𝛼

indirect
as, respectively, the

value and scene derivative of:

𝑓s (𝒙0 → 𝒙1 → 𝒙2)𝐺 (𝒙0 ↔ 𝒙1) 𝐽 (𝒑0) ;

/* Convert probability to area measure */

16 𝑞 ← P
bsdf
(𝝎i) |𝒏(𝒙0, 𝜋 ) · −𝝎i |/ ∥𝒙0 − 𝒙1 ∥2;

/* Update throughputs */

17 𝑇 ← 𝑇 𝛼
indirect

/𝑞; ¤𝑇 ← (𝑇 ¤𝛼
indirect

+ ¤𝑇 𝛼
indirect

)/𝑞;

/* Continue the path */

18 𝒙2 ← 𝒙1; 𝒙1 ← 𝒙0;

19 else // Ray tracing misses
20 break;

21 end
22 end
23 return (𝐿, ¤𝐿)
24 end

vertices from the silhouette edges viewed from the other. Unfor-

tunately, identifying silhouette edges can be costly [Loubet et al.

2019], making it difficult for prior unbiased methods [Li et al. 2018a;

Zhang et al. 2019] to handle scenes with complex geometries.

To overcome this challenge without sacrificing unbiasedness, we

propose building the boundary light paths �̄� in a multi-directional
manner.

9
For notational convenience, we rename path vertices so

that �̄� = (𝒑S

𝑠 , . . . ,𝒑
S

0
,𝒑D

0
, . . . ,𝒑D

𝑡 ), and accordingly for the points 𝒙S

𝑛

and 𝒙D

𝑛 for all 𝑛. This lets us decompose the boundary light path �̄�
into its boundary segment 𝒑S

0
𝒑D

0
, preceded by a source subpath

�̄� S
:= (𝒑S

𝑠 , . . . ,𝒑
S

1
) connecting 𝒑S

0
to the light source, and succeeded

9
Anderson et al. [2017] presented a tri-directional path tracing algorithm that is con-

ceptually similar to our approach. Their method, however, estimates the original path

integral while ours focuses on the boundary term of our differential path integral.
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by an detector subpath �̄� D
:= (𝒑D

1
, . . . ,𝒑D

𝑡 ) connecting 𝒑D

0
to the

detector (i.e., the eye), respectively.

The main idea of our multi-directional sampling of a boundary

light path is to first construct its boundary segment and then build

the source and detector subpaths. To this end, we first rewrite the

boundary term from Eq. (36), such that the contributions from these

three parts are decoupled, as:∫
𝜕Ω̂

ˆ𝑓 S ˆ𝑓 B ˆ𝑓 D
d` ′, (39)

where the terms

ˆ𝑓 B
:= Δ𝐺 (𝒙S

0
↔ 𝒙D

0
)𝑉ΔB , (40)

ˆ𝑓 S
:= ˆ𝑓s (𝒑S

1
→ 𝒑S

0
→ 𝒑D

0
)∏𝑠

𝑛=1

ˆ𝑓s (𝒑S

𝑛+1 → 𝒑S

𝑛 → 𝒑S

𝑛−1
)𝐺 (𝒙S

𝑛−1
↔ 𝒙S

𝑛), (41)

ˆ𝑓 D
:= ˆ𝑓s (𝒑S

0
→ 𝒑D

0
→ 𝒑D

1
)∏𝑡

𝑛=1

ˆ𝑓s (𝒑D

𝑛−1
→ 𝒑D

𝑛 → 𝒑D

𝑛+1)𝐺 (𝒙
D

𝑛−1
↔ 𝒙D

𝑛 ), (42)

capture the contributions of the boundary segment 𝒑S

0
𝒑D

0
, the

source subpath �̄� S
(given 𝒑S

0
), and the detector subpath �̄� D

(given

𝒑D

0
) to the boundary contribution function, respectively. In Eqs. (40–

42), 𝑉ΔB is the scalar normal velocity of 𝒑D

0
with 𝒑S

0
fixed; and

ˆ𝑓s
follows the definition in Eq. (35).

By further separating the boundary path space and differential

area-product measure in Eq. (39), we obtain the multi-directional
form of the boundary integral from Eq. (36) as:∫
B

∫
ΔB

[∫
Ω̂

ˆ𝑓 S
d` (�̄� S)

]
ˆ𝑓 B

[∫
Ω̂

ˆ𝑓 D
d` (�̄� D)

]
dℓ (𝒑D

0
) d𝐴(𝒑S

0
).

(43)

6.3 Multi-Directional Sampling of Boundary Paths
We now present our Monte Carlo solution for estimating the multi-

directional boundary integral (43). Our unbiased algorithm samples

boundary paths by drawing the boundary segment 𝒑S

0
𝒑D

0
first fol-

lowed by the source subpath �̄� S
(given 𝒑S

0
) and detector subpath �̄� D

(given 𝒑D

0
). In what follows, we provide a detail description of this

process.

As stated in §6.2, we would like to sample boundary segments

without performing explicit searches for silhouette edges. For 𝒑S

0
𝒑D

0

to be a boundary segment, its spatial counterpart 𝒙S

0
𝒙D

0
with 𝒙S

0
=

X(𝒑S

0
, 𝜋) and 𝒙D

0
= X(𝒑D

0
, 𝜋) must intersect the evolving surface

M(𝜋) at exactly one point 𝒙B
besides the endpoints.

10
This point

is not a vertex of the path, but simply corresponds to a point on the

silhouette ofM(𝜋) when viewed from 𝒙S

0
or 𝒙D

0
.

Change of variables. To sample the boundary segment 𝒑S

0
𝒑D

0
,

we first perform a change of variables from 𝒑S

0
and 𝒑D

0
to 𝒙B

and

𝝎B
:= 𝒙S

0
→ 𝒙D

0
. It is easy to verify that the equations controlling

this change of variables are

𝒑S

0
= P(𝒙S

0
, 𝜋), 𝒑D

0
= P(𝒙D

0
, 𝜋), (44)

10
When Assumption A.2 is relaxed to allow jump discontinuities of the source emis-

sion 𝐿e and the BSDF 𝑓s within tangent planes (as discussed in footnote 7), a spatial

boundary segment can also reside within the tangent plane of one of its endpoints.

Boundary seg.

…

…

Source subpath

Detector subpathxB
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Direct Indirect

Fig. 8. Multi-directional sampling of boundary paths: To sample a
boundary light path, we start with sampling the boundary segment 𝒑S

0
𝒑D

0

followed by a source subpath𝒑 S and a detector subpath𝒑 D. To obtain𝒑S

0
𝒑D

0
,

we start with sampling some 𝒙B ∈ M(𝜋 ) with 𝝎B ∈ S2 and performing
ray tracing to obtain 𝒙S

0
and 𝒙D

0
, which in turn determine 𝒑S

0
and 𝒑D

0
via

Eq. (44), respectively. The point 𝒙B itself is not a vertex of the sampled path.
In the figure, we illustrate two spatial boundary paths with 𝒙∗𝑛 = X(𝒑∗𝑛, 𝜋 )
with ∗ ∈ {S,D}. The arrows indicate the direction of the flow of light (and
are independent of the sampling of the subpaths).

where 𝒙S

0
= rayTrace(𝒙B,−𝝎B), 𝒙D

0
= rayTrace(𝒙B,𝝎B), and P is

the reference map of the motion X that transforms a material point

to its spatial representation.

Based on this change of variables, we then rewrite the multi-

directional boundary integral (43) as∭ [∫
Ω̂

ˆ𝑓 S
d` (�̄� S)

] [
ˆ𝑓 B 𝐽B (𝒙B,𝝎B)

] [∫
Ω̂

ˆ𝑓 D
d` (�̄� D)

]
︸                                                               ︷︷                                                               ︸

=: 𝐹B (𝒙B,𝝎B)

d𝝎B
d𝒙B,

(45)

where

𝐽B (𝒙B,𝝎B) =
�����d𝐴(𝒙S

0
) dℓ (𝒙D

0
)

d𝒙B
d𝝎B

�����
�����d𝐴(𝒑S

0
) dℓ (𝒑D

0
)

d𝐴(𝒙S

0
) dℓ (𝒙D

0
)

����� , (46)

is the product of two Jacobian determinants: the former captures

the change of variables from (𝒙S

0
, 𝒙D

0
) to (𝒙B,𝝎B), and the latter

from material points (𝒑S

0
,𝒑D

0
) to spatial ones (𝒙S

0
, 𝒙D

0
).

Monte Carlo estimator. As depicted in Figure 8, Monte Carlo esti-

mation of Eq. (45) boils down to: (i) sampling 𝒙B
, 𝝎B

and converting

them to the boundary segment 𝒑S

0
𝒑D

0
using Eq. (44); (ii) building the

two subpaths �̄� S
and �̄� D

, which are original light paths themselves,

using existing path sampling methods. With the full boundary path

available, the corresponding single-sample estimator becomes:

ˆ𝑓 S

P(�̄� S | 𝒙B,𝝎B)
ˆ𝑓 B 𝐽B (𝒙B,𝝎B)
P(𝒙B,𝝎B)

ˆ𝑓 D

P(�̄� D | 𝒙B,𝝎B)
, (47)

where P(𝒙B,𝝎B) denotes the joint probability density for sampling

𝒙B
and 𝝎B

; P(�̄� S | 𝒙B,𝝎B) and P(�̄� D | 𝒙B,𝝎B) are, respectively, the
conditional probability densities for sampling the two subpaths �̄� S

and �̄� D
, given 𝒙B

and 𝝎B
(which in turn determine the boundary

segment 𝒑S

0
𝒑D

0
).

We summarize the estimation of the boundary integral (45) using

Eq. (47) in Algorithm 2 (and will discuss the separation of direct

and indirect paths in §6.4). To realize this Monte Carlo estimator,

what is left now is to determine how to sample 𝒙B
and 𝝎B

(Line 3),

which in turn requires to determine their integral domains, as well

as how to compute the first Jacobian in Eq. (46).
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Fig. 9. We apply a change of variable from (𝒙S

0
, 𝒙D

0
) to (𝒙B,𝝎B) for

sampling spatial boundary segments. This figure illustrates the quantities
needed to calculate the corresponding Jacobian determinant of Eq. (48) that
is derived in Appendix B.

Jacobian determinant. When the scene geometryM(𝜋) is speci-
fied using polygonal meshes, the integral domain of 𝒙B

is the union

of all face edges E(𝜋) of the mesh. Further, d𝒙B
and d𝝎B

, respec-

tively, equal the curve-length and the solid-angle measures. This is

because, for a boundary segment to touch a polygonal mesh at a

single point 𝒙B
, this point must lie on the edge of a polygonal face.

For each 𝒙B ∈ E(𝜋), the direction 𝝎B
needs to satisfy the following

two conditions:

• First, rayTrace(𝒙B,−𝝎B) and rayTrace(𝒙B,𝝎B) should success-

fully intersectM(𝜋) at some 𝒙S

0
and 𝒙D

0
, respectively.

• Second, the segment 𝒙S

0
𝒙D

0
should not penetrateM(𝜋). Specifi-

cally, as shown in Figure 10, if the face edge containing 𝒙B
is

shared by two faces with normal vectors 𝒏 and 𝒏′, we need

(𝝎B · 𝒏) (𝝎B · 𝒏′) < 0.

It follows that we can express the first Jacobian on the right-hand

side of Eq. (46) as���� d𝐴(𝒙S

0
) dℓ (𝒙D

0
)

dℓ (𝒙B) d𝜎 (𝝎B)

���� = 𝒙D

0
− 𝒙S

0

 𝒙B − 𝒙S

0

 sin\B

sin\D | cos\S | , (48)

where \B
and \D

are the angles between 𝝎B
and, respectively, the

face edge at 𝒙B
and the visibility boundary at 𝒙D

0
; and \S

is the angle

between 𝝎B
and the surface normal at 𝒙S

0
(see Figure 9). We provide

a derivation of this result in Appendix B.

When using the global parameterization induced from the mo-

tion X̂ of Eq. (37) for some fixed 𝜋0 ∈ R, both X̂(·, 𝜋0) and P̂(·, 𝜋0)
reduce to identity maps. Then, 𝒑S

𝑛 = 𝒙S

𝑛 and 𝒑D

𝑛 = 𝒙D

𝑛 for all 𝑛, the

second term on the RHS of Eq. (46) reduces to one, and 𝐽B (𝒙B,𝝎B)
equals Eq. (48).

6.4 Next-Event Estimation and Importance Sampling
Next-event estimation. To improve the efficiency of boundary-

path sampling, we adopt next-event estimation (NEE), a technique

widely used by forward rendering algorithms, as follows. We con-

sider direct boundary paths �̄� ∈ ⋃∞
𝑁=2

𝜕Ω̂𝑁,1, in analogy with

direct-illumination paths in path tracing. Then, for each such path �̄� =

(𝒑0,𝒑1, . . .), the boundary segment coincides with the first segment

𝒑0 𝒑1 (i.e., 𝒑S

0
= 𝒑0 and 𝒑D

0
= 𝒑1), as shown in Figure 8. Accordingly,

!B
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Fig. 10. Sampling the boundary segment:When 𝒙B lies on an edge of
a polygonal mesh that is shared by two faces with normals 𝒏 and 𝒏′, the
direction 𝝎B needs to satisfy (𝝎B · 𝒏) (𝝎B · 𝒏′) < 0 (i.e., the green region)
for the resulting segment 𝒙S

0
𝒙D

0
to be a (spatial) boundary segment.

their contribution to the boundary integral (45) equals∬
𝐿e (𝒙S

0
→ 𝒙D

0
)
[

ˆ𝑓 B 𝐽B (𝒙B,𝝎B)
] [∫

Ω̂
ˆ𝑓 D

d` (�̄� D)
]

d𝝎B
d𝒙B,

(49)

Because 𝒙S

0
= rayTrace(𝒙B,−𝝎B) needs to lie on a light source, we

restrict the sampling of 𝝎B
to satisfy this condition. WhenM(𝜋)

is expressed as polygonal meshes, for instance, we draw 𝝎B
by

sampling a point on the light source.

In practice, this separation of direct and indirect boundary paths

can be implemented by using different probability densities in Al-

gorithm 2 and sampling the source subpaths accordingly (Lines 9

and 11).

Grid-based importance sampling. A naive way to sample the spa-

tial point 𝒙B
and direction𝝎B

(Line 3 of Algorithm 2) is by uniformly

drawing 𝒙B
followed by 𝝎B

. Unfortunately, this can results in es-

timates of high variance, due to the complexity of the integrand

𝐹B (𝒙B,𝝎B) of Eq. (45). Instead, we would like to sample 𝒙B
and

𝝎B
jointly, with a probability density proportional to the integrand:

ALGORITHM 2: Multi-directional estimation of the boundary inte-

gral of Eq. (45)

1 EstimateBoundaryIntegral(P, direct)
Input: Probability density P for sampling the boundary segment,

and a boolean direct for next-event estimation (NEE)

2 begin
/* Sample boundary segment */

3 Draw (𝒙B,𝝎B) ∼ P(𝒙B,𝝎B) ;
4 𝒙S

0
← rayTrace(𝒙B,−𝝎B) ; 𝒙D

0
← rayTrace(𝒙B,𝝎B) ;

5 if 𝒙S

0
and 𝒙D

0
are both valid then // Both ray tracings hit

6 𝑇 B ← ˆ𝑓 B 𝐽 B (𝒙B,𝝎B)/P(𝒙B,𝝎B) ;
7 𝒑S

0
← P(𝒙S

0
, 𝜋 ) ; 𝒑D

0
← P(𝒙D

0
, 𝜋 ) ; // Eq. (44)

/* Sample subpaths */

8 if direct then // For direct path
9 𝑇 S ← 𝐿e (𝒙S

0
→ 𝒙D

0
) ;

10 else // For indirect path
11 𝑇 S ← EstimateSourcePath(𝒑S

0
; 𝒑D

0
) ;

12 end
13 𝑇D ← EstimateDetectorPath(𝒑D

0
; 𝒑S

0
) ;

14 return𝑇 S𝑇 B𝑇D
; // Eq. (47)

15 else
16 return 0;

17 end
18 end
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Fig. 11. Estimating the multi-directional boundary integral of
Eq. (45): Our unidirectional algorithm (I.1) samples the source and detector
subpaths using unidirectional tracing with next-event estimation (NEE).
The bidirectional variant (I.2), on the contrary, uses bidirectional path trac-
ing (BDPT) to construct both subpaths.

P(𝒙B,𝝎B) ∝ 𝐹B (𝒙B,𝝎B). Although this probability is difficult to

compute analytically, we note that the total dimensionality of the

domains of 𝒙B
and 𝝎B

is only three (e.g., whenM(𝜋) is expressed
as polygonal meshes, 𝒙B

belongs to a 1D manifold of mesh face

edges, while 𝝎B
lies on a subset of the 2D sphere of directions).

We take advantage of this low dimensionality to develop a simple

method for importance sampling 𝒙B
and 𝝎B

as follows.

We discretize P(𝒙B,𝝎B) as a regular 3D grid that is precomputed

before the rendering process. Inspired from standard path guiding

using photon maps [Jensen 1995], we start the preprocessing with

generating a photon map (by tracing photons carrying radiance

information from the light source) and an importon map (by trac-

ing importons carrying importance information from the detector).

Then, we integrate 𝐹B (𝒙B,𝝎B) within each cell 𝐶𝑖 by uniformly

sampling 𝒙B
and 𝝎B

:

P𝑖 =
∫
𝐶𝑖

𝐹B (𝒙B,𝝎B) d𝝎B
d𝒙B, (50)

which provides a piecewise constant representation of P(𝒙B,𝝎B).
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Fig. 12. Validation of our unidirectional algorithm (I.1). In this example, the
derivative is computed with respect to the rotation angle of the branches
around the vertical axis. Derivatives estimated with our method closely
match those obtained using the finite-difference (FD) approach with the
main difference due to the FD bias.
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Fig. 13. Validation of our bidirectional algorithm (I.2). In the top example,
the differentiation is with respect to the horizontal displacement of both
area light sources. In the bottom example, the derivatives are computed with
respect to the vertical location of a spot light. Both examples involve light
transport effects that are challenging for unidirectional methods. Derivatives
estimated with our method closely match those obtained using the finite-
difference (FD) approach with the main difference due to the FD bias.

To approximate the two integrals in 𝐹B (𝒙B,𝝎B), we leverage

kernel density estimation using the pre-generated photon and im-

porton maps. Specifically, given 𝒙S

0
and 𝒙D

0
, by performing a nearest-

neighbor (NN) search in the photon map around 𝒙S

0
, we can approx-

imate the contribution of the source subpath as∫
Ω̂

ˆ𝑓 S
d` ≈ 1

𝐴

∑
𝑝

ˆ𝑓s (𝒙S

0
,𝝎𝑝 ,𝝎B) Φ𝑝 , (51)

where 𝐴 is the surface area of the search neighborhood, Φ𝑝 denotes

the power of the 𝑝-th photon in the neighborhood, and 𝝎𝑝 is the

photon’s incident direction. A similar estimate can be formed using

the importon map for the contribution

∫
Ω̂

ˆ𝑓 D
d` of the detector

subpath.

We emphasize that, even though our estimate P(𝒙B,𝝎B) is biased,
the resulting estimator of the boundary integral (45) remains unbi-

ased, as P(𝒙B,𝝎B) is only used to importance sample 𝒙B
and 𝝎B

. In

practice, we precompute two probability densities P
direct
(𝒙B,𝝎B)

and P
indirect

(𝒙B,𝝎B) for importance sampling the direct and the

indirect boundary paths, respectively.

7 RESULTS
To evaluate the effectiveness of our technique, we implement two

path-space algorithms based on the Monte Carlo methods intro-

duced in §6 as follows.
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Fig. 14. Evaluation of the effectiveness of our unidirectional algorithm (I.1). Images in the left column visualize the overall scene configurations. All derivative
images (other than the finite-difference reference) are generated under equal sample. Our method runs much faster than edge sampling and produces much
cleaner derivative images.

I.1 Our unidirectional algorithm uses differentiable unidirec-

tional path tracing (Algorithm 1) for the interior integral and a

multi-directional estimator (Algorithm 2) with next-event esti-

mation and grid-based importance sampling for the boundary
integral. When building the source and detector subpaths, it uses

a unidirectional scheme (that starts from 𝒑S

0
and 𝒑D

0
for the two

subpaths, respectively), as illustrated on the left of Figure 11.

I.2 Our bidirectional algorithm estimates the interior integral
using bidirectional path tracing (that is, the bidirectional coun-

terpart of Algorithm 1). For the boundary integral, the source

and detector subpaths are both sampled in a bidirectional fash-

ion, as shown on the right of Figure 11. The source subpath, for

instance, is constructed by sampling from both 𝒑S

0
and a light

source.

7.1 Validation
To validate the correctness of our derivations and implementations,

we compare radiance derivatives estimated with our method to

those obtained using the finite difference (FD) method.

We validate our unidirectional algorithm (I.1) in Figure 12 using a

test scene that contains an object comprised of many branches. We

compute the derivative images with respect to the rotation angle of

the object.

Our bidirectional algorithm (I.2) is validated in Figure 13. The first
example in this figure contains a Cornell-box-like scene lit by two

area light sources with the right one facing upward. The derivative

images are computed with respect to horizontal displacements of

both lights. The second example is modeled after the well known

scene created by Veach [1997] for demonstrating the effectiveness

of bidirectional path tracing (BDPT). This scene involves a large

floor lamp, a small spot light, and a glass egg on a table, and we use

a camera setting to focus on the egg. We compute the derivatives

with respect to the vertical displacement of the spot light.

In both figures, our results match those generated by the finite-

difference method in much longer time. The small differences are

due to the bias introduced by applying finite difference. This bias can

be reduced by using smaller spacing but at the cost of significantly

higher Monte Carlo noise. Our technique is capable of producing

much cleaner and unbiased derivative estimation.

7.2 Evaluations
Thanks to our differential path integral formulations, our Monte

Carlo algorithms (I.1 and I.2) are capable of handling efficiently

complex geometric discontinuities and light transport effects. In

what follows, we evaluate the effectiveness of our method on both

aspects. We compare our results to those generated using the (unbi-

ased) edge-sampling method [Li et al. 2018a; Zhang et al. 2019] and

the (biased) reparameterization method [Loubet et al. 2019]. We use

two kinds of configurations for these comparisons: (i) scenes with

complex geometry and occlusion; and (ii) those with light transport

effects that are known to make unidirectional methods inefficient

(e.g., caustics).

Complex geometry. Previously, sampling points from silhouette
edges of a surface point (i.e., edge sampling) was generally required

to obtain unbiased derivative estimates [Li et al. 2018a; Zhang et al.

2019] with respect to the scene geometry. This process, however, can

be highly expensive for scenes with complex geometries. Another

solution is to trade unbiasedness for computational efficiency by

applying a local reparameterization [Loubet et al. 2019]. This method

relies on a number of simplifying assumptions that can be violated

in scenes with complex motions, making the resulting derivatives

too biased for inverse rendering applications.

We use two test scenes with complex geometry to evaluate the

performance of our unidirectional algorithm (I.1) as follows. The
branches scene, which has been used in Figure 12, contains sev-

eral branches lit by a small area source, causing complex visibility

changes that can be observed from the shadows on the ground;
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Fig. 15. Inverse rendering comparisons using the branches scene with the object’s rotation angle being optimized. All methods are configured to have
equal sample count per pixel. We show rendered images produced by each method after the last iteration with ours marked in purple, edge sampling in orange,
and reparameterization in green. Notice that these images are noisy as we use low sample count during optimization. The image and parameter RMSE plots
are color-coded the same way, and the latter is not used for optimization. Our unidirectional implementation runs much faster than edge sampling while
preserving unbiasedness. The reparameterization-based method fails to converge to the correct solution under the second configuration due to its bias.

and the differentiation is with respect to the rotation angle of

the branches around the vertical axis. The puffer ball scene in-

volves a highly-detailed mesh generated via physics-based simula-

tion [Zheng and James 2012]. This model contains over one million

faces and is illuminated by three area emitters of red, green, and

blue colors, creating the colored shadows on the ground. For each

light, we use a single parameter to control its size and intensity such

that the total power remains constant. The derivative images are

computed with respect to the parameter controlling the red light

(which casts a blue shadow).

We show in Figure 14 equal-sample comparisons
11

of derivative

images computed by our method as well as the state-of-the-art edge

sampling [Li et al. 2018a; Zhang et al. 2019] and reparameteriza-

tion [Loubet et al. 2019] methods. For both scenes, our results closely

matches the references generated using the finite-difference method.

Edge sampling, despite being unbiased, struggled to produce clean

results. Compared to edge sampling, our method is both faster and
provides derivative estimates with much lower noise. The reparame-

terization method, on the other hand, generates clean results but

with high bias.

11
We use CPU-based implementations of both our algorithms (I.1 and I.2) and the edge-

sampling ones [Li et al. 2018a; Zhang et al. 2019]. The reparameterization method [Lou-

bet et al. 2019], on the other hand, replies on a GPU-based implementation. Due to this

architectural difference, we opt for equal-sample instead of equal-time comparisons, as

the former are more representative of different methods’ relative performance.

Additionally, we show inverse rendering comparisons using the

same test scenes. We use the Adam method [Kingma and Ba 2014]

implemented in PyTorch for the optimizations. In each compari-

son, we use derivative images generated at equal sample with prior

methods and ours. To ensure fairness, we fix all inverse-rendering

parameters other than the derivative images such as initial state and

learning rate. Please refer to Table 2 for performance statistics and

the supplemental material for animated versions of these results.

Figure 15 shows inverse rendering results using the branches
scene with two settings that have identical initial configurations but

different targets that are, respectively, 0.2 and 0.6 radian from the

initial. Under the first setting, all methods including the biased repa-

rameterization method, manage to converge to the global optimum;

under the second setting, on the other hand, the reparameterization

approach fails converge properly due to its high bias. Under both

settings, our method runs significantly faster than edge sampling

while producing much cleaner derivatives.

In Figure 16, we show inverse-rendering processes of the puffer
ball scene. Due to the very high face count, edge sampling produces

too much noise for the optimization to converge properly. Our

technique again produces clean and unbiased derivative estimates,

allowing the optimization to converge easily.

Complex light transport effect. Another major benefit of our the-

ory is to allow the interior term (and subpath contributions in the
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Fig. 16. Inverse rendering comparisons using the puffer ball scene with the light source sizes being optimized. All methods are configured to use equal
sample count per pixel, and the visualization scheme follows that of Figure 15. Because of the high geometric complexity of this scene, edge sampling suffers
from very high noise and fails to converge.

boundary term) to be estimated using sophisticated methods such

as bidirectional path tracing. We use the Veach egg scene to evalu-

ate the performance of our bidirectional algorithm (I.2). This scene
remains largely identical to the one used for validation in Figure 13,

except for using a lower roughness for the glass egg.

In Figure 17, we show derivatives with respect to the vertical

displacement of the spot light estimated using our bidirectional algo-
rithm (I.2), unidirectional algorithm (I.1), edge sampling, and biased

reparameterization. All results (other than the finite-difference refer-

ence) are generated under equal sample per pixel. Our bidirectional
algorithm (I.2) outperforms the others significantly by producing

clean derivatives estimates in the caustics area.

We further demonstrate the advantage of our bidirectional algo-
rithm (I.2) using an inverse-rendering setup where the position of

the spot light and the refractive index of the glass egg are optimized

jointly. We compare the performance of our unidirectional (I.1) and
bidirectional (I.2) methods as well as edge sampling. We adjust the

sample count so that each iteration takes roughly equal time for all
methods. We do not include the reparameterization method [Lou-

bet et al. 2019] for this comparison as its implementation does not

support derivatives with respect to refractive indices.

As shown in Figure 18, gradients estimated with edge sampling

are too noisy for the optimization to converge properly. Those pro-

duced by our unidirectional algorithm (I.1) have higher quality but

are still noisy, preventing the optimization from finding to the exact

solution. The bidirectional variant (I.2), on the other hand, produce

significantly cleaner gradient estimates that allow the optimization

to converge smoothly to the global optimum.

7.3 Additional Inverse-Rendering Results
We now provide two extra inverse-rendering results generated using

our bidirectional algorithm (I.2).
Figure 19 shows an example where a glass mug is lit from the

inside by a small area light, creating complex caustics patterns on

the table below. We jointly optimize the orientation and roughness

of the mug as well as the placement of the small area light. Figure 20

contains a silver ring illuminated by four area lights with different

colors. We optimize the cross-sectional shape of the ring, which is

Table 2. Performance statistics for the inverse-rendering comparisons in
Figures 15, 16, and 18. The “time” numbers indicate average computation
time (in seconds) per iteration, including the overhead (shown in parenthe-
ses) for precomputing importance-sampling grid (discussed in §6.4). The
“RMSE” numbers measure the differences between estimated derivatives
and the corresponding groundtruth (calculated under initial configurations
shared by all methods). The experiments are conducted on a workstation
equipped with an octa-core Intel i7-7820X CPU and an Nvidia Titan RTX
graphics card.

Scene Branches Puffer ball Veach egg

# param./# iter. 1/140 3/160 3/200

time RMSE time RMSE time RMSE

Our unidir. 0.5 (0.1) 0.52 4.5 (2.0) 0.09 19.7 (0.2) 9.73

Our bidir. — — — — 19.7 (0.2) 2.43

Edge 5.7 3.60 28.6 1.16 19.7 112

Reparam. 0.3 0.57 1.5 0.08 — —

parameterized by 100 free variables, to match the caustics pattern

in the target image.

In both examples, small perturbations of the scene geometry can

yield much more significant changes in the images. Our method

is capable of producing low-noise derivative estimations, allowing

the inverse-rendering optimizations in both examples to converge

smoothly. Please refer to the supplemental material for animated

versions of these results.

8 DISCUSSION AND CONCLUSION
Limitations and future work. Our derivations in §4 and §5 have

focused on the surface-only case, and generalizing them to handle

volumetric light transport governed by radiative transfer [Chan-

drasekhar 1960] will be an important future direction. Additionally,

although our material-form reformulation theoretically captures

primary-sample-space rendering, the algorithms we realized in §6

have largely focused on the path space. Thus, developing advanced

Monte Carlo estimators that work in the primary sample space is

an interesting future topic. Furthermore, the original path integral
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Fig. 17. Evaluation of the effectiveness of our bidirectional algorithm (I.2) using the Veach egg scene. All derivative images (other than the finite-difference
reference) are generated under equal sample. Previous methods all rely on unidirectional path tracing, which works poorly in this example. Our bidirectional
method, on the other hand, utilizes bidirectional path tracing and produces much cleaner results.
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Fig. 18. Inverse rendering comparison using the Veach egg scene with the spot light’s location and the glass egg’s refractive index optimized jointly. The
optimizations are configured so that each iteration takes equal time for all methods, and the visualization scheme follows that of Figure 15. Edge sampling
produces too much noise for the optimization to converge properly. Our unidirectional algorithm (I.1) offers gradient estimates that are much cleaner but still
too noisy for a convergence to the exact solution. Our the bidirectional method (I.2), on the contrary, allows the optimization to converge smoothly to the
correct solution.

formulation has been the foundation of many Markov-Chain Monte

Carlo (MCMC) rendering algorithms. Therefore, introducing new

MCMC techniques based on our theory will enable differentiable

rendering for even more challenging situations.

Conclusion. In this paper, we introduced the theoretical frame-

work of differential path integral (in spatial and material forms) for

physics-based differentiable rendering. We showed that the deriva-

tive of a path integral (with respect to arbitrary differential change

of the scene) equals the sum of completely separated interior and
boundary components expressed as path integrals over the original

and boundary path spaces, respectively. This path-integral expres-

sion allows the design of newMonte Carlo estimators for the interior
and boundary integrals. Specifically, based on our material-form for-

mulation, we adapted unidirectional and bidirectional path tracing

for the interior integral, and developed a multi-directional method to

estimate the boundary component without explicitly searching for

silhouettes. We demonstrated the effectiveness of our Monte Carlo

methods via a few derivative-estimation and inverse-rendering ex-

amples.
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A DERIVATION OF ¤𝐼𝑁
We now derive 𝜕𝐼𝑁/𝜕𝜋 in Eq. (25) using the recursive relations pro-

vided by Eqs. (21) and (24). Let

ℎ
(0)
𝑛 :=

[∏𝑁
𝑛′=𝑛+1 𝑔(𝒙𝑛′ ; 𝒙𝑛′−2, 𝒙𝑛′−1)

]
𝑊e (𝒙𝑁 → 𝒙𝑁−1), (52)

ℎ
(1)
𝑛 :=

∑𝑁
𝑛′=𝑛+1 ^ (𝒙𝑛′)𝑉 (𝒙𝑛′), (53)

Δℎ
(0)
𝑛,𝑛′

:= ℎ
(0)
𝑛 Δ𝑔 (𝒙𝑛′ ;𝒙𝑛′−2

,𝒙𝑛′−1
)/𝑔 (𝒙𝑛′ ;𝒙𝑛′−2

,𝒙𝑛′−1
), (54)

for 0 ≤ 𝑛 < 𝑛′ ≤ 𝑁 . We omit the dependencies of ℎ
(0)
𝑛 , ℎ

(1)
𝑛 , and

Δℎ
(0)
𝑛,𝑛′ on 𝒙𝑛+1, . . . , 𝒙𝑁 for notational convenience.

We now show that, for all 0 ≤ 𝑛 < 𝑁 , it holds that

ℎ𝑛 (𝒙𝑛 ; 𝒙𝑛−1) =
∫
M𝑁−𝑛 ℎ

(0)
𝑛

∏𝑁
𝑛′=𝑛+1 d𝐴(𝒙𝑛′), (55)

and

¤ℎ𝑛 (𝒙𝑛 ; 𝒙𝑛−1) =
∫
M𝑁−𝑛

[(
ℎ
(0)
𝑛

) •
− ℎ (0)𝑛 ℎ

(1)
𝑛

] ∏𝑁
𝑛′=𝑛+1 d𝐴(𝒙𝑛′)

+∑𝑁
𝑛′=𝑛+1

∫
Δℎ
(0)
𝑛,𝑛′ 𝑉𝜕M𝑛′

(𝒙𝑛′) dℓ (𝒙𝑛′)
∏

𝑛<𝑖≤𝑁
𝑖≠𝑛′

d𝐴(𝒙𝑖 ), (56)

where the integral domain of the second term on the right-hand

side, which is omitted for notational clarity, isM(𝜋) for each 𝒙𝑖
with 𝑖 ≠ 𝑛′ and 𝜕M𝑛′ (𝜋), which depends on 𝒙𝑛′−1, for 𝒙𝑛′ .

It is easy to verify that Eqs. (55) and (56) hold for 𝑛 = 𝑁 − 1. We

now show that, if they hold for some 0 < 𝑛 < 𝑁 , then it is also

the case for 𝑛 − 1. Let 𝑔𝑛−1
:= 𝑔(𝒙𝑛 ; 𝒙𝑛−2, 𝒙𝑛−1) for all 0 < 𝑛 ≤ 𝑁 .

Then,

ℎ𝑛−1 (𝒙𝑛−1; 𝒙𝑛−2) =
∫
M 𝑔𝑛−1

∫
M𝑁−𝑛 ℎ

(0)
𝑛

∏𝑁
𝑛′=𝑛+1 d𝐴(𝒙𝑛′) d𝐴(𝒙𝑛)

=
∫
M𝑁−𝑛+1 ℎ

(0)
𝑛−1

∏𝑁
𝑛′=𝑛 d𝐴(𝒙𝑛′), (57)

and

¤ℎ𝑛−1 (𝒙𝑛−1; 𝒙𝑛−2)
=

∫
M

[
¤𝑔𝑛−1 ℎ𝑛 + 𝑔𝑛−1 ( ¤ℎ𝑛 − ℎ𝑛 ^ (𝒙𝑛)𝑉 (𝒙𝑛))

]
d𝐴(𝒙𝑛)

+
∫
𝜕M𝑛

Δ𝑔𝑛−1 ℎ𝑛 𝑉𝜕M𝑛
dℓ (𝒙𝑛)

=
∫
M𝑁−𝑛+1

{
¤𝑔𝑛−1 ℎ

(0)
𝑛 + 𝑔𝑛−1

[(
ℎ
(0)
𝑛

) •
− ℎ (0)𝑛 ℎ

(1)
𝑛−1

]} ∏𝑁
𝑛′=𝑘 d𝐴(𝒙𝑛′)

+∑𝑁
𝑛′=𝑛+1

∫
𝑔𝑛−1 Δℎ

(0)
𝑛,𝑛′ 𝑉𝜕M𝑛′

(𝒙𝑛′) dℓ (𝒙𝑛′)
∏

𝑛≤𝑖≤𝑁
𝑖≠𝑛′

d𝐴(𝒙𝑖 )

+
∫
Δ𝑔𝑛−1 ℎ

(0)
𝑛 𝑉

𝜕M𝑛
dℓ (𝒙𝑛)

∏𝑁
𝑛′=𝑛+1 d𝐴(𝒙𝑛′)

=
∫
M𝑁−𝑛+1

[(
ℎ
(0)
𝑛−1

) •
− ℎ (0)

𝑛−1
ℎ
(1)
𝑛−1

] ∏𝑁
𝑛′=𝑛 d𝐴(𝒙𝑛′)

+∑𝑁
𝑛′=𝑛

∫
Δℎ
(0)
𝑛−1,𝑛′ 𝑉𝜕M𝑛′

(𝒙𝑛′) dℓ (𝒙𝑛′)
∏

𝑛≤𝑖≤𝑁
𝑖≠𝑛′

d𝐴(𝒙𝑖 ). (58)

Thus, using mathematical induction, we know that Eqs. (55) and

(56) hold for all 0 ≤ 𝑛 < 𝑁 .

Notice that ℎ
(0)
0

= 𝑓 and Δℎ
(0)
0,𝑛′ = Δ𝑓𝑛′ , where Δ𝑓𝑛′ follows the

definition in Eq. (28). Letting 𝑛 = 0 in Eq. (56) yields

¤ℎ0 (𝒙0) =
∫
M𝑁

[ ¤𝑓 (𝒙) − 𝑓 (𝒙)∑𝑁
𝑛′=1

^ (𝒙𝑛′)𝑉 (𝒙𝑛′)
] ∏𝑁

𝑛′=1
d𝐴(𝒙𝑛′)

+∑𝑁
𝑛′=1

∫
Δ𝑓𝑛′ (𝒙)𝑉𝜕M𝑛′

dℓ (𝒙𝑛′)
∏

0<𝑖≤𝑁
𝑖≠𝑛′

d𝐴(𝒙𝑖 ) . (59)

Lastly, based on the assumption that ℎ0 is continuous in 𝒙0, Eq. (25)

can be obtained by differentiating Eq. (23):

𝜕𝐼𝑁
𝜕𝜋 = 𝜕

𝜕𝜋

∫
M ℎ0 (𝒙0) d𝐴(𝒙0)

=
∫
M

[ ¤ℎ0 (𝒙0) − ℎ0 (𝒙0) ^ (𝒙0)𝑉 (𝒙0)
]

d𝐴(𝒙0)
+
∫
𝜕M0

ℎ0 (𝒙0)𝑉𝜕M0

(𝒙0) dℓ (𝒙0)

=
∫
Ω𝑁

[ ¤𝑓 (𝒙) − 𝑓 (𝒙)∑𝑁
𝐾=0

^ (𝒙𝐾 )𝑉 (𝒙𝐾 )
]

d` (𝒙)

+∑𝑁
𝐾=0

∫
Ω𝑁,𝐾

Δ𝑓𝐾 (𝒙)𝑉𝜕M𝐾
d` ′
𝑁,𝐾
(𝒙) .

(60)

B DERIVATION OF CHANGE-OF-VARIABLE RATIO
In what follows, we derive the change-of-variable ratio given by

Eq. (48). Given some function 𝜑 :M(𝜋)2 ↦→ R, consider the follow-
ing integral: ∫

M
∫
ΔM[V] 𝜑 (𝒙

S

0
, 𝒙D

0
) dℓ (𝒙D

0
) d𝐴(𝒙S

0
), (61)

where ΔM[V] (𝜋) consists of the discontinuity curves of the mutual

visibility function V with respect to 𝒙D

0
when 𝒙S

0
is fixed.

WhenM(𝜋) is depicted using polygonal meshes, as illustrated

in Figure 9, the interior of the segment 𝒙S

0
𝒙D

0
will always intersect

M(𝜋) at one point 𝒙B
that belongs to a face edge. Let E ⊂ M(𝜋)

denote the union of all face edges, we can apply a change of variable

from 𝒙D

0
∈ ΔM[V] to 𝒙B ∈ E to Eq. (61), producing∫
M

∫
E 𝜑 (𝒙

S

0
, 𝒙D

0
) ∥𝒙

D

0
−𝒙S

0
∥

∥𝒙B−𝒙S

0
∥

sin\B

sin\D
dℓ (𝒙B) d𝐴(𝒙S

0
), (62)

where 𝒙D

0
= rayTrace(𝒙B, 𝒙S

0
→ 𝒙B), and the added terms result

from the Jacobian determinant corresponding to this change of

variable. Compared to Eq. (61), Eq. (62) enjoys a key advantage that

the inner integral has a domain independent of 𝒙S

0
. This allows us

to (i) exchange the ordering of the two integrals in Eq. (62), and

(ii) apply another change of variable from 𝒙S

0
∈ M(𝜋) to 𝝎B ∈ S2

,

yielding:∫
E
∫
M 𝜑 (𝒙S

0
, 𝒙D

0
) ∥𝒙

D

0
−𝒙S

0
∥

∥𝒙B−𝒙S

0
∥

sin\B

sin\D
d𝐴(𝒙S

0
) dℓ (𝒙B)

=
∫
E
∫
S2
𝜑 (𝒙S

0
, 𝒙D

0
) ∥𝒙

D

0
−𝒙S

0
∥

∥𝒙B−𝒙S

0
∥

sin\B

sin\D

∥𝒙B−𝒙S

0
∥2

| cos\S |︸                           ︷︷                           ︸
=Eq. (48)

d𝜎 (𝝎B) dℓ (𝒙B),

(63)

where 𝜎 is the solid-angle measure.

ACM Trans. Graph., Vol. 39, No. 4, Article 143. Publication date: July 2020.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 The Path-Integral Formulation
	3.2 Surface Evolution and Scene Derivatives
	3.3 Differentiating Surface Integrals

	4 Differential Direct Illumination
	4.1 Material-Form Integrals

	5 Differential Path Integrals
	5.1 Spatial-form Differential Path Integral
	5.2 Material-Form Path Integrals

	6 Monte Carlo Estimation of Differential Path Integrals
	6.1 Estimating the Interior Integral
	6.2 Multi-Directional Form of the Boundary Integral
	6.3 Multi-Directional Sampling of Boundary Paths
	6.4 Next-Event Estimation and Importance Sampling

	7 Results
	7.1 Validation
	7.2 Evaluations
	7.3 Additional Inverse-Rendering Results

	8 Discussion and Conclusion
	Acknowledgments
	References
	A Derivation of I_N
	B Derivation of Change-of-Variable Ratio

	anm0: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


