
Path-Space Differentiable Rendering
Supplemental Document

CHENG ZHANG, University of California, Irvine
BAILEY MILLER, Carnegie Mellon University
KAI YAN, University of California, Irvine
IOANNIS GKIOULEKAS, Carnegie Mellon University
SHUANG ZHAO, University of California, Irvine

1 DIFFERENTIATING INTEGRALS OVER EVOLVING
SURFACES

Our derivation of differential path integrals in §5 of the paper re-
lies heavily on mathematical preliminaries described in §3.1 and
§3.2. Specifically, in §3.1 of the paper, we present mathematical
tools for expressing the evolution of surfaces, local velocities of
surface/curve points driven by such evolutions, and scene deriva-
tives of scalar fields defined on evolving surfaces. In §3.2, we further
show a transport relation proposed by Cermelli et al. [2005] that
calculates derivatives of integrals defined on evolving surfaces.
In what follows, we use a few simple examples to demonstrate

how these mathematical concepts and tools work.

1.1 Translating Square
We first consider a unit square that evolves by translating along the
direction (1, 1, 1). That is,

M(𝜋) =
{
(𝑥,𝑦, 𝜋) ∈ R3 : 𝜋 < 𝑥,𝑦 < 1 + 𝜋

}
, (1)

for all 𝜋 ∈ R. Eq. (1) effectively gives the trajectory of the translating
square:

T := {(𝒙, 𝜋) : 𝒙 ∈ M(𝜋)}
=
{
(𝑥,𝑦, 𝜋, 𝜋) ∈ R4 : 𝜋 < 𝑥,𝑦 < 1 + 𝜋

}
.

(2)

There exist infinitely many combinations of reference configura-
tion B and motion X that produce this trajectory. For instance, if we
pick

B :=
{
(𝑥,𝑦, 0) ∈ R3 : 0 < 𝑥,𝑦 < 1

}
, (3)

it is easy to verify that the motion

X(𝒑, 𝜋) = 𝒑 + (𝜋, 𝜋, 𝜋), (4)

for all material points 𝒑 ∈ B, gives the trajectory (2). The corre-
sponding reference map that transformsM(𝜋) back to the reference
B is

P(𝒙, 𝜋) = 𝒙 − (𝜋, 𝜋, 𝜋), (5)
for all 𝒙 ∈ M(𝜋).

Velocities of surface points. The motion in Eq. (4) induces a global
parameterization 𝑥global (𝝃 , 𝜋) of the translating square via

𝒙̂global (𝝃 , 𝜋) = X((𝜉1, 𝜉2, 0), 𝜋) = (𝜉1 + 𝜋, 𝜉2 + 𝜋, 𝜋), (6)

where 𝝃 = (𝜉1, 𝜉2) ∈ (0, 1)2. Under this surface parameterization, a
spatial point (𝑥,𝑦, 𝜋) ∈ M(𝜋) has local coordinates (𝑥 − 𝜋, 𝑦 − 𝜋).

Further, it holds that, for any spatial point 𝒙 ∈ M(𝜋) with local
coordinates 𝝃 ,

𝒗global (𝒙, 𝜋) := 𝜕𝒙̂global

𝜕𝜋
(𝝃 , 𝜋) = 𝜕

𝜕𝜋
(𝜉1 + 𝜋, 𝜉2 + 𝜋, 𝜋) = (1, 1, 1) .

(7)
In other words, the local velocity of all (spatial) points on the square
equals (1, 1, 1).

Alternatively, we can also parameterize the square locally without
relying on the motion in Eq. (4). One possibility is to set

𝒙̂ local (𝝃 , 𝜋 ′) = (𝜉1, 𝜉2, 𝜋 ′), (8)

with respect to any fixed 𝜋 and spatial point (𝑥,𝑦, 𝜋) ∈ M(𝜋). Under
this parameterization, the spatial point has local coordinates (𝑥,𝑦)
and local velocity

𝒗local (𝒙, 𝜋) = 𝜕𝒙̂ local

𝜕𝜋 ′ (𝝃 , 𝜋 ′) = 𝜕

𝜕𝜋 ′ (𝜉1, 𝜉2, 𝜋
′) = (0, 0, 1). (9)

Since the surface normal 𝒏 of the evolving square remains con-
stantly (0, 0, 1), the scalar normal velocity of all 𝒙 ∈ M(𝜋) equals

𝑉 = 𝒗 · 𝒏 = (1, 1, 1)︸  ︷︷  ︸
Eq. (7)

· (0, 0, 1) = (0, 0, 1)︸  ︷︷  ︸
Eq. (9)

· (0, 0, 1) = 1, (10)

confirming its parameterization-independence. Additionally, the
global parameterization (6) gives the local tangential velocity

𝒗
global
tan = 𝒗global −𝑉 𝒏 = (1, 1, 1) − 1 (0, 0, 1) = (1, 1, 0), (11)

for all 𝒙 ∈ M(𝜋). The local parameterization (8), on the contrary,
provides zero local tangential velocity. That is,

𝒗localtan = (0, 0, 0) . (12)

Scene derivatives. We consider a scalar field

𝜑 (𝒙, 𝜋) = 𝑥2 + 𝑦2 + 𝑧2, (13)

where 𝒙 = (𝑥,𝑦, 𝑧) ∈ R3.
Under the global parameterization (6), a spatial point 𝒙 = (𝑥,𝑦, 𝜋) ∈

M(𝜋) has local coordinates 𝝃 = (𝑥 −𝜋, 𝑦 −𝜋). The scene derivative
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given by this parameterization for any fixed 𝜋 and 𝒙 is

¤𝜑global (𝒙, 𝜋) = 𝜕

𝜕𝜋 ′𝜑 (𝒙̂
global (𝝃 , 𝜋 ′), 𝜋 ′)

����
𝜋 ′=𝜋

=
𝜕

𝜕𝜋 ′𝜑 ((𝑥 − 𝜋 + 𝜋 ′, 𝑦 − 𝜋 + 𝜋 ′, 𝜋 ′), 𝜋 ′)
����
𝜋 ′=𝜋

=
𝜕[(𝑥 − 𝜋 + 𝜋 ′)2 + (𝑦 − 𝜋 + 𝜋 ′)2 + (𝜋 ′)2]

𝜕𝜋 ′

����
𝜋 ′=𝜋

= 2(𝑥 + 𝑦 + 𝜋) .

(14)

As the surface gradient of𝜑 at 𝒙 equals (𝜕𝜑/𝜕𝑥, 𝜕𝜑/𝜕𝑦, 0) = (2𝑥, 2𝑦, 0),
the corresponding normal scene derivative is

□
𝜑 (𝒙, 𝜋) = ¤𝜑global (𝒙, 𝜋) − 𝒗

global
tan (𝒙, 𝜋)︸         ︷︷         ︸
Eq. (11)

·(gradM𝜑) (𝒙, 𝜋)

= 2(𝑥 + 𝑦 + 𝜋) − (1, 1, 0) · (2𝑥, 2𝑦, 0)
= 2𝜋.

(15)

Under the local parameterization (8), a spatial point 𝒙 = (𝑥,𝑦, 𝜋) ∈
M(𝜋) has local coordinates 𝝃 = (𝑥,𝑦). The scene derivative for any
fixed 𝜋 and 𝒙 , in this case, equals

¤𝜑 local (𝒙, 𝜋) = 𝜕

𝜕𝜋 ′𝜑 (𝒙̂
local (𝝃 , 𝜋 ′), 𝜋 ′)

����
𝜋 ′=𝜋

=
𝜕

𝜕𝜋 ′𝜑 ((𝑥, 𝑦, 𝜋
′), 𝜋 ′)

����
𝜋 ′=𝜋

=
𝜕[𝑥2 + 𝑦2 + (𝜋 ′)2]

𝜕𝜋 ′

����
𝜋 ′=𝜋

= 2𝜋.

(16)

Computing the corresponding normal scene derivative yields
□
𝜑 (𝒙, 𝜋) = ¤𝜑 local (𝒙, 𝜋) − 𝒗localtan (𝒙, 𝜋)︸       ︷︷       ︸

Eq. (12)

· (gradM𝜑) (𝒙, 𝜋) = 2𝜋, (17)

which agrees with Eq. (15). This is expected since normal scene
derivatives are parameterization-independent.

Differentiating surface integrals. We now consider the problem
of differentiating the surface integral of 𝜑 (𝒙, 𝜋) in Eq. (13) over the
translating squareM(𝜋).
Given the Eqs. (1) and (13), it holds that, for fixed 𝜋 ∈ R,∫

M
𝜑 (𝒙, 𝜋) d𝐴(𝒙)

=

∫ 𝜋+1

𝜋

∫ 𝜋+1

𝜋

(
𝑥2 + 𝑦2 + 𝜋2

)
d𝑥 d𝑦

= 3𝜋2 + 2𝜋 + 2
3
.

(18)

Thus, we know that

d
d𝜋

∫
M

𝜑 (𝒙, 𝜋) d𝐴(𝒙) = d
d𝜋

(
3𝜋2 + 2𝜋 + 2

3

)
= 6𝜋 + 2. (19)

In what follows, we use the transport relation expressed in Eq. (11)
from §3.2 of the paper to calculate the derivative of Eq. (19). Since

𝜑 is continuous and the plane has zero curvature, we have

d
d𝜋

∫
M

𝜑 d𝐴 =

interior∫
M

□
𝜑 d𝐴 +

boundary∫
𝜕M

𝜑 𝑉𝜕M dℓ , (20)

where 𝑉𝜕M indicates the normal velocity of a point on the square’s
boundary.

Given Eq. (15), it holds that the interior term equals∫
M

□
𝜑 d𝐴 =

∫
M

2𝜋 d𝐴 = 2𝜋. (21)

To calculate the remaining boundary term, we need to have avail-
able the normal velocity𝑉𝜕M . Since this quantity is parameterization-
independent, we parameterize the boundary curve 𝜕M globally us-
ing Eq. (6) so that all boundary points have local velocity (1, 1, 1).
Then, 𝑉𝜕M remains constant on each edge of the square:

• All points on the edges with unit normal (0,−1, 0) and (−1, 0, 0)
have 𝑉𝜕M = −1;

• Those on the edges with unit normal (0, 1, 0) and (1, 0, 0) have
𝑉𝜕M = 1.

It follows that∫
𝜕M

𝜑 𝑉𝜕M dℓ

=

∫ 𝜋+1

𝜋

−
[
𝑥2 + 𝜋2 + 𝜋2

]
d𝑥 +

∫ 𝜋+1

𝜋

[
𝑥2 + (𝜋 + 1)2 + 𝜋2

]
d𝑥 +∫ 𝜋+1

𝜋

−
[
𝜋2 + 𝑦2 + 𝜋2

]
d𝑦 +

∫ 𝜋+1

𝜋

[
(𝜋 + 1)2 + 𝑦2 + 𝜋2

]
d𝑦

=

∫ 𝜋+1

𝜋

[
(𝜋 + 1)2 − 𝜋2

]
d𝑥 +

∫ 𝜋+1

𝜋

[
(𝜋 + 1)2 − 𝜋2

]
d𝑦

= (2𝜋 + 1) + (2𝜋 + 1) = 4𝜋 + 2.
(22)

Therefore,
d
d𝜋

∫
M

𝜑 d𝐴 =

∫
M

□
𝜑 d𝐴︸    ︷︷    ︸

Eq. (21)

+
∫
𝜕M

𝜑 𝑉𝜕M dℓ︸            ︷︷            ︸
Eq. (22)

= 2𝜋 + (4𝜋 + 2) = 6𝜋 + 2,

(23)

which agrees with Eq. (19).

1.2 Scaling Sphere
Our second example involves a scaling sphere centered at the origin.
Specifically,1

M(𝑟 ) =
{
(𝑥,𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

}
, (24)

for all 𝑟 > 0.
Let the reference configuration be the unit sphere:

B = S2 :=
{
(𝑥,𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 + 𝑧2 = 1

}
. (25)

Then, it is easy to verify that the motion

X(𝒑, 𝑟 ) = 𝑟𝒑, (26)
1We use “𝑟 ” instead of “𝜋” as the parameter in this example since we will be using the
latter to indicate Archimedes’ constant (i.e., the ratio of a circle’s circumference to its
diameter).
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for any fixed 𝑟 , gives a smooth one-to-one mapping from B to the
scaling sphere M(𝑟 ). This motion further induces a global param-
eterization of the sphere such that, a spatial point 𝒙 ∈ M(𝑟 ) has
local velocity

𝒗global (𝒙, 𝑟 ) = 𝒙

∥𝒙 ∥ =
𝒙

𝑟
, (27)

which has zero tangential component (i.e., 𝒗globaltan = 0). Since the
surface normal at 𝒙 ∈ M(𝑟 ) on the sphere is 𝒙/𝑟 , the scalar normal
velocity at 𝒙 is

𝑉 = 𝒗global · 𝒏 =
𝒙

𝑟
· 𝒙
𝑟
=
𝒙 · 𝒙
𝑟2

= 1. (28)

Additionally, for 𝜑 (𝒙, 𝑟 ) defined in Eq. (13),
□
𝜑 (𝒙, 𝜋) = ¤𝜑 local (𝒙, 𝑟 ) = 𝜕

𝜕𝑟 ′
𝜑 (X(𝒑, 𝑟 ′), 𝑟 ′)︸           ︷︷           ︸

= (𝑟 ′)2

���
𝑟 ′=𝑟

= 2𝑟 . (29)

Differentiating surface integrals. We now consider the problem of
differentiating the surface integral of 𝜑 (𝒙, 𝑟 ) over the scaling square.
Since 𝜑 (𝒙, 𝑟 ) = 𝑟2 for all 𝒙 ∈ M(𝑟 ), it holds that∫

M
𝜑 d𝐴 = 4𝜋𝑟4, (30)

and
d
d𝑟

∫
M

𝜑 d𝐴 = 16𝜋𝑟3 . (31)

We note that the scaling square has no boundary and that the
total curvature 𝜅 equals −2/𝑟 for all 𝒙 ∈ M(𝑟 ). Hence, when dif-
ferentiating the surface integral using the transport relation from
Eq. (11) of the paper, we have

d
d𝜋

∫
M

𝜑 d𝐴 =

∫
M

(
□
𝜑 − 𝜑 𝜅𝑉

)
d𝐴

=

∫
M

(
2𝑟 − 𝑟2

−2
𝑟

)
d𝐴

=

∫
M

4𝑟 d𝐴

= (4𝜋𝑟2) (4𝑟 ) = 16𝜋𝑟3,

(32)

which agrees with Eq. (31).

2 CHANGE-OF-VARIABLE JACOBIAN
When introducing our material-form reparameterization of the
direct-illumination integral in §4.1 of the paper, a key ingredient
is the Jacobian determinant capturing the change of variable from
spatial points 𝒙 to material points 𝒑.
Precisely, at 𝒙 = X(𝒑, 𝜋), this term captures the ratio of the

infinitesimal area Δ𝐴𝒙 spanned by 𝒅𝛼 = X(𝒑 + 𝛼𝒅, 𝜋) − 𝒙 and
𝒆𝛼 = X(𝒑 + 𝛼𝒆, 𝜋) − 𝒙 to the area Δ𝐴𝒑 spanned by 𝛼𝒅 and 𝛼𝒆:

𝐽 (𝒑) =
���� d𝐴(𝒙)d𝐴(𝒑)

���� = lim
𝛼→0

Δ𝐴𝒙

Δ𝐴𝒑
= lim

𝛼→0

|𝒅𝛼 × 𝒆𝛼 |
|𝛼𝒅 × 𝛼𝒆 | , (33)

where “×” denotes vector cross product (see Figure 1).
We consider a special case where the reference configuration B

is a triangle with vertices 𝒑𝑖 ∈ R3 for 𝑖 = 1, 2, 3. For any 𝒑 ∈ B with
barycentric coordinates (𝑠, 𝑡), that is,

𝒑 = (1 − 𝑠 − 𝑡) 𝒑1 + 𝑠 𝒑2 + 𝑡 𝒑3 . (34)

Reference
configuration

Evolving
surface

Fig. 1. Given a deformation X( ·, 𝜋 ) with fixed 𝜋 ∈ R, the Jacobian term
of Eq. (33) equals the ratio of the infinitesimal areas Δ𝐴𝒙 and Δ𝐴𝒑 .

Then, we can set 𝒅 = 𝒑2 − 𝒑1 and 𝒆 = 𝒑3 − 𝒑1 (for all 𝒑). Further,

𝒑 + 𝛼𝒅 = (1 − 𝑠 − 𝑡 − 𝛼) 𝒑1 + (𝑠 + 𝛼) 𝒑2 + 𝑡 𝒑3, (35)
𝒑 + 𝛼𝒆 = (1 − 𝑠 − 𝑡 − 𝛼) 𝒑1 + 𝑠 𝒑2 + (𝑡 + 𝛼) 𝒑3 . (36)

Given ¤𝒑𝑖 ∈ R3 for 𝑖 = 1, 2, 3, let
X(𝒑, 𝜋) = (1 − 𝑠 − 𝑡) (𝒑1 + 𝜋 ¤𝒑1) + 𝑠 (𝒑2 + 𝜋 ¤𝒑2) + 𝑡 (𝒑3 + 𝜋 ¤𝒑3)

= 𝒑 + 𝜋 [(1 − 𝑠 − 𝑡) ¤𝒑1 + 𝑠 ¤𝒑2 + 𝑡 ¤𝒑3], (37)

for all 𝒑 with barycentric coordinates (𝑠, 𝑡). It follows that
𝒅𝛼 = X(𝒑 + 𝛼𝒅, 𝜋) − X(𝒑, 𝜋) = 𝛼 (𝒅 + 𝜋 ¤𝒅), (38)
𝒆𝛼 = X(𝒑 + 𝛼𝒆, 𝜋) − X(𝒑, 𝜋) = 𝛼 (𝒆 + 𝜋 ¤𝒆), (39)

where ¤𝒅 := ¤𝒑2 − ¤𝒑1 and ¤𝒆 := ¤𝒑3 − ¤𝒑1. Thus, the change-of-variable
Jacobian determinant of Eq. (33) becomes

𝐽 (𝒑) =
��𝒅 × 𝒆 + 𝜋 (𝒅 × ¤𝒆 + ¤𝒅 × 𝒆) + 𝜋2 ( ¤𝒅 × ¤𝒆)

��
|𝒅 × 𝒆 | , (40)

which is independent of the barycentric coordinates (𝑠, 𝑡) of 𝒑. In
other words, under the motion of Eq. (37), 𝐽 remains constant for
all material points 𝒑 ∈ B.

When 𝜋 = 0, it is easy to verify that 𝐽 (𝒑) given by Eq. (40) equals
one. On the contrary, the derivative 𝜕𝐽/𝜕𝜋 , which can be calculated
using automatic differentiation, is generally non-zero.
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