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Today’s companies collect immense amounts of personal data, exposing it to external hackers and 
privacy-transgressing employees. This study shows that only a fraction of the data is needed to approach 
state-of-the-art accuracy. We propose selective data systems designed to pinpoint the data that is 
valuable for a company’s workloads.

D riven by the immense perceived potential of “big 
data,” Internet companies, advertisers, and gov-

ernments are accumulating vast quantities of personal 
data: clicks, locations, social interactions, and more. 
While data offers unique opportunities to improve 
personal and business effectiveness, its aggressive col-
lection and long-term archival pose significant risks for 
organizations. Hacking and exploiting sensitive corpo-
rate and governmental information have become com-
monplace. Privacy-transgressing employees have been 
discovered snooping into data stores to spy on friends 
and family. Although organizations strive to restrict 
access to particularly sensitive data (such as passwords, 
SSNs, emails, banking data), properly managing access 
controls for diverse and potentially sensitive informa-
tion is an open problem.

We hypothesize that not all data that is collected 
and archived by today’s organizations is—or may ever 
be—actually needed to satisfy their workloads. We ask 
whether it is possible to architect data-driven systems, 
such as machine learning–based targeting and person-
alization systems, to permit a clean separation between 
data that is truly needed by an organization’s current 

and evolving workload, from data that is collected for 
potential future needs. The former, called in-use data, 
should be minimized in size, timespan, and sensitivity. 
The latter, called unused data, should be set aside and 
tapped only in exceptional circumstances (see Figure 1).  
The separation should permit day-to-day evolutions of 
an organization’s workload, by accessing just the in-use 
data and without the need to tap into the unused data. 
A system that achieves these goals without damaging 
functional properties, such as scalability, performance, 
and accuracy, is called a selective data system.

Selective Data Systems
Selective data systems can be used to improve data pro-
tection (see Figure 1). The ability to distinguish data 
needed now or in the likely future, from data collected 
“just in case,” can help organizations restrict the lat-
ter’s exposure to attacks. For example, one could ship 
unused data to a tightly controlled store, whose read 
accesses are carefully audited and mediated. Intuitively, 
data that is accessed day-to-day is less amenable to  
certain kinds of protection (such as auditing or  
case-by-case access control decisions) than data 
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accessed only for exceptional situations (such as launch-
ing a new application).

Turning selective data systems into a reality requires 
achieving two conflicting goals: (1) minimizing the 
in-use data while (2) avoiding the need to access the 
unused data to meet both current and evolving work-
load needs. This tension is traditional in operating sys-
tems, where many algorithms (for instance, caching) 
rely on processes having a working set of limited size that 
captures their data needs for a period of time. However, 
the context of modern, data-driven ecosystems brings 
new challenges that likely make traditional working set 
algorithms ineffective. For example, many of today’s big 
data applications involve machine learning (ML) work-
loads that are periodically retrained to incorporate new 
data, by accessing all of the data. How can we determine 
a minimal training set, the “working set” for emerging 
ML workloads? And how can we ensure this training set 
is sufficient even when workloads evolve?

Approach Highlights
We observe that for ML workloads, significant research 
is devoted to limiting the amount of data required for 
training. The reasons are many but typically do not 
involve data protection. Rather, they include increas-
ing performance, dealing with sparsity, and limiting 
labeling effort. Techniques such as dimensionality 
reduction, feature hashing,1 vector quantization,2 and 
count featurization3 are routinely applied in practice to 
reduce data dimensionality so models can be trained on 
manageable training sets. Active learning4 reduces the 
amount of labeled data needed for training when label-
ing requires manual effort. Can such mechanisms also 
be used to limit exposure of the data being collected? 
How can an organization that already uses these meth-
ods architect a selective data system around them? What 
kinds of protection guarantees can this system provide?

As a first step to answering these questions, we present 
Pyramid,5 a selective data system built around a specific 
training set minimization method called count featuriza-
tion.3 (Pyramid was first introduced at the 2017 IEEE 
Symposium on Security and Privacy.) Count featuriza-
tion is a widely used technique for reducing training 
sets by feeding ML algorithms with a small subset of the 
collected data combined (or featurized) with historical 
aggregates from much larger amounts of data. Pyramid 
builds upon count featurization to: keep a small, roll-
ing window of accessible in-use data (the hot window);  
summarize the history with privacy-preserving aggre-
gates (called counts); and train application models using 
hot window data featurized with counts. The counts 
are infused with differentially private noise6 to protect 
individual observations that are no longer in the hot 
window. Counts can support a variety of models that 

fall within the important class of supervised classifica-
tion tasks. Historical raw data, which may be needed for 
workloads not supported by count featurization, such 
as unsupervised learning or regression tasks, is kept in 
an encrypted store whose decryption requires special 
access.

Our evaluation with two representative workloads—
targeted advertising on the Criteo dataset and movie 
recommendation on the MovieLens dataset—reveals 
that: (1) historical counts let ML models approach 
state-of-the-art accuracy by training on under 1 percent 
of the data, (2) protecting historical counts with differ-
ential privacy has only 2 percent impact on accuracy, 
and (3) Pyramid works well for an important class of 
ML algorithms—supervised classification tasks—and 
can support workload evolution within that class.

Example Use Case
MediaCo, a media conglomerate, collects observations 
of user behavior from its hundreds of affiliate news 
and entertainment sites. Observations include the arti-
cles users read and share, the ads they click, and so on. 
MediaCo integrates all of this data into one repository 
and uses it to optimize many processes, such as article 
recommendation and ad targeting. Because the data is 
needed by all of its engineering teams, MediaCo wants 
to provide them with wide access to the repository, but it 
worries about the risks of doing so given recent external 
hacking and insider attacks affecting other companies.

MediaCo decides to use Pyramid to limit the expo-
sure of historical observations in anticipation of an 
attack. For MediaCo’s main workloads—targeting and 
personalization—the company already uses count fea-
turization to address sparsity challenges; hence, Pyra-
mid is directly applicable. It configures Pyramid by 
keeping its hot window of raw observations and its 
noise-infused historical counts in the widely accessible 
repository, allowing all engineers to train their mod-
els, tune them, and explore new algorithms. Pyramid 

Figure 1. Selectivity concept.
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absorbs current and evolving workload needs as long as 
the algorithms draw on the same user data to predict the 
same outcome (for instance, whether a user will click on 
an ad). In addition, MediaCo stores all raw observations 
in an encrypted store whose read accesses are disabled 
by default. Access to this store is granted temporarily 
and on a case-by-case basis to engineers who demon-
strate the need for statistics beyond those that Pyramid 
maintains. With this configuration, MediaCo minimizes 
data access (and hence exposure) to a needs basis.

Threat Model
Figure 2 illustrates Pyramid’s threat model and guaran-
tees. Pyramid ensures that a one-time compromise will 
not allow an adversary to access past data. Attacks are 
assumed to have a well-defined start time, Tattack, when 
the adversary gains access to the machines charged with 
running Pyramid, and a well-defined end time, Tattack

stop ,  
when administrators discover and stop the intrusion. 
Adversaries are assumed to not have had access to the 
system before Tattack, nor to have performed any action 
in anticipation of their attack (for example, monitor-
ing external predictions, the hot window, or the mod-
els’ state), nor to have continued access after Tattack

stop . The 
attacker aims to exfiltrate individual observations of 
user activities (for instance, to know if a user clicked 
on a specific ad). Historical raw data is assumed to be 
protected through independent means and not com-
promised in this attack. Pyramid aims to limit the hot 
data and protect the historical counts, both of which are 
accessible to the attacker.

After compromising Pyramid’s internal state, the 
attacker gains access to data in three representations: 
the hot data store containing raw observations, the his-
torical counts, and the trained models. The raw observa-
tions are not protected in any way. The historical counts 
consist of differentially private count tables of the recent 
past. The attacker learns some aggregate information 

from the count tables but individual records will be 
protected with differential privacy. Pyramid forces 
models to be retrained when observations are removed  
from the hot raw data store to avoid past information 
leaking through the models. We assume that no out-of-
bound copies of the hot data exist.

Selectivity Requirements
Four requirements define selective data systems:

■■ R1: Reduce in-use, exposed data. The hot data window 
is exposed to attackers; hence, Pyramid must limit its 
size and timespan subject to application-level func-
tional requirements, such as the accuracy of models 
trained with it.

■■ R2: Protect unused data from in-use data structures. 
Any state reflecting past, unused data and retained by 
Pyramid for prolonged periods of time (such as count 
tables) must be protected with strong, differential  
privacy guarantees.

■■ R3: Limit impact on accuracy and performance. Pyra-
mid must preserve the functional properties of appli-
cations, such as model accuracy. This requirement is 
at odds with the preceding two, hence Pyramid must 
find a balance between functionality and protection.

■■ R4: Allow workload evolution. The in-use data must 
support as many current and evolving workload needs 
as possible to limit access to, and therefore exposure 
of, the historical raw data.

The Pyramid Architecture
Pyramid combines and augments two known methods— 
count featurization from ML and differential privacy 
from cryptography—to meet the preceding selectiv-
ity requirements for a specific class of workloads: clas-
sification tasks such as targeting and personalization. 
Figure 3 shows Pyramid’s architecture. Pyramid is a 

Figure 2. Threat model.

Time

Data exposure
to attack Unexposed Exposed Unexposed

T
Stop
attack

Historical counts store
Unrestricted access

(can be compromised)

Historical raw data store
Restricted access

(assume not compromisable)

Hot data
store 

TAttack-ΔHot TAttack



www.computer.org/security� 5

data management component to be deployed along-
side a model management system. It acts as an inter-
face between the model manager and the organization’s 
datasets. Pyramid controls what data is exposed to the 
models and the format of this data.

Pyramid maintains two data structures—the hot 
raw data store and the historical count tables—and 
leverages two functional building blocks: count fea-
turization (CF) and differential privacy (DP). The 
hot data store is a cache of recent data containing raw 
observations (feature vector, label pairs) that are trans-
formed using CF and used for training. It is a sliding 
window cache that we expect to contain on the order 
of days or weeks of data. The historical count tables (or 
count tables for short) store the number of times each 
feature value has been observed with each label. We 
leverage DP to protect the past observations used to 
construct the count tables. We expect the count tables 
to be populated with months’ or years’ worth of data, 
and erase observations from count tables past a given 
retention period.

Pyramid exposes a small API, which the model 
manager uses to interact with the organization’s data: 
featurize(x

�
) and getTrainSet(). On prediction 

requests, the model manager calls featurize(x
�
)  

to obtain a count-featurized version of the raw feature 
vector x

�
, denoted x

��
. Pyramid also manages new obser-

vations added to the system. Given a new observa-
tion, consisting of a label (l) and feature vector ( x

�
), 

Pyramid updates the appropriate count tables, adds 
the observation to the hot data store, and submits it 
to the historical raw data store. To train its models, 
the model manager calls getTrainSet() to obtain a 
count-featurized version of all observations in the hot 
data store.

The two building blocks—CF and DP—address the 
first two selectivity requirements from the previous sec-
tion. CF, a known training set minimization method, 
reduces the amount of in-use data needed to train 
application-level models (selectivity requirement R1). 
It works by augmenting recent hot data with historical 
counts. DP protects the unused, phased-out observa-
tions from the historical count tables and other in-use 
data structures (selectivity requirement R2). Unfor-
tunately, these methods raise substantial accuracy, 
scalability, and evolution challenges. We address the 
challenges by augmenting CF and DP with a set of novel 
mechanisms to meet the remaining selectivity require-
ments R3 and R4. Following are four technical sections 
that describe our base CF and DP processes, plus two of 
our augmentation mechanisms (for others, see our sym-
posium paper5). These sections provide a blueprint for 
how to build a selective data system based on training 
set minimization.

Count Featurization  
(R1: Reduce In-Use Data)
CF is a popular technique for handling high-cardinality 
categorical variables, such as unique identifiers, when 
training classification models.3 CF replaces each feature 
vector value with the number of times that feature value 
has been observed with each label and the conditional 
probability of each label given that feature. This leads 
to dramatic dimensionality reduction over standard 
one-hot encoding. In a dataset where each observa-
tion contains d features with average feature cardinality 
K and labels of cardinality L, where K » L, a one-hot 
encoded feature vector would have size dK. CF results 
in a feature vector of size dL. In many cases this will be 
a dramatic reduction. For example, in click prediction, 
we expect L to be 2—click or nonclick—while K is very 
large, for instance, millions of user identifiers. Although 
no theoretical analysis exists for CF, intuitively, this 
dimensionality reduction should allow more efficient 
learning and reduce training data size without a loss in 
predictive power.

In Pyramid, we use CF to reduce the in-use data 
needed to train classification models (selectivity 
requirement R1). Figure 4 shows an example of count 
tables constructed by Pyramid to count-featurize 
observations as well as a sample count-featurized 
observation.

Figure 3. The Pyramid architecture.
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In more detail, an observation’s feature vector x
�

 
might consist of user features (for instance, ID, gen-
der, age, preferences) and contextual information (for 
instance, the URL of the article or the ad shown to 
the user). The label l might indicate whether the user 
clicked on the article or ad.

Once an observation stream of the preceding type is 
registered with Pyramid, the system creates a number of 
count tables. Each count table is stored as a count sketch 
data structure (described shortly). For example, the  
userId table encodes the user’s propensity to click on ads 
by maintaining for each user the total number of clicks 
and nonclicks on any ad shown.

To count-featurize a feature vector x x x xd= , ,...,1 2

�
,  

Pyramid first replaces each of its features with the condi-
tional probabilities computed from the count tables, for 
example, x P click x P click x P click xd= ( | ), ( | ),..., ( | )1 2

��
,  

where P click x
clicks

clicks nonclicksi = +
( | )  from the row 

matching the value of xi in the table corresponding to  
xi. Pyramid also appends to x

��
 the conditional probabil-

ities for any feature combinations it maintains.
Figure 4b shows an example of feature vector x

�
 and 

its count-featurized version x
��

. Suppose a boosted-tree 
model is trained on a count-featurized dataset ( x l,

�
 

pairs). It might find that for users with a click propen-
sity over 0.04, the chances of a click are high for ads 
whose clickability exceeds 0.05 placed on websites with 
ad-clickability over 0.1. Then, for the example feature 
vector in Figure 4, the model would predict a “click” 
label.

Differential Privacy (R2: Protect Unused 
Data from In-Use Structures)
DP comprises a family of techniques that randomize 
function outputs to protect function inputs. We use 
DP to protect unused, past observations from exposure 
through count tables and other in-use data structures 
(selectivity requirement R2). Let D1 be the database of 
past observations, D2 be a database that differs from D1 

by exactly one observation (that is, D2 adds or removes 
one observation), and S the range of all possible count 
tables that can result from a randomized query Q() that 
builds a count table from a window of observations. 
The count table query Q() is -differentially private if 

  P Q D S e P Q D S[ ( ) ] [ ( ) ]1 2≤ × .6 Adding or remov-
ing an observation in D1 does not significantly change 
the probability distribution of possible count tables.  is 
the query’s privacy budget.

In Pyramid, we apply DP as shown in Figure 5. We 
split time into windows and maintain count tables sepa-
rately for each window of time. Upon rolling over the 
hot window, we seal the window’s count tables and cre-
ate new count tables for the new hot window. To cre-
ate a count table, we initialize each cell in that table 
with a random draw from a Laplace distribution.6 As 
observations arrive in the hot window, the count tables 
are updated by incrementing the appropriate cells. To 
count-featurize a feature xi, we sum the correspond-
ing entries in the feature’s count tables across the past 
time windows, excluding the under-construction count 
tables for the current hot window. The sum constitutes a 
noisy version of xi’s count over the data retention period 
and is used to compute the conditional probabilities.

With this mechanism, Pyramid ensures that past 
observations, which have been phased out of the in-use, 
hot window, are protected from the count tables. To 
protect past observations from the trained models, 
Pyramid additionally forces retraining of all application 
models when rolling over the hot window.

Count-Median Sketch (R3: Limit Impact 
on Accuracy and Performance)
Although CF and DP are known mechanisms, their 
integration raises substantial accuracy challenges, which 
we have addressed by designing a number of mecha-
nisms (selectivity requirement R3). As an example, we 
find that DP interacts poorly with count-min sketches, 
which are routinely used in CF implementations to 
keep the count table storage overhead practical. For a 
categorical variable of cardinality K and a label of cardi-
nality L, the count table is of size O(LK), an impractical 
prospect if one were to store the exact table. Count-min 
sketches store approximate counts in sublinear space 
by using a 2D array with an independent hash function 
for each row. Adding an entry to the sketch involves 
using the hash function associated with each row to 
map the value to a column in the row and increment-
ing that cell; reading an entry from the sketch involves 
taking the minimum of those cells. Without noise, tak-
ing the minimum reduces the chance of overcounting 
from collisions and results in tight error bounds for the 
counts. With Laplacian noise, which is centered around 
zero, taking the minimum across multiple draws of the 

Figure 4. Count featurization example: (a) count tables constructed by Pyramid 
to count-featurize observations and (b) a sample count-featurized observation.

userId

0x1111 50 950

(a) Example count table, one per feature/combo, time window

x : <0x1111,0x7777,0xAAAA, ...>
x’ : <0.05, 0.15, 0.1, ...>

(b) Count featurization
of  x => x’:

urlHash clicks nonclkclicks nonclk

0x7777 15,000 85,000

adId clicks nonclk

0xAAAA 20,000 180,000
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Laplacian introduces substantial negative bias in the 
counts, breaking the sketch’s error bounds.

Our solution is to instead use count-median sketches 
to store count tables compactly.7 These differ from the 
count-min sketches in two ways: (1) each row i has a 
second hash function si that maps the key to a random 
sign si (key)  {11,21}, with each cell updated with  
si (key) hi (key), and (2) the estimate is the median 
of all counts multiplied by its sign. Without noise, 
count-median sketches offer worse error bounds than 
count-min sketches for typical distributions. With 
Laplacian noise, the signed update of the count-median 
sketch means the expected impact of collisions is zero, 
because they have an equal chance of being negative or 
positive. This removes the bias and improves the qual-
ity of the count estimator. Our evaluation shows that 
for small , it is worth trading the count-min sketch’s 
better guarantees for reduced noise impact with the 
count-median sketch.

Count Table Selection (R4: Allow 
Workload Evolution)
Two aspects of Pyramid’s design enable workload 
evolution without tapping into the historical raw 
data store (selectivity requirement R4). First, CF is a 
model-independent preprocessing step, allowing Pyra-
mid to support small model changes, such as hyperpa-
rameter tuning or learning algorithm changes, without 
accessing the historical raw data store. Second, Pyramid 
includes an automatic process of count table selection 
that inspects the data to identify feature groups worth 
counting together. This is important because CF does 
not capture relationships between features. For exam-
ple, a userId and adId together may be more predictive 
than either of the individual features. That information 
could be inferred by a learning algorithm from the raw 

data, but it is lost through CF unless we explicitly main-
tain a count table for the (userId, adId) group.

Our goal in count table selection is to identify feature 
groups that provide more information about the label 
than individual features. For each feature xi, we find 
all other features xj such that xi and xj together exhibit 
higher mutual information (MI)—a general measure of 
dependence between two random variables—with the 
label than xi alone. From these groups, we select a con-
figurable number with the highest MIs. To find promis-
ing groups of larger sizes, we apply this process greedily, 
trying out new features with existing groups. For each 
selected group, Pyramid creates and maintains a count 
table. This exploration of promising groups operates 
periodically on the hot window. Count table selection 
must be performed differentially privately to ensure that 
the groups selected for a particular hot window do not 
leak information about that window in the future.

Evaluation
We evaluate how Pyramid meets the four selectivity 
requirements. We use two public datasets: (1) Criteo, 
which consists of 45M points of ad-click data that was 
part of a Kaggle competition and (2) MovieLens,8 
which consists of 22M ratings in the range 0–5 on 
34K movies from 240K users. As baselines, we use a 
feed-forward neural network for Criteo and collabora-
tive filtering for MovieLens, both trained using Vowpal 
Wabbit on 80/20 percent train/test splits. We highlight 
four results:

■■ R1: CF reduces in-use data by two orders of magni-
tude while incurring less than 3 percent loss in accuracy.  
Figure 6a shows that for MovieLens, the CF 
boosted-tree algorithms perform within 4 per-
cent of the collaborative filtering baseline with only  

Figure 5. Windowed DP count tables.
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0.8 percent of the training set. This is on par with the 
raw logistic regression model. Figure 6b shows simi-
lar results with the Criteo dataset. The CF neural net-
work performs within 3 percent of the baseline raw 

neural network when trained on 0.4 percent of the 
training set. CF fulfills its mission of reducing training 
set exposure and provides a good basis for selectivity. 
However, Pyramid must also protect past data using 
DP which may have a negative impact on accuracy.

■■ R2: DP provides meaningful protection of unused data 
for up to 2 percent additional loss in accuracy. Figure 6c 
shows the Criteo models’ accuracy when count tables 
are protected with DP using various privacy bud-
gets. A lower value of  corresponds to higher levels 
of noise and increased protection. All of the Criteo 
models perform within 5 percent of the baseline 
when using  5 0.2 as a privacy budget, which is con-
sidered in the DP literature to give high-quality pro-
tection. MovieLens is less resilient to noise but still 
performs within 5 percent of the baseline when the 
privacy budget is at  5 1, a value still considered to 
offer meaningful protection. Thus, in both cases, Pyr-
amid provides meaningful protection through data 
reduction with CF and past-data protection with DP. 
These results are obtained with the complete Pyramid 
implementation, which includes several mechanisms 
that augment CF and DP to address substantial accu-
racy challenges.5 We next show the importance of  
one mechanism, the count-median sketch.

■■ R3: Count-median sketch helps mitigate the negative 
impact on accuracy. The count-median sketch resolves 
a tension arising when applying DP to standard imple-
mentations of CF, which rely on count-min sketches 
to compactly store count tables for high-dimensional 
features. Count-min sketches exhibit a strong down-
ward bias when initialized with DP noise because they 
take the minimum, whereas count-median sketches 
take the (unbiased) median. For our workloads 
(MovieLens and Criteo), count-median sketches 
bring us 0.5 percentage points closer to the baseline 
losses than count-min sketches when training with 
0.8 percent of the data and DP parameters  5 1. By 
contrast, without noise, count-min sketches perform 
better than count-median sketches, particularly for 
MovieLens, where the loss difference is about 2 per-
centage points. This result provides a broader lesson 
for anyone aiming to protect a sketch with DP: one 
should choose an unbiased sketch implementation 
even if it is suboptimal in no-noise scenarios.

■■ R4: Supported workloads and evolution. Our choice 
of CF as the core building block to address the 
first selectivity requirement—minimizing in-use 
data—exhibits both benefits and limitations. As a 
model-independent featurization layer, CF allows 
some common model changes without accessing 
historical raw data. Developers can fine-tune model 
hyperparameters, try different learning algorithms 
on the count-featurized data, change their learning 

Figure 6. Normalized performance for raw and count algorithms: (a) MovieLens 
algorithms, (b) Criteo algorithms, and (c) Criteo protection (performance at 
different levels of protection). B indicates baseline: neural network for Criteo, 
collaborative filtering for MovieLens.
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framework (for example, TensorFlow versus Vowpal 
Wabbit), and add/remove features that are already 
counted to/from their models. Indeed, our evalua-
tion applied various algorithms and hyperparameters 
using the same count tables. Augmented with count 
table selection, CF can additionally allow developers 
to incorporate more complex count features into their 
models. For example, for MovieLens, the boosted-tree 
algorithm using Pyramid selected feature groups gets 
within 3 percent of the baseline loss, compared to 
within 4 percent without the groups, training on the 
same 0.8 percent of the raw data.

However, CF restricts the workloads we can sup-
port. CF is designed for supervised classification tasks, 
which are commonly used in industry for targeting and 
personalization. The preceding evaluations exercised 
such tasks. Regression and unsupervised classification 
tasks, also popular in industry, are not easily modeled 
with CF. In regression, the predicted label is continu-
ous, while CF requires a discrete label to count its occur-
rences with various feature values. Regression tasks can 
be handled by binning the label value, but the outcome 
is poor. For example, we performed a regression for 
MovieLens that predicted a continuous 0–5 movie rat-
ing. Using as baseline a linear regression running on the 
full raw data, count models get at best within 16 per-
cent of the baseline loss using linear regression and 
within 13 percent using gradient boosted-tree regres-
sion. Our vision for supporting a wider range of work-
loads is to incorporate into Pyramid other training set 
minimization and modeling mechanisms that support 
complementary workloads. The key challenge will be to 
preserve Pyramid’s protection semantics and selectivity 
requirements.

Related Work
Multiple data minimization methods exist in ML and 
non-ML literature. Some are sketches, which com-
pute compact representations of the data that sup-
port queries of summary statistics;9 streaming/online  
algorithms10 process data using bounded memory, 
retaining only the information relevant to the problem 
at hand; hash featurization1 condenses high-cardinality 
categorical variables; autoencoders attempt to learn a 
compressed identity function for deep learning work-
loads;11 and active learning4 reduces the amount of 
labeled data needed for training. These methods have 
been shown to improve performance, robustness, or 
labeling cost, but have never been used for protection. 
This article gives a blueprint for how to retrofit one 
training set minimization method—CF—for protec-
tion. Applying this blueprint to other methods is a fruit-
ful avenue for constructing selective data systems.

Pyramid applies differential privacy6 to its count 
tables to protect individual observations. However, 
selectivity differs from the standard threat model used 
by systems that enforce differential privacy:12–14 these 
systems guarantee privacy of released results, but 
assume that there is a trusted party to mediate access 
to the entire raw dataset. Pan privacy15 has a similar 
threat model to ours, allowing a one-time compromise 
of the system, but to our knowledge no such system has 
been implemented or evaluated in practice. A major 
difference between Pyramid and all of this work is the 
exposure of raw data through the hot window. This brief 
exposure is what enables ML models to be trained with 
state-of-the-art performance.

T oday’s indiscriminate data collection and archi-
val practices are risky and unsustainable. It is time 

for a more selective approach to big data collection and 
protection. Our vision involves architecting data sys-
tems to allow a clean separation of data needed by cur-
rent and evolving workloads, from data collected and 
archived for possible future needs. The former should 
be minimized; the latter should be set aside, protected 
vigorously, and only tapped under exceptional circum-
stances. This article has formulated the requirements for 
selective data systems and presented Pyramid, an initial 
selective data system that combines and augments two 
known methods—count featurization and differential 
privacy—to meet these requirements for supervised 
classification workloads. Experiments with Pyramid 
show that data can be trimmed by two orders of magni-
tude without disrupting performance. 
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