
2	 January/February 2018	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/17/$33.00 © 2018 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Enhancing Selectivity in Big Data

Mathias Lecuyer, Riley Spahn, and Roxana Geambasu | Columbia University
Tzu-Kuo Huang | Uber Advanced Technologies Group
Siddhartha Sen | Microsoft Research

Today’s companies collect immense amounts of personal data, exposing it to external hackers and
privacy-transgressing employees. This study shows that only a fraction of the data is needed to approach
state-of-the-art accuracy. We propose selective data systems designed to pinpoint the data that is
valuable for a company’s workloads.

D riven by the immense perceived potential of “big
data,” Internet companies, advertisers, and gov-

ernments are accumulating vast quantities of personal
data: clicks, locations, social interactions, and more.
While data offers unique opportunities to improve
personal and business effectiveness, its aggressive col-
lection and long-term archival pose significant risks for
organizations. Hacking and exploiting sensitive corpo-
rate and governmental information have become com-
monplace. Privacy-transgressing employees have been
discovered snooping into data stores to spy on friends
and family. Although organizations strive to restrict
access to particularly sensitive data (such as passwords,
SSNs, emails, banking data), properly managing access
controls for diverse and potentially sensitive informa-
tion is an open problem.

We hypothesize that not all data that is collected
and archived by today’s organizations is—or may ever
be—actually needed to satisfy their workloads. We ask
whether it is possible to architect data-driven systems,
such as machine learning–based targeting and person-
alization systems, to permit a clean separation between
data that is truly needed by an organization’s current

and evolving workload, from data that is collected for
potential future needs. The former, called in-use data,
should be minimized in size, timespan, and sensitivity.
The latter, called unused data, should be set aside and
tapped only in exceptional circumstances (see Figure 1).
The separation should permit day-to-day evolutions of
an organization’s workload, by accessing just the in-use
data and without the need to tap into the unused data.
A system that achieves these goals without damaging
functional properties, such as scalability, performance,
and accuracy, is called a selective data system.

Selective Data Systems
Selective data systems can be used to improve data pro-
tection (see Figure 1). The ability to distinguish data
needed now or in the likely future, from data collected
“just in case,” can help organizations restrict the lat-
ter’s exposure to attacks. For example, one could ship
unused data to a tightly controlled store, whose read
accesses are carefully audited and mediated. Intuitively,
data that is accessed day-to-day is less amenable to
certain kinds of protection (such as auditing or
case-by-case access control decisions) than data

FPO

www.computer.org/security� 3

accessed only for exceptional situations (such as launch-
ing a new application).

Turning selective data systems into a reality requires
achieving two conflicting goals: (1) minimizing the
in-use data while (2) avoiding the need to access the
unused data to meet both current and evolving work-
load needs. This tension is traditional in operating sys-
tems, where many algorithms (for instance, caching)
rely on processes having a working set of limited size that
captures their data needs for a period of time. However,
the context of modern, data-driven ecosystems brings
new challenges that likely make traditional working set
algorithms ineffective. For example, many of today’s big
data applications involve machine learning (ML) work-
loads that are periodically retrained to incorporate new
data, by accessing all of the data. How can we determine
a minimal training set, the “working set” for emerging
ML workloads? And how can we ensure this training set
is sufficient even when workloads evolve?

Approach Highlights
We observe that for ML workloads, significant research
is devoted to limiting the amount of data required for
training. The reasons are many but typically do not
involve data protection. Rather, they include increas-
ing performance, dealing with sparsity, and limiting
labeling effort. Techniques such as dimensionality
reduction, feature hashing,1 vector quantization,2 and
count featurization3 are routinely applied in practice to
reduce data dimensionality so models can be trained on
manageable training sets. Active learning4 reduces the
amount of labeled data needed for training when label-
ing requires manual effort. Can such mechanisms also
be used to limit exposure of the data being collected?
How can an organization that already uses these meth-
ods architect a selective data system around them? What
kinds of protection guarantees can this system provide?

As a first step to answering these questions, we present
Pyramid,5 a selective data system built around a specific
training set minimization method called count featuriza-
tion.3 (Pyramid was first introduced at the 2017 IEEE
Symposium on Security and Privacy.) Count featuriza-
tion is a widely used technique for reducing training
sets by feeding ML algorithms with a small subset of the
collected data combined (or featurized) with historical
aggregates from much larger amounts of data. Pyramid
builds upon count featurization to: keep a small, roll-
ing window of accessible in-use data (the hot window);
summarize the history with privacy-preserving aggre-
gates (called counts); and train application models using
hot window data featurized with counts. The counts
are infused with differentially private noise6 to protect
individual observations that are no longer in the hot
window. Counts can support a variety of models that

fall within the important class of supervised classifica-
tion tasks. Historical raw data, which may be needed for
workloads not supported by count featurization, such
as unsupervised learning or regression tasks, is kept in
an encrypted store whose decryption requires special
access.

Our evaluation with two representative workloads—
targeted advertising on the Criteo dataset and movie
recommendation on the MovieLens dataset—reveals
that: (1) historical counts let ML models approach
state-of-the-art accuracy by training on under 1 percent
of the data, (2) protecting historical counts with differ-
ential privacy has only 2 percent impact on accuracy,
and (3) Pyramid works well for an important class of
ML algorithms—supervised classification tasks—and
can support workload evolution within that class.

Example Use Case
MediaCo, a media conglomerate, collects observations
of user behavior from its hundreds of affiliate news
and entertainment sites. Observations include the arti-
cles users read and share, the ads they click, and so on.
MediaCo integrates all of this data into one repository
and uses it to optimize many processes, such as article
recommendation and ad targeting. Because the data is
needed by all of its engineering teams, MediaCo wants
to provide them with wide access to the repository, but it
worries about the risks of doing so given recent external
hacking and insider attacks affecting other companies.

MediaCo decides to use Pyramid to limit the expo-
sure of historical observations in anticipation of an
attack. For MediaCo’s main workloads—targeting and
personalization—the company already uses count fea-
turization to address sparsity challenges; hence, Pyra-
mid is directly applicable. It configures Pyramid by
keeping its hot window of raw observations and its
noise-infused historical counts in the widely accessible
repository, allowing all engineers to train their mod-
els, tune them, and explore new algorithms. Pyramid

Figure 1. Selectivity concept.

Protect as possible,
minimize in size,
time, sensitivity

Protect
vigorously,

avoid
access

In-use
data

Unused
data

4	 IEEE Security & Privacy� January/February 2018

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

absorbs current and evolving workload needs as long as
the algorithms draw on the same user data to predict the
same outcome (for instance, whether a user will click on
an ad). In addition, MediaCo stores all raw observations
in an encrypted store whose read accesses are disabled
by default. Access to this store is granted temporarily
and on a case-by-case basis to engineers who demon-
strate the need for statistics beyond those that Pyramid
maintains. With this configuration, MediaCo minimizes
data access (and hence exposure) to a needs basis.

Threat Model
Figure 2 illustrates Pyramid’s threat model and guaran-
tees. Pyramid ensures that a one-time compromise will
not allow an adversary to access past data. Attacks are
assumed to have a well-defined start time, Tattack, when
the adversary gains access to the machines charged with
running Pyramid, and a well-defined end time, Tattack

stop ,
when administrators discover and stop the intrusion.
Adversaries are assumed to not have had access to the
system before Tattack, nor to have performed any action
in anticipation of their attack (for example, monitor-
ing external predictions, the hot window, or the mod-
els’ state), nor to have continued access after Tattack

stop . The
attacker aims to exfiltrate individual observations of
user activities (for instance, to know if a user clicked
on a specific ad). Historical raw data is assumed to be
protected through independent means and not com-
promised in this attack. Pyramid aims to limit the hot
data and protect the historical counts, both of which are
accessible to the attacker.

After compromising Pyramid’s internal state, the
attacker gains access to data in three representations:
the hot data store containing raw observations, the his-
torical counts, and the trained models. The raw observa-
tions are not protected in any way. The historical counts
consist of differentially private count tables of the recent
past. The attacker learns some aggregate information

from the count tables but individual records will be
protected with differential privacy. Pyramid forces
models to be retrained when observations are removed
from the hot raw data store to avoid past information
leaking through the models. We assume that no out-of-
bound copies of the hot data exist.

Selectivity Requirements
Four requirements define selective data systems:

■■ R1: Reduce in-use, exposed data. The hot data window
is exposed to attackers; hence, Pyramid must limit its
size and timespan subject to application-level func-
tional requirements, such as the accuracy of models
trained with it.

■■ R2: Protect unused data from in-use data structures.
Any state reflecting past, unused data and retained by
Pyramid for prolonged periods of time (such as count
tables) must be protected with strong, differential
privacy guarantees.

■■ R3: Limit impact on accuracy and performance. Pyra-
mid must preserve the functional properties of appli-
cations, such as model accuracy. This requirement is
at odds with the preceding two, hence Pyramid must
find a balance between functionality and protection.

■■ R4: Allow workload evolution. The in-use data must
support as many current and evolving workload needs
as possible to limit access to, and therefore exposure
of, the historical raw data.

The Pyramid Architecture
Pyramid combines and augments two known methods—
count featurization from ML and differential privacy
from cryptography—to meet the preceding selectiv-
ity requirements for a specific class of workloads: clas-
sification tasks such as targeting and personalization.
Figure 3 shows Pyramid’s architecture. Pyramid is a

Figure 2. Threat model.

Time

Data exposure
to attack Unexposed Exposed Unexposed

T
Stop
attack

Historical counts store
Unrestricted access

(can be compromised)

Historical raw data store
Restricted access

(assume not compromisable)

Hot data
store

TAttack-ΔHot TAttack

www.computer.org/security� 5

data management component to be deployed along-
side a model management system. It acts as an inter-
face between the model manager and the organization’s
datasets. Pyramid controls what data is exposed to the
models and the format of this data.

Pyramid maintains two data structures—the hot
raw data store and the historical count tables—and
leverages two functional building blocks: count fea-
turization (CF) and differential privacy (DP). The
hot data store is a cache of recent data containing raw
observations (feature vector, label pairs) that are trans-
formed using CF and used for training. It is a sliding
window cache that we expect to contain on the order
of days or weeks of data. The historical count tables (or
count tables for short) store the number of times each
feature value has been observed with each label. We
leverage DP to protect the past observations used to
construct the count tables. We expect the count tables
to be populated with months’ or years’ worth of data,
and erase observations from count tables past a given
retention period.

Pyramid exposes a small API, which the model
manager uses to interact with the organization’s data:
featurize(x

�
) and getTrainSet(). On prediction

requests, the model manager calls featurize(x
�
)

to obtain a count-featurized version of the raw feature
vector x

�
, denoted x

��
. Pyramid also manages new obser-

vations added to the system. Given a new observa-
tion, consisting of a label (l) and feature vector (x

�
),

Pyramid updates the appropriate count tables, adds
the observation to the hot data store, and submits it
to the historical raw data store. To train its models,
the model manager calls getTrainSet() to obtain a
count-featurized version of all observations in the hot
data store.

The two building blocks—CF and DP—address the
first two selectivity requirements from the previous sec-
tion. CF, a known training set minimization method,
reduces the amount of in-use data needed to train
application-level models (selectivity requirement R1).
It works by augmenting recent hot data with historical
counts. DP protects the unused, phased-out observa-
tions from the historical count tables and other in-use
data structures (selectivity requirement R2). Unfor-
tunately, these methods raise substantial accuracy,
scalability, and evolution challenges. We address the
challenges by augmenting CF and DP with a set of novel
mechanisms to meet the remaining selectivity require-
ments R3 and R4. Following are four technical sections
that describe our base CF and DP processes, plus two of
our augmentation mechanisms (for others, see our sym-
posium paper5). These sections provide a blueprint for
how to build a selective data system based on training
set minimization.

Count Featurization
(R1: Reduce In-Use Data)
CF is a popular technique for handling high-cardinality
categorical variables, such as unique identifiers, when
training classification models.3 CF replaces each feature
vector value with the number of times that feature value
has been observed with each label and the conditional
probability of each label given that feature. This leads
to dramatic dimensionality reduction over standard
one-hot encoding. In a dataset where each observa-
tion contains d features with average feature cardinality
K and labels of cardinality L, where K » L, a one-hot
encoded feature vector would have size dK. CF results
in a feature vector of size dL. In many cases this will be
a dramatic reduction. For example, in click prediction,
we expect L to be 2—click or nonclick—while K is very
large, for instance, millions of user identifiers. Although
no theoretical analysis exists for CF, intuitively, this
dimensionality reduction should allow more efficient
learning and reduce training data size without a loss in
predictive power.

In Pyramid, we use CF to reduce the in-use data
needed to train classification models (selectivity
requirement R1). Figure 4 shows an example of count
tables constructed by Pyramid to count-featurize
observations as well as a sample count-featurized
observation.

Figure 3. The Pyramid architecture.

Count
featurization

Di�erential
privacy

Pyramid

Predict(x)
→

→

→

x’
→

→
Observe(x , l)

Model manager

l

getTrainSet()

Count tables (in-use)

x
x’

→

Count-featurized
hot data
(<x’, l> pairs)

Model
3

Model
2

Model
1

Future
model

→
Featurize(x) Retrain()

Hot raw
data store
(in-use)

→(<x , l> pairs)

Historical raw data store
(unused)

6	 IEEE Security & Privacy� January/February 2018

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

In more detail, an observation’s feature vector x
�

might consist of user features (for instance, ID, gen-
der, age, preferences) and contextual information (for
instance, the URL of the article or the ad shown to
the user). The label l might indicate whether the user
clicked on the article or ad.

Once an observation stream of the preceding type is
registered with Pyramid, the system creates a number of
count tables. Each count table is stored as a count sketch
data structure (described shortly). For example, the
userId table encodes the user’s propensity to click on ads
by maintaining for each user the total number of clicks
and nonclicks on any ad shown.

To count-featurize a feature vector x x x xd= , ,...,1 2

�
,

Pyramid first replaces each of its features with the condi-
tional probabilities computed from the count tables, for
example, x P click x P click x P click xd= (|), (|),..., (|)1 2

��
,

where P click x
clicks

clicks nonclicksi = +
(|) from the row

matching the value of xi in the table corresponding to
xi. Pyramid also appends to x

��
 the conditional probabil-

ities for any feature combinations it maintains.
Figure 4b shows an example of feature vector x

�
 and

its count-featurized version x
��

. Suppose a boosted-tree
model is trained on a count-featurized dataset (x l,

�

pairs). It might find that for users with a click propen-
sity over 0.04, the chances of a click are high for ads
whose clickability exceeds 0.05 placed on websites with
ad-clickability over 0.1. Then, for the example feature
vector in Figure 4, the model would predict a “click”
label.

Differential Privacy (R2: Protect Unused
Data from In-Use Structures)
DP comprises a family of techniques that randomize
function outputs to protect function inputs. We use
DP to protect unused, past observations from exposure
through count tables and other in-use data structures
(selectivity requirement R2). Let D1 be the database of
past observations, D2 be a database that differs from D1

by exactly one observation (that is, D2 adds or removes
one observation), and S the range of all possible count
tables that can result from a randomized query Q() that
builds a count table from a window of observations.
The count table query Q() is -differentially private if

  P Q D S e P Q D S[()] [()]1 2≤ × .6 Adding or remov-
ing an observation in D1 does not significantly change
the probability distribution of possible count tables.  is
the query’s privacy budget.

In Pyramid, we apply DP as shown in Figure 5. We
split time into windows and maintain count tables sepa-
rately for each window of time. Upon rolling over the
hot window, we seal the window’s count tables and cre-
ate new count tables for the new hot window. To cre-
ate a count table, we initialize each cell in that table
with a random draw from a Laplace distribution.6 As
observations arrive in the hot window, the count tables
are updated by incrementing the appropriate cells. To
count-featurize a feature xi, we sum the correspond-
ing entries in the feature’s count tables across the past
time windows, excluding the under-construction count
tables for the current hot window. The sum constitutes a
noisy version of xi’s count over the data retention period
and is used to compute the conditional probabilities.

With this mechanism, Pyramid ensures that past
observations, which have been phased out of the in-use,
hot window, are protected from the count tables. To
protect past observations from the trained models,
Pyramid additionally forces retraining of all application
models when rolling over the hot window.

Count-Median Sketch (R3: Limit Impact
on Accuracy and Performance)
Although CF and DP are known mechanisms, their
integration raises substantial accuracy challenges, which
we have addressed by designing a number of mecha-
nisms (selectivity requirement R3). As an example, we
find that DP interacts poorly with count-min sketches,
which are routinely used in CF implementations to
keep the count table storage overhead practical. For a
categorical variable of cardinality K and a label of cardi-
nality L, the count table is of size O(LK), an impractical
prospect if one were to store the exact table. Count-min
sketches store approximate counts in sublinear space
by using a 2D array with an independent hash function
for each row. Adding an entry to the sketch involves
using the hash function associated with each row to
map the value to a column in the row and increment-
ing that cell; reading an entry from the sketch involves
taking the minimum of those cells. Without noise, tak-
ing the minimum reduces the chance of overcounting
from collisions and results in tight error bounds for the
counts. With Laplacian noise, which is centered around
zero, taking the minimum across multiple draws of the

Figure 4. Count featurization example: (a) count tables constructed by Pyramid
to count-featurize observations and (b) a sample count-featurized observation.

userId

0x1111 50 950

(a) Example count table, one per feature/combo, time window

x : <0x1111,0x7777,0xAAAA, ...>
x’ : <0.05, 0.15, 0.1, ...>

(b) Count featurization
of x => x’:

urlHash clicks nonclkclicks nonclk

0x7777 15,000 85,000

adId clicks nonclk

0xAAAA 20,000 180,000

www.computer.org/security� 7

Laplacian introduces substantial negative bias in the
counts, breaking the sketch’s error bounds.

Our solution is to instead use count-median sketches
to store count tables compactly.7 These differ from the
count-min sketches in two ways: (1) each row i has a
second hash function si that maps the key to a random
sign si (key)  {11,21}, with each cell updated with
si (key) hi (key), and (2) the estimate is the median
of all counts multiplied by its sign. Without noise,
count-median sketches offer worse error bounds than
count-min sketches for typical distributions. With
Laplacian noise, the signed update of the count-median
sketch means the expected impact of collisions is zero,
because they have an equal chance of being negative or
positive. This removes the bias and improves the qual-
ity of the count estimator. Our evaluation shows that
for small , it is worth trading the count-min sketch’s
better guarantees for reduced noise impact with the
count-median sketch.

Count Table Selection (R4: Allow
Workload Evolution)
Two aspects of Pyramid’s design enable workload
evolution without tapping into the historical raw
data store (selectivity requirement R4). First, CF is a
model-independent preprocessing step, allowing Pyra-
mid to support small model changes, such as hyperpa-
rameter tuning or learning algorithm changes, without
accessing the historical raw data store. Second, Pyramid
includes an automatic process of count table selection
that inspects the data to identify feature groups worth
counting together. This is important because CF does
not capture relationships between features. For exam-
ple, a userId and adId together may be more predictive
than either of the individual features. That information
could be inferred by a learning algorithm from the raw

data, but it is lost through CF unless we explicitly main-
tain a count table for the (userId, adId) group.

Our goal in count table selection is to identify feature
groups that provide more information about the label
than individual features. For each feature xi, we find
all other features xj such that xi and xj together exhibit
higher mutual information (MI)—a general measure of
dependence between two random variables—with the
label than xi alone. From these groups, we select a con-
figurable number with the highest MIs. To find promis-
ing groups of larger sizes, we apply this process greedily,
trying out new features with existing groups. For each
selected group, Pyramid creates and maintains a count
table. This exploration of promising groups operates
periodically on the hot window. Count table selection
must be performed differentially privately to ensure that
the groups selected for a particular hot window do not
leak information about that window in the future.

Evaluation
We evaluate how Pyramid meets the four selectivity
requirements. We use two public datasets: (1) Criteo,
which consists of 45M points of ad-click data that was
part of a Kaggle competition and (2) MovieLens,8
which consists of 22M ratings in the range 0–5 on
34K movies from 240K users. As baselines, we use a
feed-forward neural network for Criteo and collabora-
tive filtering for MovieLens, both trained using Vowpal
Wabbit on 80/20 percent train/test splits. We highlight
four results:

■■ R1: CF reduces in-use data by two orders of magni-
tude while incurring less than 3 percent loss in accuracy.
Figure 6a shows that for MovieLens, the CF
boosted-tree algorithms perform within 4 per-
cent of the collaborative filtering baseline with only

Figure 5. Windowed DP count tables.

Σ
DP count tables

In-progress DP
count tables

TimePresent

Hot raw data
(<x,l> pairs)

Count
featurization

x’

Hot window

x→

→

8	 IEEE Security & Privacy� January/February 2018

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

0.8 percent of the training set. This is on par with the
raw logistic regression model. Figure 6b shows simi-
lar results with the Criteo dataset. The CF neural net-
work performs within 3 percent of the baseline raw

neural network when trained on 0.4 percent of the
training set. CF fulfills its mission of reducing training
set exposure and provides a good basis for selectivity.
However, Pyramid must also protect past data using
DP which may have a negative impact on accuracy.

■■ R2: DP provides meaningful protection of unused data
for up to 2 percent additional loss in accuracy. Figure 6c
shows the Criteo models’ accuracy when count tables
are protected with DP using various privacy bud-
gets. A lower value of  corresponds to higher levels
of noise and increased protection. All of the Criteo
models perform within 5 percent of the baseline
when using  5 0.2 as a privacy budget, which is con-
sidered in the DP literature to give high-quality pro-
tection. MovieLens is less resilient to noise but still
performs within 5 percent of the baseline when the
privacy budget is at  5 1, a value still considered to
offer meaningful protection. Thus, in both cases, Pyr-
amid provides meaningful protection through data
reduction with CF and past-data protection with DP.
These results are obtained with the complete Pyramid
implementation, which includes several mechanisms
that augment CF and DP to address substantial accu-
racy challenges.5 We next show the importance of
one mechanism, the count-median sketch.

■■ R3: Count-median sketch helps mitigate the negative
impact on accuracy. The count-median sketch resolves
a tension arising when applying DP to standard imple-
mentations of CF, which rely on count-min sketches
to compactly store count tables for high-dimensional
features. Count-min sketches exhibit a strong down-
ward bias when initialized with DP noise because they
take the minimum, whereas count-median sketches
take the (unbiased) median. For our workloads
(MovieLens and Criteo), count-median sketches
bring us 0.5 percentage points closer to the baseline
losses than count-min sketches when training with
0.8 percent of the data and DP parameters  5 1. By
contrast, without noise, count-min sketches perform
better than count-median sketches, particularly for
MovieLens, where the loss difference is about 2 per-
centage points. This result provides a broader lesson
for anyone aiming to protect a sketch with DP: one
should choose an unbiased sketch implementation
even if it is suboptimal in no-noise scenarios.

■■ R4: Supported workloads and evolution. Our choice
of CF as the core building block to address the
first selectivity requirement—minimizing in-use
data—exhibits both benefits and limitations. As a
model-independent featurization layer, CF allows
some common model changes without accessing
historical raw data. Developers can fine-tune model
hyperparameters, try different learning algorithms
on the count-featurized data, change their learning

Figure 6. Normalized performance for raw and count algorithms: (a) MovieLens
algorithms, (b) Criteo algorithms, and (c) Criteo protection (performance at
different levels of protection). B indicates baseline: neural network for Criteo,
collaborative filtering for MovieLens.

1.20

1.10

1.00

1.05

N
or

m
al

iz
ed

 lo
gi

st
ic

 lo
ss

0.95

1.25

1.15

10.10.01
Fraction of training set (log scale)
0.0010.0001

1.35

1.30

1.20

1.10

1.00

1.05N
or

m
al

iz
ed

 lo
gi

st
ic

 lo
ss

0.95

1.25

1.15

10.10.01
Fraction of training set (log scale)
0.0010.0001

Log. reg. - raw

Log. reg. - raw

(a)

(b)

(c)

Gbt - counts

nn - counts

Gbt - counts

B: svd raw

B: nn - raw

Log. reg. - counts

Log. reg. - counts

Log. reg. = 1 nn = 1
nn = 0.2

nn = 0.1

Log. reg. = 0.2
Log. reg. = 0.1

Gbt - raw

Gbt - raw

1.35

1.30

1.20

1.10

1.00

1.05N
or

m
al

iz
ed

 lo
gi

st
ic

 lo
ss

0.95

1.25

1.15

10.10.01
Fraction of training set (log scale)
0.0010.0001

ε
ε
ε

ε
ε
ε

www.computer.org/security� 9

framework (for example, TensorFlow versus Vowpal
Wabbit), and add/remove features that are already
counted to/from their models. Indeed, our evalua-
tion applied various algorithms and hyperparameters
using the same count tables. Augmented with count
table selection, CF can additionally allow developers
to incorporate more complex count features into their
models. For example, for MovieLens, the boosted-tree
algorithm using Pyramid selected feature groups gets
within 3 percent of the baseline loss, compared to
within 4 percent without the groups, training on the
same 0.8 percent of the raw data.

However, CF restricts the workloads we can sup-
port. CF is designed for supervised classification tasks,
which are commonly used in industry for targeting and
personalization. The preceding evaluations exercised
such tasks. Regression and unsupervised classification
tasks, also popular in industry, are not easily modeled
with CF. In regression, the predicted label is continu-
ous, while CF requires a discrete label to count its occur-
rences with various feature values. Regression tasks can
be handled by binning the label value, but the outcome
is poor. For example, we performed a regression for
MovieLens that predicted a continuous 0–5 movie rat-
ing. Using as baseline a linear regression running on the
full raw data, count models get at best within 16 per-
cent of the baseline loss using linear regression and
within 13 percent using gradient boosted-tree regres-
sion. Our vision for supporting a wider range of work-
loads is to incorporate into Pyramid other training set
minimization and modeling mechanisms that support
complementary workloads. The key challenge will be to
preserve Pyramid’s protection semantics and selectivity
requirements.

Related Work
Multiple data minimization methods exist in ML and
non-ML literature. Some are sketches, which com-
pute compact representations of the data that sup-
port queries of summary statistics;9 streaming/online
algorithms10 process data using bounded memory,
retaining only the information relevant to the problem
at hand; hash featurization1 condenses high-cardinality
categorical variables; autoencoders attempt to learn a
compressed identity function for deep learning work-
loads;11 and active learning4 reduces the amount of
labeled data needed for training. These methods have
been shown to improve performance, robustness, or
labeling cost, but have never been used for protection.
This article gives a blueprint for how to retrofit one
training set minimization method—CF—for protec-
tion. Applying this blueprint to other methods is a fruit-
ful avenue for constructing selective data systems.

Pyramid applies differential privacy6 to its count
tables to protect individual observations. However,
selectivity differs from the standard threat model used
by systems that enforce differential privacy:12–14 these
systems guarantee privacy of released results, but
assume that there is a trusted party to mediate access
to the entire raw dataset. Pan privacy15 has a similar
threat model to ours, allowing a one-time compromise
of the system, but to our knowledge no such system has
been implemented or evaluated in practice. A major
difference between Pyramid and all of this work is the
exposure of raw data through the hot window. This brief
exposure is what enables ML models to be trained with
state-of-the-art performance.

T oday’s indiscriminate data collection and archi-
val practices are risky and unsustainable. It is time

for a more selective approach to big data collection and
protection. Our vision involves architecting data sys-
tems to allow a clean separation of data needed by cur-
rent and evolving workloads, from data collected and
archived for possible future needs. The former should
be minimized; the latter should be set aside, protected
vigorously, and only tapped under exceptional circum-
stances. This article has formulated the requirements for
selective data systems and presented Pyramid, an initial
selective data system that combines and augments two
known methods—count featurization and differential
privacy—to meet these requirements for supervised
classification workloads. Experiments with Pyramid
show that data can be trimmed by two orders of magni-
tude without disrupting performance.

References
1.	 Q. Shi et al., “Hash Kernels for Structured Data,” The

Journal of Machine Learning Research, vol. 10, 2009, pp.
2615–2637.

2.	 A. Gersho and R.M. Gray, Vector Quantization and Sig-
nal Compression, vol. 159, Springer Science & Business
Media, 2012.

3.	 A. Srivastava, A.C. Konig, and M. Bilenko, “Time Adap-
tive Sketches (Ada-Sketches) for Summarizing Data
Streams,” ACM SIGMOD Conference, 2016.

4.	 B. Settles, “Active Learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 6, no. 1, 2012, pp.
1–114.

5.	 M. Lecuyer et al., “Pyramid: Enhancing Selectivity in Big
Data Protection with Count Featurization,” Proc. IEEE
Symposium on Security and Privacy (SP), 2017.

6.	 C. Dwork et al., “Calibrating Noise to Sensitivity in Pri-
vate Data Analysis,” Proceedings of the Third Conference on
Theory of Cryptography (TCC 06), Springer-Verlag, 2006,
pp. 265–284.

10	 IEEE Security & Privacy� January/February 2018

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

7.	 M. Charikar, K. Chen, and M. Farach-Colton, “Finding
Frequent Items in Data Streams,” Proceedings of the 29th
International Colloquium on Automata, Languages and
Programming (ICALP 02), Springer-Verlag, 2002, pp.
693–703.

8.	 F.M. Harper and J.A. Konstan, “The MovieLens Datasets:
History and Context,” ACM Trans. Interact. Intell. Syst.,
vol. 5, no. 4, 2015, pp. 19:1–19:19.

9.	 G. Cormode and S. Muthukrishnan, “An Improved Data
Stream Summary: The Count-Min Sketch and Its Appli-
cations,” Journal of Algorithms, vol. 55, no. 1, 2005, pp.
58–75.

10.	 S. Shalev-Shwartz, “Online Learning and Online Convex
Optimization,” Foundations and Trends in Machine Learn-
ing, vol. 4, no. 2, 2011, pp. 107–194.

11.	 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
Cambridge, Massachusetts: The MIT Press, 2016.

12.	 F.D. McSherry, “Privacy Integrated Queries: An Exten-
sible Platform for Privacy-Preserving Data Analysis,”
Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 09), 2009, pp.
19–30.

13.	 I. Roy et al., “Airavat: Security and Privacy for MapRe-
duce,” NSDI, vol. 10, 2010, pp. 297–312.

14.	 F. McSherry and I. Mironov, “Differentially Private Rec-
ommender Systems: Building Privacy into the Netflix
Prize Contenders,” Proceedings of the 15th ACM SIGKDD
International Conference Knowledge Discovery and Data
Mining, ACM, 2009, pp. 627–636.

15.	 C. Dwork et al., “Pan-Private Streaming Algorithms,” ICS,
2010, pp. 66–80.

Mathias Lecuyer is a PhD candidate at Columbia Uni-
versity. Before joining Columbia’s PhD program,
he received a BS and an MS from Ecole Polytech-
nique in France. In his research, Lecuyer builds tools
and designs mechanisms that leverage statistics and
machine learning to: increase the current web’s trans-
parency by revealing how personal data is being used,
and enable a more rigorous and selective approach to
big data collection, access, and protection, to reap its
benefits without imposing undue risks.

Riley Spahn is a PhD candidate in computer science at
Columbia University. He is interested in building sys-
tems and tools that enable machine learning work-
loads to be run more securely and privately. Spahn
received his MS in computer science from Columbia
University and his BS in software engineering from
Auburn University. He received the 2015 Google
PhD Fellowship in privacy.

Roxana Geambasu is an associate professor of com-
puter science at Columbia University and a member

of Columbia’s Data Sciences Institute. She joined
Columbia in fall 2011 after finishing her PhD at the
University of Washington. For her work in cloud and
mobile data privacy, she received an Alfred P. Sloan
Faculty Fellowship, a Microsoft Research Faculty
Fellowship, an NSF CAREER award, a “Brilliant 10”
Popular Science nomination, an Early Career Award
in Cybersecurity from the University of Washing-
ton Center for Academic Excellence, the Honorable
Mention for the 2013 inaugural Dennis M. Ritchie
Doctoral Dissertation Award, a William Chan Dis-
sertation Award, two best paper awards at top systems
conferences, and the first Google PhD Fellowship in
cloud computing.

Tzu-Kuo (TK) Huang is a senior engineer at Uber
Advanced Technologies Group working on self-driving
technology. He has worked on various topics in
machine learning, including active learning, dynamic
model learning, and ranking. He completed his PhD
in machine learning at Carnegie Mellon University,
followed by post-doc research at Microsoft Research,
New York City.

Siddhartha Sen is a researcher at Microsoft Research
in New York City. He creates distributed systems
that use novel data structures and algorithms to
deliver unprecedented functionality or performance.
Recently, he has generalized this approach by using
contextual machine learning to optimize various deci-
sions in Microsoft’s cloud infrastructure. Sen received
his BS degrees in computer science and mathematics
and his MEng degree in computer science from MIT.
From 2004–2007 he worked as a developer at Micro-
soft and built a network load balancer for Windows
Server. He returned to academia and completed his
PhD from Princeton University in 2013. Sen received
the first Google Fellowship in Fault-Tolerant Comput-
ing in 2009, the best student paper award at PODC
2012, and the best paper award at ASPLOS 2017.

Read your subscriptions through
the myCS publications portal at

http://mycs.computer.org

