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Fig. 1: We present a method for accurate uncertainty estimation in semantic segmentation. Our method produces high epistemic uncertainty
for out-of-distribution segments such as (a) structures, (b) motorbikes and (c) containers not present in the training data. It is able to
identify long-tail anomalies like (d) fallen trees as out-of-distribution even though standing trees are correctly predicted as in-distribution.

Abstract— In order to navigate safely and reliably in novel

environments, robots must estimate perceptual uncertainty when

confronted with out-of-distribution (OOD) obstacles not seen in

training data. We present a method to accurately estimate pixel-
wise uncertainty in semantic segmentation without requiring

real or synthetic OOD examples at training time. From a shared

per-pixel latent feature representation, a classification network

predicts a categorical distribution over semantic labels, while a

normalizing flow estimates the probability density of features

under the training distribution. The label distribution and

density estimates are combined in a Dirichlet-based evidential

uncertainty framework that efficiently computes epistemic and

aleatoric uncertainty in a single neural network forward pass.

Our method is enabled by three key contributions. First, we

simplify the problem of learning a transformation to the training

data density by starting from a fitted Gaussian mixture model

instead of the conventional standard normal distribution. Second,

we learn a richer and more expressive latent pixel representation

to aid OOD detection by training a decoder to reconstruct input

image patches. Third, we perform theoretical analysis of the

loss function used in the evidential uncertainty framework and

propose a principled objective that more accurately balances

training the classification and density estimation networks.

We demonstrate the accuracy of our uncertainty estimation

approach under long-tail OOD obstacle classes for semantic

segmentation in both off-road and urban driving environments.

I. INTRODUCTION
Autonomous robotic navigation has become increasingly

pervasive in both structured urban environments [23, 62, 19]
as well as off-road, unstructured environments like planetary
exploration [2, 41], search-and-rescue [29], mines [16] and
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forests [18]. Navigation systems rely on semantic segmenta-
tion of camera images [54, 55, 24] to detect various semantic
types and object classes. Robots operating in such real world
environments often face “out-of-distribution” (OOD) obstacles
that are not well-represented in the training data. However,
most deep-learning based semantic segmentation models not
only make unexpected errors on OOD examples, but they
often have no notion of how incorrect their predictions are.
In order to navigate safely and reliably in novel environments,
autonomous robots must estimate uncertainty in pixel-wise
semantic segmentation to anticipate potential errors. Estimat-
ing a high uncertainty for OOD segments can enable the
robot to execute cautious, risk-averse behaviors and avoid
colliding with such obstacles. Uncertainty in deep neural
networks arises from two sources [30]: aleatoric uncertainty
is the inherent and irreducible uncertainty due to sensor noise
and partial observability, whereas epistemic uncertainty is
due to unfamiliar inputs not well-represented in the limited
training dataset. Bayesian neural networks [21, 43] provide
a principled framework to estimate both uncertainties for an
input x by not just predicting a single categorical distribution
p = (p1, . . . , pC |

P
C

c=1
pc = 1) over C classes, but by

predicting a hierarchical distribution over distributions p(p |
x) (see Sec. II for details). However, conventional Bayesian
uncertainty estimators like variational inference [4, 26, 36],
ensembles [34, 56] and MC-Dropout [20] require multiple
forward passes through a neural network and are prohibitively
slow for real-time robotics applications.

More recently, evidential uncertainty [50, 1, 53] estimators
such as the natural posterior network (NatPN) [6, 7] have
emerged as an efficient alternative that directly predict the
parameters of a hierarchical Dirichlet uncertainty distribution
in a single forward pass (see Fig. 2). First, a latent feature
representation xi 2 R

D is computed for each pixel indexed
by i using an encoder network. Then, Bayesian uncertainty is
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Fig. 2: Overview of our method. A learned feature extractor (encoder), that forms the backbone of standard semantic segmentation pipelines,
inputs image I and outputs a latent feature representation xi for each pixel i. A semantic classifier head classifies the latent representation
into one of C class labels yi by predicting p(yi |xi); this helps determine aleatoric uncertainty over labels. A normalizing flow learns an
invertible transformation from a fitted Gaussian mixture model to the latent distribution. The invertible transformation allows computing the
probability density p(xi) of a given latent vector xi to determine epistemic uncertainty. The classification output and density estimates are
combined in an evidential uncertainty framework to produce a Dirichlet-based hierarchical uncertainty distribution. Finally, a decoder inputs
the pixel’s shared latent representation xi to reconstruct a patch in the original image centered at the pixel. Patch reconstruction encourages
the feature extractor to learn expressive features xi that enable detecting OOD segments. The decoder is not required at test time.

computed in two parts: (i) A linear classifier predicts a categor-
ical distribution p(yi |xi) representing aleatoric uncertainty
over semantic labels yi 2 {1, . . . , C}. (ii) A density estimator
predicts the probability density p(xi) of the features for pixel
i under the training data distribution, representing epistemic
uncertainty. A low p(xi) corresponds to high uncertainty
since a low p(xi) means that xi is not well-represented
in the training data. The density is estimated by learning
a normalizing flow [48, 46]. Normalizing flows estimate
densities p(xi) in high-dimensional spaces by learning an
invertible and differentiable transformation between x and
samples from a standard normal distribution zi ⇠ N (0, I),
zi 2 R

D. All components are trained end-to-end, and both
uncertainties are combined under the evidential uncertainty
framework by interpreting them as parameters of a Dirichlet
distribution [60].

In this work, we address three challenges of using evidential
uncertainty estimation for semantic segmentation and make
the following main contributions:

1) Pixel-wise latent semantic features learned using existing
segmentation networks may not be sufficiently expressive
to identify OOD segments. If this representation aliases

the input data, i.e., maps OOD objects onto in-distribution
features, the density estimator may predict a high probability
which is accurate for the features but not the input query as a
whole. We propose training a decoder that uses each pixel’s
latent features to reconstruct an image patch around the pixel.
The reconstruction loss forces the latent representation to
encode more information that helps detect OOD examples
(Sec. III).

2) Normalizing flows are prone to the curse of dimensionality
since semantic segmentation empirically requires a high-
dimensional latent space (� 128) [35, 33, 8], as opposed to
fewer latent dimensions ( 32) for the kinds of classification
tasks considered in prior work [6, 7]. Conventionally, an
invertible transformation is learnt between p(xi) and the
standard normal distribution N (0, I). Our insight is to
exploit the fact that normalizing flows can admit any base
distribution with a differentiable density. In particular, we

use a Gaussian mixture model (GMM) that is first fit to
the data distribution. The more powerful base distribution
enables the flow to perform at least as well as the GMM
even if it learns a simple identity mapping. We show that
requiring the normalizing flow to only learn the residual

transformation between the GMM and p(xi) significantly
improves performance (Sec. IV).

3) NatPN uses a Bayesian loss function [6, 7] that linearly com-
bines the loss for classification and density estimation. We
provide an analysis of this loss function and derive a novel
combination coefficient that is a function of the predicted
density estimate. We show that our proposed combination
balances the two losses in a principled way and satisfies a
number of desirable theoretical properties. The proposed
loss reduces the number of tunable hyperparameters and
empirically improves uncertainty estimation (Sec. V).

We validate our uncertainty estimation approach on two
semantic segmentation datasets: RUGD [57], an off-road
driving dataset, and Cityscapes [11]: an urban driving dataset.

II. PROBLEM FORMULATION

Given a 2-D RGB image I 2 {0, . . . , 255}3·W ·H encountered
by a mobile robot in urban or off-road environments, our goal
is to classify each pixel i 2 I with a distribution over per-
pixel semantic labels yi 2 C = {1, . . . , C}. More precisely,
given a training dataset of images D = {I0:t}, its associated
training labels, and a query image I, we wish to learn

p(yi | I,D) (1)

Firstly, for each pixel (indexed by i) we assume a learned
feature representation xi 2 R

D computed from an encoding
of the raw image ei(I) = xi. Secondly, in order to accurately
capture both aleatoric and epistemic uncertainty, we use
hierarchical Bayesian uncertainty [21, 30, 43] to factor the
model and compute p(yi |xi,D) as follows:

p(yi |xi,D)| {z }
label posterior

=

Z

p

aleatoricz }| {
p(yi |pi)

epistemicz }| {
p(pi |xi,D)| {z }

distributional posterior

dp. (2)



In this model, the p(pi |xi,D), is known as the distributional

uncertainty [37] or distributional posterior (shown in red
throughout the paper). Aleatoric uncertainty is expressed
by the (average) spread of the lower-level label distribution
p(yi |pi). Epistemic uncertainty is expressed by the spread
of the the higher-level distribution p(pi |xi,D), measuring
the disagreement between the different pi sampled from
p(pi |xi,D). Thus, the overall uncertainty (of the label poste-
rior p(yi |xi,D)) for pixel i is a combination of epistemic and
aleatoric uncertainty. Note that the label posterior p(yi |xi,D)
is simply the mean of the distributional posterior p(pi |xi,D)
and yi is independent of xi conditioned on pi since the
distributional posterior is computed from xi.

We compute p(pi |xi,D) by repurposing a standard se-
mantic segmentation architecture into a feature extractor (or
encoder) and a pixel-wise classification head, shown in Fig. 2.
In this work, we build upon the feature pyramid network [35],
which is a fast and accurate semantic segmentation method.
First, the encoder e!(·), parametrized by weights ! takes as
input an RGB image I and extracts a latent feature vector
xi = ei!(I) 2 R

D for each pixel i. Given latent features
xi 2 R

D for pixel i, we compute its distributional uncertainty
p(pi |xi,D) by expressing it as a closed-form Dirichlet
distribution [60] over the probability simplex �C . We follow
the approach of the natural posterior network (NatPN) [6, 7]
and parametrize the Dirichlet as:

p(pi |xi,D) = Dir
⇣
pi

��� �prior

| {z }
(1,...,1)

+ ��(xi)
| {z }

classification output

· N p✓(x
i)

| {z }
flow output

⌘
(3)

The above form is motivated by exact Bayesian inference
for a Dirichlet distribution [60]. The Dirichlet parameters
combine a categorical distribution ��(xi) 2 �C over seman-
tic classes predicted by a classification head with weights �,
a density estimate p✓(x) 2 R�0, and a distributional prior
Dir(pi |�prior) where �prior = (1, . . . , 1) corresponds to a
uniform distribution over the probability simplex �C .

The pixel feature density p✓(xi) is the crucial component
for estimating epistemic uncertainty, as it indicates how
familiar the feature vector is in the training dataset. The
density is scaled by a constant N so that it can be interpreted
as the “evidence” for pixel features xi: Np✓(xi) is the
effective count of xi in the training dataset. When p✓(x) is
high, the magnitude of the Dirichlet parameter increases and
corresponds to a peaked distribution around the classifier’s
prediction ��(xi). However, as p✓(xi) decreases to zero,
the Dirichlet diffuses to Dir(pi |�prior) i.e. the uniform
distribution.

The advantage of using Dirichlet-based evidential un-
certainty is that a single forward pass through the en-
coder, classifier and density estimator produces the full
distributional uncertainty in Eqn. 3. Furthermore, the label
posterior (Eqn. 2), epistemic and aleatoric uncertainty can be
computed efficiently in closed-form for the Dirichlet distri-
bution [37]. In contrast, conventional Bayesian uncertainty
methods [4, 26, 36, 34, 56, 20] require multiple forward
passes to compute distributional uncertainty, which can be

prohibitively expensive for real-time robotics applications.
All components of our method can be trained end-to-end
using a single Bayesian loss function [6, 7].

III. LATENT FEATURES VIA PATCH RECONSTRUCTION

A standard segmentation network is trained by extracting
features xi = ei!(I) for each pixel i using an encoder e!
to learn the features, and minimizing a semantic classifica-
tion loss for the predicted categorical distribution ��(xi).
However, latent features that are sufficient for semantically
classifying a pixel may be insufficient for detecting OOD
objects. For example, assume that the training dataset contains
classes such as sky, grass and mud, but not many obstacles.
In that case, a semantic classifier might only need to learn
color features for accurate classification. It may discard other
features such as texture and shape that are important to
differentiate obstacles such as a brown vehicle from mud or a
white building from the sky. Charpentier et al. [7] indeed note
that their density estimator can only identify OOD features
that pertain to the semantic classification task.

We propose an auxiliary decoder network that takes as
input the latent representation xi of each pixel i, and learns
to reconstruct a 60 pixel ⇥ 60 pixel patch centered at pixel i
(see Fig. 2). We call this a patch-decoder since it decodes the
latent representation to an image patch. A similar idea was
introduced in Richter and Roy [49] to autoencode images for
image-level anomaly detection. The patch decoder is trained
to minimize the smooth-L1 distance [22] between the pre-
dicted reconstruction and the ground truth image patch. The
reconstruction objective encourages the latent representation
to learn expressive features that enable identifying OOD
segments. The decoder provides an auxiliary reconstruction
loss for training the shared latent features; however, the
decoder is not required at test time and is discarded. Therefore,
the patch decoder does not add any computational overhead
to our method during deployment. Sec. VI shows that training
an auxiliary patch decoder significantly improves uncertainty
estimation in the presence of OOD segments.

IV. IMPROVING NORMALIZING FLOWS VIA GMMS

In order to to estimate the density p✓(xi) of pixel-wise
latent features xi 2 R

D, we use a normalizing flow
model [46], which transforms a simple, fixed base distri-
bution p(zi), zi 2 R

D, conventionally the standard normal
distribution N (zi |0,1), to a more complex distribution using
a sequence of T invertible functions {f✓

t
: RD ! R

D}T
t=1

parametrized by weights ✓:

(Sampling) zi ⇠ p(zi) = zi
0

f
✓
1�! zi

1

f
✓
2�! · · · f

✓
T��! zi

T
= xi (4)

Each learnable transformation f✓
t

is designed to be invertible
and differentiable by construction [46, 9, 48], and their
Jacobians are efficient to compute. We use residual flows [9], a
state-of-the art normalizing flow method that uses a sequence
of invertible residual networks [3] guaranteed to be invertible
by Lipschitz continuity. These properties allow us to compute
the probability density of a pixel’s latent features xi using



(a) Test-time query image (b) Estimated aleatoric uncertainty (c) Estimated epistemic uncertainty

Fig. 3: (a) The input/query image at test time containing a puddle of water; water or puddles were never seen by the model during
training. (b) Aleatoric uncertainty is the inherent and irreducible uncertainty due to ambiguous labels, and is estimated to be high at the
boundaries between semantic classes. (c) Estimated epistemic uncertainty is high at unfamiliar regions not well represented in the training
data. Although aleatoric uncertainty is high only at the boundary of the puddle (due to misclassification), epistemic uncertainty is high
throughout the puddle. Therefore, we distinguish between, model and predict both uncertainties in a Bayesian evidential framework.

the change-of-variables formula:

log p✓(x
i) = log p(zi)�

TX

t=1

log

����det
@f✓(zi

t
)

@zi
t

���� (5)

(Density estimation) where zi
t
= f✓�1

t
� · · · � f✓�1

T
(xi) (6)

The target distribution of pixel latent features xi we want to
learn is the distribution induced by the encoder xi = ei!(I)
with weights !; we represent this target by p!(xi). However,
the target density is multimodal and complex; therefore, the
target transformation from the simple base density N (0,1) to
p!(xi) is also complex and challenging for the normalizing
flow to learn. This is especially true in high dimensional (D �
128) latent spaces xi 2 R

D used for semantic segmentation.
Our insight is to ease this learning problem by exploiting

the fact that normalizing flows can admit any base density that
is computable and differentiable. In particular, we attempt to
bridge the gap to p!(xi) by using a more complex, learnable
base density: a Gaussian mixture model (GMM) pGMM(·).

Our training of the GMM-based normalizing flow occurs in
three stages. First, we train the encoder e!(·), segmentation
head ��(·), and the decoder jointly using classification and
reconstruction losses. Second, we freeze the weights ! of
the encoder and fit pGMM(xi) to the pixel latent feature
distribution p!(xi) using the EM algorithm [14]. Crucially,
the gap between an optimized pGMM(xi) and p!(xi) is
expected to be smaller than the gap between N (0,1) and
p!(xi), since pGMM(·) is strictly more expressive than
N (0,1). Finally, we train the classifier head ��(xi) and
normalizing flow p✓(xi) jointly using the Bayesian loss
function [6, 7] (see Sec. V), but using pGMM(zi) as the
base density for the normalizing flow instead of N (0,1).

The above procedure makes the learning problem easier
because even if the flow learns a simple identity transform
f✓
t
(zi

t
) = zi

t
8t, we have that p!(xi) = pGMM(xi).

Therefore, the normalizing flow is guaranteed to perform
at least as well as the GMM. The GMM can be viewed
as a clever “initialization” that offsets the burden on the
normalizing flow to learn a simpler residual transport between
pGMM(xi) and p!(xi). In Sec. VI, we show that using a
fitted GMM as the base density significantly outperforms
either using only normalizing flows or only GMMs.

V. IMPROVING TRAINING LOSS VIA DENSITY ESTIMATES

We follow NatPN [6, 7] and train our full architecture end-
to-end by minimizing a single Bayesian loss function:

argmin
�

X

n

h
�Ep⇠Dir(n) log

�
y(n) |p

�
| {z }

expected cross-entropy loss term

� �H
�
Dir(n)

�
| {z }

entropy regularization term

i

where Dir(n) := Dir
�
p
���prior +N p✓(x

(n))��(x(n))
�

(7)

where the training dataset D = {(x(n), y(n))}|D|
n=1

contains
pixel features x(n) extracted by the encoder, and correspond-
ing ground truth labels y(n). The loss balances between
two terms: (i) an expected cross-entropy loss that trains
the classifier to predict the conditional label distribution
p(yi |xi), and (ii) an entropy regularization term that prevents
the predicted Dirichlet distribution from being excessively
concentrated. Charpentier et al. [6, 7] hand-tune � and set it
to a constant value for all x(n) 2 R

D.
We propose a principled value for � by analyzing the loss

as an evidence lower-bound (ELBO) [31] for exact Bayesian
inference in Dirichlet distributions. The standard Bayesian
ELBO contains two terms [31]: a prior term that corresponds
to the entropy regularization term, and a likelihood term that
corresponds to the the cross-entropy loss. Our insight is to
note that the prior term occurs only once for each unique
x 2 D in the dataset (all unique data points should be equally
regularized). However, the likelihood term is contributed by
every occurrence of x in the dataset. Therefore, the relative
weight of the two terms should depend on the frequency of x
— its effective count or “evidence” — in the dataset, which is
modeled as a scaled version of its probability density Np✓(x).
The higher the value of Np✓(x), the lower the relative weight
of entropy regularization should be.

Therefore, we propose an analytical value for the co-
efficient: � := (Np✓(x(n)))�1 i.e. the reciprocal of the
(scaled) predicted density. Importantly, our proposed � is not a
constant but is a function of pixel features x(n). Our proposed
coefficient can be further justified by proving1 that (i) when
� 6= (Np✓(x(n)))�1, the true posterior may not minimize
the Bayesian loss function. But when � = (Np✓(x(n)))�1

(ii) the true posterior is the unique global minimum of the

1The proof is omitted due to space constraints.



Bayesian loss, and (iii) the Bayesian loss function trains the
normalizing flow to maximize its predicted density p✓(x(n))
on the training data. In Sec. VI, we empirically show that
optimizing under our proposed value � = (Np✓(x(n)))�1

produces more accurate uncertainty estimates than using a
constant value for all x(n).

VI. EXPERIMENTS
A. Dataset and experimental design

We wish to estimate pixel-wise distributional uncertainty
in the presence of OOD obstacles. From the full semantic
label set C = {1, . . . , C}, we define a subset CID ⇢ C as
the set of in-distribution classes, and the remaining subset
COOD = C \ CID as out-of-distribution classes. For the
purposes of this OOD evaluation, we split the dataset such
that pixels in the training dataset D belong exclusively to
CID, whereas test images contain pixels drawn from both
CID and COOD. Importantly, we assume that the learner has
no access to any amount of real or synthetic OOD data at
training time, and we do not make any assumptions about
the nature of OOD data that the model can expect at test
time. We validate our approach using two datasets:
1. RUGD dataset [57]: a real-world dataset containing camera
images collected in off-road environments using mobile robot
platforms and manually labeled for semantic segmentation. It
contains 7,453 labeled images from 17 scenes. We split the 24
semantic categories as 16 in-distribution labels: CID = {dirt,
sand, grass, tree, pole, sky, asphalt, gravel, mulch,
rock-bed, log, fence, bush, sign, rock, concrete}, and
8 OOD labels corresponding to “obstacle” classes: COOD

= {vehicle, container/generic-object, building,
bicycle, person, bridge, picnic-table, water}.
2. Cityscapes dataset [11]: a real-world dataset containing
camera images collected from a vehicle driving in urban Ger-
man streets. It contains 3,475 finely labeled images collected
from 50 cities. We split the 19 semantic categories as 15
in-distribution labels: CID = {road, sidewalk, building,
wall, fence, pole, traffic-light, traffic-sign,
vegetation, terrain, sky, person, rider, car, truck}
and 4 OOD labels corresponding to rarer obstacles: { bus,
train, motorcycle, bicycle }.

B. Evaluation metrics

We evaluate our approach using the following metrics. The
results of our evaluation are presented in Table I.
(i) Overall uncertainty evaluation: We evaluate the overall
uncertainty of the label posterior distribution p(yi |xi,D). We
use the log-probability of the true label under the predicted
distribution, and the Brier score [5, 45, 6]:

P
c
(p(yi =

c |xi,D) � y⇤
c
)2, where y⇤

c
2 {0, 1} is a binary variable

indicating whether the ground truth label is c or not. Both
log-probability and Brier scores are strictly-proper scoring

rules [45] i.e. they are uniquely optimized by the ground
truth probability distribution and simultaneously evaluate
refinement and calibration [45, 13, 42]. They are commonly
used to evaluate uncertainty [45, 6, 25]. We also compute
the expected calibration error (ECE) [25], a commonly used

confidence calibration metric that measures the discrepancy
between segmentation confidence p 2 [0, 1] and the empirical
probability that a label predicted with confidence p was actu-
ally correct. Finally, we also evaluate the power of uncertainty
to predict segmentation errors. We report the area under the
precision-recall curve between overall uncertainty (measured
as the entropy of p(yi |xi,D)) and the classification error. A
higher correlation between uncertainty and errors will produce
a better score.
(ii) Density estimation: Since this work focuses on meth-
ods that that estimate epistemic uncertainty using density
estimators, we additionally evaluate the accuracy of the
density estimation. We report the log-density on in-distribution
examples (higher is better) and OOD examples (lower is
better). We also compute the area under the precision-recall
curve between density, and whether the example is in-
distribution (highlighted in blue in Table I).
(iii) Semantic segmentation accuracy: we also compute the
mean intersection over union (mIoU), a standard semantic
metric to evaluate semantic segmentation.

C. Baselines and ablations

We compare against multiple baselines in Table I. GMM

(rows 2, 4): We first train the feature extractor (encoder),
classification head and patch-decoder shown in Fig. 2 without
a normalizing flow model. Then, we fit a GMM with a small
(20) and large (200) number of components on the trained
features. NatPN [7] (row 5): We adapt the vanilla NatPN
architecture for semantic segmentation without adding any
of our main contributions. The entire NatPN architecture is
trained end-to-end. Autoencoder-only (row 1): We compare
against the anomaly detection method of Richter and Roy
[49] by using the patch-based autoencoder to predict pixel-
wise reconstruction scores. The scores are treated analogous
to the (negative of) density. Nearest-neighbor search (row
3): This baseline is akin to memorizing the training dataset.
After jointly training the encoder, classifier and patch-decoder,
we collect 50,000 randomly sampled pixel latent vectors
computed on training images. For a given latent vector xi

of pixel i at test time, we output the distance of the nearest
neighbor in the collected set. This is treated analogous to
the (negative of) its density. Since the latter two methods
do not output a normalized probability density p✓(xi), we
do not report any metrics that rely on p✓(xi) for rows
1 and 3. Finally, we compare against an ensemble of 20
independently trained segmentation networks (row 6) that
average predictions across members. Since ensembles don’t
compute densities p✓(xi), we do not report density-based
metrics. We also perform ablation experiments in rows 7-9,
removing one of the three key contributions of this work
at a time. Normalizing flows in rows 8-10 use the GMM
with 20 components (row 2) as the base distribution. The key
takeaways from these experiments are as follows.
First, we report that semantic segmentation accuracy (mea-
sured by mIoU) is very similar across methods. In the RUGD
and Cityscapes experiments, the mIoU of all method (except
deep ensembles) lies in 29.8±0.9 and 48.7±0.7, respectively



Evaluating the overall uncertainty p(yi |xi,D) Evaluating the density estimator p✓(xi) Time
(ms)log-

probability
Brier
score ECE AUC-PR curve

unc. v. acc.
log-density

of ID latents
log-density

of OOD latents
AUC-PR curve
density v. ID

" # # " " # " #
Autoencoder

only [49] Not Applicable Not Applicable 0.049 0.554 15.8

GMM
20 components

-1.278 -0.449 0.451 0.285 0.279 0.093 0.584 0.417 -180.1 -144.3 -212.8 -154.3 0.275 0.704 86.4

Nearest
neighbor search Not Applicable Not Applicable 0.316 0.762 129.8

GMM
200 components

-1.053 -0.409 0.386 0.128 0.184 0.079 0.612 0.457 -146.3 -135.6 -237.1 -162.8 0.353 0.783 700.7

Nat. Posterior
Network [7] -1.441 -0.732 0.547 0.507 0.395 0.422 0.417 0.268 -175.3 -163.3 -127.6 -138.5 0.063 0.611 47.4

Deep Ensemble
20 models [34] -1.017 -0.372 0.272 0.116 0.125 0.081 0.670 0.484 Not Applicable 1364.2

Ours without

GMM -1.392 -0.649 0.526 0.295 0.473 0.291 0.442 0.360 -168.0 -152.8 -138.1 -148.9 0.072 0.613 47.4

Ours without

patch decoder -1.335 -0.579 0.499 0.325 0.421 0.360 0.518 0.332 -157.6 -159.8 -140.1 -152.8 0.087 0.631 117.9

Ours without

corrected loss -0.968 -0.356 0.270 0.118 0.111 0.073 0.652 0.493 -124.6 -125.7 -302.1 -185.5 0.441 0.819 117.9

Ours (GMM + PD
+ corrected loss) -0.937 -0.363 0.278 0.112 0.111 0.052 0.680 0.501 -116.0 -116.5 -319.9 -192.5 0.502 0.838 117.9

TABLE I: Measuring the accuracy of uncertainty estimation on the RUGD [57] dataset (red) and the Cityscapes [11] dataset (green)
with held out (OOD) semantic classes at train time. We compute standard metrics for the accuracy of overall uncertainty (label posterior
p(yi |xi,D)) in the left half, as well as accuracy of the density estimates p✓(x

i) in the right half.

whereas the 90% confidence intervals of each method is
at least 1.8 and 1.4 respectively. Deep ensembles have the
highest segmentation accuracy of 32.3 and 51.2 respectively.
Ensembling tends to improve classification performance;
however they are an order of magnitude slower than our
method (see timing column in Table I) due to running multiple
forward passes, and perform worse at uncertainty estimation.

Each of the three contributions (patch-based decoder,
GMM-based normalizing flow, corrected Bayesian loss)
improve performance on both datasets. In particular, the
performance drops significantly when the normalizing flow
does not use the GMM as its base distribution (rows 5,
7 vs. row 10). The performance also drops significantly
when the patch-based decoder is not used to learn a good
latent representation (rows 5, 8 vs. row 10). These results
indicate that normalizing flows are challenging to train
on high-dimensional latent distributions when initialized
with a standard normal distribution. Normalizing flows
combined with GMMs also outperform GMMs alone. In
addition, semantic features learned without the guidance of a
reconstruction loss fail to learn a representation conducive
for OOD uncertainty estimation.

VII. RELATED WORK

Ulmer et al. [53] provides a review of evidential methods
for uncertainty estimation in deep learning. Aside from using
density estimators for evidential deep learning [6, 7], older
works either use regularization losses [50, 1], small amounts
of OOD training data [37, 38] or distill the uncertainty from
an ensemble into a Dirichlet distribution [40]. Amini et al.
[1], Malinin et al. [39] apply the evidential uncertainty frame-
work to continuous regression problems; this is orthogonal to
our work as we focus on discrete (pixel-wise) classification.
Relatedly, NatPN [7] (that we build upon and compare against)

proposes evidential uncertainty estimation for a general class
of exponential family distributions that encompasses both
regression and classification.

Sirohi et al. [51] use the evidential uncertainty frame-
work [50] to estimate per-pixel uncertainties. However, they
focus on panoptic segmentation i.e. segmenting every object
instance, and propose evaluation metrics tailored for this task.
In contrast, we focus on semantic segmentation. Furthermore,
we use a more recent form of evidential uncertainty estima-
tion [7] that explicit trains a density estimator (normalizing
flow) to estimate epistemic uncertainty, instead of relying on
auxiliary regularization terms [50]. Petek et al. [47] combine
evidential uncertainty for segmentation [50] with evidential
deep learning [1] for bounding-box regression to perform
robust localization from monocular images and HD maps.

Normalizing flows have shown to fail for OOD anomaly
detection in prior work [44, 32, 10, 63] when they are
trained directly on high dimensional image inputs. Kirichenko
et al. [32], Jiang et al. [28] show that this is mitigated
when applying normalizing flows to lower-dimensional latent
features extracted from a neural network; we follow this
approach in our work. Prior works have explored using
GMMs with normalizing flows – either using a hand-crafted
GMM [27] or jointly optimizing the GMM with the NF [52].
We first fit a GMM to the training data before training the NF.
Using more complex ‘resampling base distributions’ [52, 17]
could be a promising future direction for our work.

VIII. CONCLUSIONS

In this work, we develop an approach to accurately estimate
pixel-wise Bayesian uncertainty for semantic segmentation in
off-road and urban driving environments in the presence of
out-of-distribution (OOD) obstacles not seen in the training
data. Using an evidential deep learning framework that



efficiently estimates both epistemic and aleatoric uncertainty
in a single forward pass, this work establishes the importance
of (i) encoding latent features essential for OOD detection by
learning to reconstruct the input image, (ii) simplifying density
estimation in high-dimensional latent spaces by learning
residual transforms starting from pre-trained models, and
(iii) balancing the level of regularization in the training
objective informed by theoretical analysis, towards accurate
and efficient uncertainty modeling. We hope this work paves
the way towards inferring and harnessing uncertainty in
perception systems as a critical tool to enable safe and reliable
robot navigation in novel environments.
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[26] José Miguel Hernández-Lobato and Ryan Adams. Proba-
bilistic backpropagation for scalable learning of bayesian
neural networks. In International Conference on

Machine Learning (ICML), pages 1861–1869. PMLR,
2015.

[27] Pavel Izmailov, Polina Kirichenko, Marc Finzi, and
Andrew Gordon Wilson. Semi-supervised learning with
normalizing flows. In International Conference on

Machine Learning (ICML), pages 4615–4630. PMLR,
2020.

[28] Chiyu Max Jiang, Mahyar Najibi, Charles R Qi, Yin
Zhou, and Dragomir Anguelov. Improving the intra-
class long-tail in 3D detection via rare example mining.
In European Conference on Computer Vision, pages
158–175. Springer, 2022.

[29] George Kantor, Sanjiv Singh, Ronald Peterson, Daniela
Rus, Aveek Das, Vijay Kumar, Guilherme Pereira, and
John Spletzer. Distributed search and rescue with robot
and sensor teams. In Field and service robotics: Recent

advances in reserch and applications, pages 529–538.
Springer, 2006.

[30] Alex Kendall and Yarin Gal. What uncertainties do we
need in bayesian deep learning for computer vision?
Advances in Neural Information Processing Systems

(NeurIPS), 30, 2017.
[31] Diederik P Kingma and Max Welling. Auto-encoding

variational bayes. arXiv preprint arXiv:1312.6114, 2013.
[32] Polina Kirichenko, Pavel Izmailov, and Andrew G

Wilson. Why normalizing flows fail to detect out-
of-distribution data. Advances in neural information

processing systems, 33:20578–20589, 2020.
[33] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross

Girshick. PointRend: Image segmentation as rendering.
In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 9799–9808,
2020.

[34] Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances

in Neural Information Processing Systems (NeurIPS),
30, 2017.

[35] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming
He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2117–2125, 2017.
[36] Wesley J Maddox, Pavel Izmailov, Timur Garipov,

Dmitry P Vetrov, and Andrew Gordon Wilson. A
simple baseline for bayesian uncertainty in deep learning.
Advances in Neural Information Processing Systems

(NeurIPS), 32, 2019.
[37] Andrey Malinin and Mark Gales. Predictive uncertainty

estimation via prior networks. Advances in Neural

Information Processing Systems (NeurIPS), 31, 2018.
[38] Andrey Malinin and Mark Gales. Reverse KL-

divergence training of prior networks: Improved uncer-
tainty and adversarial robustness. Advances in Neural

Information Processing Systems, 32, 2019.
[39] Andrey Malinin, Sergey Chervontsev, Ivan Provilkov,

and Mark Gales. Regression prior networks. arXiv

preprint arXiv:2006.11590, 2020.
[40] Andrey Malinin, Bruno Mlodozeniec, and Mark Gales.

Ensemble distribution distillation. In International

Conference on Learning Representations, 2020.
[41] Mauro Massari, Giovanni Giardini, Franco Bernelli-

Zazzera, et al. Autonomous navigation system for plan-
etary exploration rover based on artificial potential fields.
In Proceedings of Dynamics and Control of Systems

and Structures in Space (DCSSS) 6th Conference, pages
153–162, 2004.

[42] Allan H Murphy. A new vector partition of the
probability score. Journal of Applied Meteorology and

Climatology, 12(4):595–600, 1973.
[43] Kevin P. Murphy. Probabilistic Machine Learning:

Advanced Topics. MIT Press, 2023.
[44] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh,

Dilan Görür, and Balaji Lakshminarayanan. Do deep
generative models know what they don’t know? In 7th

International Conference on Learning Representations,

(ICLR), New Orleans, LA, USA, 2019.
[45] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,

David Sculley, Sebastian Nowozin, Joshua Dillon, Bal-
aji Lakshminarayanan, and Jasper Snoek. Can you
trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. Advances in Neural

Information Processing Systems (NeurIPS), 32, 2019.
[46] George Papamakarios, Eric Nalisnick, Danilo Jimenez

Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling
and inference. The Journal of Machine Learning

Research (JMLR), 22(1):2617–2680, 2021.
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