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Abstract

We can increase the efficiency of public cloud datacenters
by harvesting allocated but temporarily idling CPU cores
from customer virtual machines (VMs) to run batch or ana-
lytics workloads. Even small efficiency gains translate into
substantial savings, since provisioning and operating a dat-
acenter costs hundreds of millions of dollars per year. The
main challenge is to harvest idle cores with little or no impact
on customer VMs, which could be running latency-sensitive
services and are essentially black-boxes to the cloud provider.
We introduce ElasticVM, a new VM type that can run

batch workloads cheaply using mainly harvested cores. We
also propose SmartHarvest, a system that dynamically man-
ages the number of cores available to ElasticVMs in each
fine-grained time window. SmartHarvest uses online learn-
ing to predict the core demand of primary, customer VMs
and compute the number of cores that can be safely har-
vested. Our results show that SmartHarvest can harvest a
significant amount of CPU resources without increasing the
99th-percentile tail latency of latency-critical primary work-
loads by more than 10%. Unlike static harvesting techniques
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that rely on offline profiling, SmartHarvest is robust to differ-
ent primary workloads, batch workloads, and load changes.
Finally, we show that the online learning in SmartHarvest is
complementary to systems optimizations for VM manage-
ment.
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1 Introduction

Motivation. Most datacenters continue to operate at low
resource utilization [29, 36, 38, 45, 53, 55, 71] despite many
efforts to rightsize applications [11, 60, 66] and build sched-
ulers, load balancers, and cluster managers with improved
bin-packing capabilities [21, 26, 28, 29, 34, 35, 54, 61]. This
problem is even more acute in public clouds as customers
often oversize their virtual machines (VMs) to be able to han-
dle load spikes, failover scenarios, and growth in demand
for their services [26]. Even when the cloud platform can
dynamically scale the number of VMs, customers often leave
plenty of spare capacity in case load increases faster than the
platform can react. This overprovisioning prevents degrada-
tions in user experience (e.g., an excessive increase in service
tail latency [27, 42, 44, 56]) but also massively underutilizes
the platform’s resources.
To make matters worse, public clouds differ from other

datacenters in that VMs are almost always black boxes to
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the platform. Cloud customers are rarely willing to provide
application-level performance information about their work-
loads (via explicit interfaces) or allow the platform to deeply
inspect their VMs (via event or system call counters). In the
absence of application-level information, platforms must (1)
assume any “regular” VM may be latency-sensitive (i.e., any
VM type not explicitly identified as lower priority should
be treated as latency-sensitive); and (2) rely on lower-level
proxies for performance, such as CPU utilization, to estimate
VMs’ resource requirements. Moreover, using profiling to
estimate how a workload will behave in the long term is
typically infeasible in the cloud: offline profiling requires in-
puts that are often unavailable until VMs run in production,
whereas one-time online profiling requires knowing when
each black-box VM has shown representative behavior.

These differences mean that techniques for increasing dat-
acenter utilization are often not directly applicable to public
clouds, including several recent proposals to harvest spare
resources from a latency-sensitive service and use them for
batch workloads (e.g., machine learning training, batch data
analytics, Web crawling) [36, 37, 44, 45, 61, 71]. For instance,
PerfISO [36] proposed leaving a fixed number of cores idle,
called an idle buffer, to absorb bursts in CPU usage by the
latency-sensitive service while harvesting the rest of the
idle cores. Heracles [45] used a feedback-based controller to
reassign resources based on service tail latency. In the pub-
lic cloud context, we could create best-effort (low-priority)
VMs that harvest resources from regular (high-priority) VMs
for batch processing. Unfortunately, the prior works require
extensive offline workload profiling (e.g., PerfISO), rely on
application-level performance metrics (e.g., Heracles), and/or
could threaten the tail performance of latency-sensitive ser-
vices (e.g., proposals that do not reserve any buffer resources).
Applying the ideas from these works would require keeping
the same substantial number of resources idle in every server,
so that even the most bursty regular VMs could quickly spike
into them until the system can take enough resources away
from the low-priority VMs. This would clearly be inefficient.
Our work: SmartHarvest and ElasticVM. We propose
SmartHarvest, a system that increases cloud platform utiliza-
tion by dynamically harvesting spare resources from regular
(aka “primary”) VMs for a co-located ElasticVM. Spare re-
sources are resources allocated to the primary VMs but are tem-
porarily idling. The ElasticVM is a new type of low-priority
VM allocated with a minimum set of resources. It expands
and contracts beyond this minimum (i.e., receives more or
fewer physical resources) based on the availability of spare re-
sources. We focus on harvesting idle CPU cores, as cores are
typically the scarcest and most expensive resource of cloud
servers. To take advantage of additional cores, the work-
load running in the ElasticVM must have enough software
threads. When physical cores are taken away from it, the vir-
tual CPUs simply multiplex on the remaining physical cores.

Providing service-level objectives (SLOs) for workloads run-
ning on harvested resources [13, 22] and building software
frameworks that run well on harvested resources [13, 23, 57]
are orthogonal challenges to the one we target, which is
maximizing the amount of harvested cores.
Instead of keeping a large number of idle cores in every

server, SmartHarvest protects the performance of primary
VMs by continuouslymonitoring and predicting the resources
they will need in the near future in each server, and assigning
physical cores accordingly. This online learning approach
allows SmartHarvest to dynamically maximize the cores
assigned to the ElasticVM, while minimizing the negative
impact on the co-located primary VMs.
SmartHarvest’s predictions are based solely on observed

core utilizations and are applicable across a wide range of
workloads without the need for application-level metrics.
Given recent core utilization measurements, SmartHarvest
predicts the next peak number of physical cores required by
primary workloads. SmartHarvest formulates the prediction
as a multi-class classification problem [2, 7, 17], where each
feasible number of cores is a separate class. The classification
is cost-sensitive: rather than simply labeling the correct class,
it uses a cost function to penalize underpredictions more se-
verely than overpredictions. Underpredicting primary CPU
usage leads to excessive harvesting at the cost of perfor-
mance loss for the primary workloads. On the other hand,
overpredicting primary CPU usage reduces the amount of
harvesting but does not impact performance of the primaries.
Cost-sensitive, multi-class classification is lightweight and
requires no offline training data. SmartHarvest also uses a
safeguard mechanism that temporarily constrains harvesting
when frequent underpredictions occur.
Implementation and results. We implement SmartHar-
vest for servers running the Hyper-V hypervisor. We create
an agent that runs in user-space in the host OS (root parti-
tion) and manages core assignments. The agent uses a single
core to frequently monitor core utilization. At the end of a
learning window, the agent predicts the peak core utilization
for the next window and uses Hyper-V’s cpugroup mech-
anism to apportion the cores for that window. We tuned
the learning window conservatively to preserve the perfor-
mance of sensitive primary workloads with sub-millisecond
tail latency requirements. Since it may take a relatively long
time for a cpugroup change to take effect (on the order of
10ms), we also explore an implementation that reassigns
cores faster. This implementation relies on changes we make
to Hyper-V to effect the cpugroup change faster (on the order
of 100𝜇s) via interprocessor interrupts (IPIs).
We evaluate SmartHarvest using four latency-sensitive

primary workloads at various loads: a real Web search ser-
vice, Memcached, and two representative TailBench bench-
marks [41]. In the ElasticVM, we run two batch applications,
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a real machine learning workload and TeraSort, or a syn-
thetic application that consumes as many cores as it is given.
We explore the sensitivity of our results to a variety of learn-
ing and system parameters, including the learning window
length, the cost function, and how fast cores are reassigned
(default cpugroups versus IPI-based mechanism).

Our results demonstrate that SmartHarvest is effective
at harvesting cores for batch workloads while protecting
the performance of primary VMs. In all our experiments,
SmartHarvest limits the increase in the tail latency (P99) of
the primary workloads to 10% or less, without using any
offline profiling. While tuning SmartHarvest for primary
applications with sub-millisecond latency requirements re-
duces the number of cores harvested for less sensitive work-
loads, having a single SmartHarvest configuration that works
across multiple types of primary workloads is a major advan-
tage. In constrast, there is no single setting of a fixed buffer
policy like the one used in PerfISO [36] that works well and
safely across different primary workloads, offered loads, and
batch workloads running on harvested resources.

Finally, we show that, while online learning is more criti-
cal for slower core reassignment mechanisms, it still provides
significant benefits with the faster, IPI-based reassignment
mechanisms. Online learning avoids frequent incorrect reas-
signments that impact performance even if they are fast. This
result illustrates a fundamental synergy between machine
learning (ML) and systems mechanisms in the nascent area
of “ML for Systems”.
Contributions. In summary, our main contributions are:
1. A novel system and VM type for dynamically harvesting

cores that have been allocated to primary VMs but have
been temporarily idling in public cloud servers.

2. A robust and general online learning approach for con-
tinuously predicting the use of cores in black-box pri-
mary VMs.

3. An evaluation of the benefits of harvesting with online
learning using real and synthetic workloads across a
range of scenarios.

4. An illustration of the synergy between online learning
and system optimizations in the "ML for systems" space.

2 Background & Motivation

Resource harvesting. A common approach for increasing
server utilization has been to harvest allocated but idling
resources from a latency-sensitive service and use them for
batch workloads. Spare cores have received the most atten-
tion, as CPUs are themost expensive resource and potentially
frequent changes in their idleness makes harvesting quite
difficult. Prior work has focused on two main aspects:
1. Protecting the performance of the latency-sensitive ser-

vice in the face of relatively slow mechanisms for core
reassignment, e.g. [36]. This work has relied on reserving

an idle buffer of cores for the service to spike into, while
cores can be taken away from the batch workload.

2. Improving core reassignment mechanisms [53], which
at the extreme could obviate the need for an idle buffer.
However, this work has relied on knowledge of service
characteristics and their communication (e.g., number of
cores needed to handle an incoming message).
Along the same lines but in a virtualized environment,

we focus on harvesting idle cores from (potentially latency-
sensitive) primary VMs for a co-located lower-priority Elas-
ticVM. The primary VMs can be from many different cus-
tomers, have a variety of configuration characteristics, dy-
namically change behavioral patterns, and arrive/depart at
any time. Prior work [26] has shown that public cloud plat-
forms have an abundance of allocated but idle cores, as a large
percentage of VMs exhibit low CPU utilization. For example,
75% of VMs exhibit 25% or lower average CPU utilization
over their lifetimes [26]. Our harvesting techniques retain
a dynamic buffer of idle cores, but we also explore faster
cross-VM core reassignment mechanisms. The key challenge
we address is maximizing core harvesting while preventing
degradation to the performance of co-located primary VMs,
under the practical constraints of public clouds.

An earlier paper [13] solves the easier problem of harvest-
ing “unallocated” cores, i.e. cores that have not been rented
to any VMs. When only unallocated cores are harvested,
harvesting does not impact the performance of primary VMs
any more than co-locating an additional primary VM would.
Importantly, this prior work describes how to modify ex-
isting cluster scheduling frameworks to take advantage of
harvested resources for batch workloads. ElasticVMs can
leverage the same frameworks without modification.
Finally, note that ElasticVMs are substantially different

from spot VMs [12, 15, 25]. Spot VMs only consume a fixed
number of unallocated resources and are evicted/killed as
soon as the cloud platform needs any of those resources for
primary VMs. They cannot borrow unused physical cores
that have been allocated to other VMs. In contrast, ElasticVMs
are capable of dynamically harvesting allocated but idling
cores, and thus need to manage core assignments more care-
fully. Additionally, an ElasticVM is not evicted when the
platform needs harvested cores back as it has a minimum
size and can grow or shrink dynamically from this mini-
mum. To receive the same average number of cores as an
ElasticVM, spot VMs would incur many more expensive and
intrusive evictions as they cannot be shrunk (they are evicted
instead).
Online adaptation. A key drawback of techniques that use
an idle buffer of cores is that the ideal buffer size may vary
spatially, from server to server, and temporally, as a result of
behavior changes in one or more co-located primary VMs. To
overcome this drawback, we need to dynamically select the
best buffer size over time, and do so independently at each
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server. Simple history-based schemes, like Exponentially
Weighted Moving Average (EWMA), are commonly used to
estimate future information based on recent data. However,
they are ineffective at foreseeing sharp CPU usage bursts.
This motivates us to adopt an online learning approach [18]
that learns workload CPU usage patterns and sizes the buffer
adaptively. The key challenge is devising lightweight learn-
ing techniques that can accurately predict core usage at a
fine temporal grain with the aim of maximizing harvesting
while protecting the performance of primary VMs. Accurate
prediction is also helpful with the design of a robust batch
service on top of harvested resources [13].

3 SmartHarvest

We now describe the principles that guide our design, the
concept of ElasticVMs, the SmartHarvest architecture and
operation, and its online learning component.

3.1 Design Principles

We design SmartHarvest based on the following guidelines.
First, harvesting should not negatively affect the perfor-
mance of (black-box) primary VMs by retaining any cores
that they need. Second, we want to dynamically harvest
as many idle cores from primary VMs as possible in order
to allow the batch workloads to make maximum progress.
These two properties are difficult to achieve in the presence
of arbitrary workload mixes and arbitrary load variations in
the primary workloads. Thus, the third desirable property is
that SmartHarvest should support dynamic core usage moni-
toring and fast core reassignments. Moreover, reassignments
should be of full cores (vs hyperthreads) to prevent a batch
workload from sharing a core with a primary workload, as
this causes higher tail latencies [68]. Finally, for SmartHar-
vest to be practical, it should work consistently well for any
primary and batch workloads, without the need for pro-
filing or application-level metrics, and without relying on
application-specific characteristics. These design principles
allow us to address the challenges raised in Section 2.

3.2 ElasticVMs

We create a new type of VM for batch workloads, called
an ElasticVM. Each ElasticVM has a “minimum” physical
resource allocation, e.g. 1 core, 8GB of memory, and 10GB
of SSD space. However, its actual number of assigned physi-
cal cores grows beyond this minimum, whenever there are
unallocated cores (cores that have not been committed to
any primary VM) and/or idle cores that have been harvested
from primary VMs on the same server. For this paper, the
memory and SSD allocations stay fixed throughout the ex-
ecution of the ElasticVM. Figure 1 shows an example core
assignment, where the ElasticVM has a minimum size of
1 physical core, but also receives 2 unallocated cores and
harvests 3 idle cores from primary VMs.

Primary VMs ElasticVM

Figure 1. Core assignment in a server: the blue rectangle repre-
sents the ElasticVM, whereas the orange rectangle represents one
or more primary VMs. The circles represent cores, with dark fill
corresponding to allocated cores and white fill to unallocated cores
that have been assigned to the ElasticVM. The green cores have
been allocated to primary VMs but are currently being harvested.

Users can deploy ElasticVMs to the cloud platform in the
same way as they deploy any other VM. The platform treats
an ElasticVM as if it has a fixed size equal to its minimum
resources, except for an agent running on each server that
is responsible for managing the VM core assignments trans-
parently to the rest of the platform.

We assume the ElasticVM is core-hungry and has enough
work to utilize all cores assigned to it; thus we do not moni-
tor or predict its core needs, and focus instead on harvesting
as many primary VM cores for it as we can. The maximum
number of physical cores an ElasticVM can reach is the total
number of physical cores in the server. Thus, we configure
an ElasticVM to have as many virtual cores as the total num-
ber of physical cores in a server, regardless of how many
physical cores it is actually assigned. This obviates the need
for changes to the software that runs on the ElasticVM: if the
ElasticVM receives fewer physical cores than virtual cores,
the hypervisor will simply multiplex any active virtual cores
onto the assigned physical cores.
The software within the ElasticVM may adapt its paral-

lelism to the number of available cores (e.g., via thread pools),
or schedule computations on each ElasticVM based on this
number. For example, cluster scheduling frameworks like
Apache YARN [58] or Kubernetes [21] can be adapted to take
advantage of harvested cores transparently to the workloads
they schedule [71]. Our techniques are oblivious to what
exactly runs on ElasticVMs.

We refer to ElasticVM as being lower priority than primary
VMs for two reasons: (1) a primary VM has paid for, and thus
has priority over, its allocated cores—the ElasticVM can only
use an allocated core if the primary VM does not currently
need it; and (2) the ElasticVM may be killed if the cloud
provider needs even its minimum resources for a primary
VM. Pricing for ElasticVMs is beyond the scope of this work,
but can follow well-known strategies for spot-instance (low-
priority VMs) or serverless VMs (pay for what you use). In
addition to being offered as a low-cost VM type to run work-
loads without strict quality of service (QoS) requirements
from external cloud tenants, ElasticVMs may also be used
for internal batch services over which the cloud provider has
full control.

The provider can define a family of ElasticVMs with differ-
ent configurations. For simplicity, we assume a single Elas-
ticVM type and focus only on maximizing the harvesting of



SmartHarvest: Harvesting Idle CPUs Safely and Efficiently in the Cloud EuroSys ’21, April 26–29, 2021, Online, United Kingdom

cores from arbitrary primary VMs to a (single) ElasticVM on
the server. Additionally, we assume there are no unallocated
cores in the server. Managing unallocated cores is easier, as
they only have to be relinquished by the ElasticVM when
they are allocated to a newly arriving primary VM [13].
We considered allowing ElasticVMs to dynamically har-

vest spare memory as well, but doing so is substantially more
complex due to the overheads involved. For example, real-
locating a physical memory page from one VM to another
involves CPU work for bookkeeping and updating several
system tables, as well as zeroing the page for security. A
primary VM may need its harvested memory pages back,
but reclaiming the pages may involve costly IOs. We focus
on core harvesting in this paper, but our online learning
approach to predicting resource usage should be generally
applicable to harvesting other types of resources.

3.3 SmartHarvest Architecture & Operation

Functionality. SmartHarvest improves server utilization by
taking advantage of idle cores allocated to primary VMs to
run low-priority workloads in an ElasticVM. To do this with
minimal impact on the performance of the primary VMs,
SmartHarvest maintains an idle buffer of cores that is ready
to immediately absorb load increases in the primary VMs.
The cores in the idle buffer are allocated but not currently
used by any primary VM. SmartHarvest tries to only reserve
as many cores in the idle buffer as needed, so it periodically
predicts the peak number of cores required by the primary
VMs at a fine, sub-second time-granularity. Based on this
prediction, it reassigns cores. Instances of SmartHarvest on
different servers operate entirely independently.
Architecture. SmartHarvest comprises two main compo-
nents: an ElasticVM and a software agent we call EVMAgent.
The agent is responsible for managing the cores assigned
to the ElasticVM, beyond its minimum size, using calls to
the hypervisor. The agent is also responsible for dynami-
cally sizing the idle buffer, by executing the online learning
algorithm (Section 3.4) that predicts the number of needed
primary cores. For comparison, the agent can also be config-
ured to manage a fixed-size buffer of idle cores without any
predictions, as proposed by PerfIso [36].
Operation. Algorithm 1 summarizes the operation of the
EVMAgent. The agent splits time into “learning windows”.
During each window (lines 4–10), the agent frequently polls
the hypervisor for the number of busy primary cores and
records this data for the learning algorithm to use. A primary
core is conservatively considered busy if it has an active
software thread running on it at the time of the query. If at
any point during the window all primary cores are found to
be busy (line 7), then SmartHarvest has run out of cores in the
idle buffer, indicating that the learning algorithm may have
underpredicted the peak number of needed cores. In this case,
the agent immediately enforces a short-term safeguard for

1 while True do
2 𝑠𝑎𝑓 𝑒𝑔𝑢𝑎𝑟𝑑_𝑖𝑛𝑣𝑜𝑘𝑒 = 𝐹𝑎𝑙𝑠𝑒

3 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑢𝑠𝑎𝑔𝑒.clear()
/* Poll the primary VMs’ core usage and check for

violations of the short-term safeguard. */

4 while 𝑡𝑖𝑚𝑒_𝑒𝑙𝑎𝑝𝑠𝑒𝑑 ≤ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤 do

5 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑏𝑢𝑠𝑦 = GetPrimaryBusy()

6 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑢𝑠𝑎𝑔𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑏𝑢𝑠𝑦)
/* If all primary cores are busy, we may have

underpredicted the primary VMs’ peak usage. */

7 if 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑏𝑢𝑠𝑦 = 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑐𝑜𝑟𝑒𝑠 then
8 𝑠𝑎𝑓 𝑒𝑔𝑢𝑎𝑟𝑑_𝑖𝑛𝑣𝑜𝑘𝑒 = 𝑡𝑟𝑢𝑒

9 break
10 end

11 end

12 if 𝑠𝑎𝑓 𝑒𝑔𝑢𝑎𝑟𝑑_𝑖𝑛𝑣𝑜𝑘𝑒 then

/* Trigger the short-term safeguard. */

13 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑐𝑜𝑟𝑒𝑠 = GetSafePrimaryCores()
14 else

/* Assign a cost to our prediction based on actual

peak primary usage. Use this to train model. */

15 𝑐𝑜𝑠𝑡𝑠 =

ComputeCost(primary_cores, primary_usage.max())

16 ModelTrain(features, costs)
/* Use primary VMs’ usage data to generate features

and predict the next peak. */

17 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = ComputeFeatures(primary_usage)
18 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑐𝑜𝑟𝑒𝑠 = ModelPredict(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
19 end

/* Never assign fewer than there are busy primary cores,

to avoid preempting work. */

20 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑐𝑜𝑟𝑒𝑠 = max(primary_cores, primary_busy +1)
/* Assign cores and wait for it to take effect. This call

also implements the long-term safeguard */

21 ℎ𝑎𝑟𝑣𝑒𝑠𝑡_𝑐𝑜𝑟𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑟𝑒𝑠 − 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑐𝑜𝑟𝑒𝑠
22 SafeAssignCoresAndWait(harvest_cores, primary_cores)
23 end

Algorithm 1: EVMAgent logic, which combines the
online learner and safeguard from Section 3.4.

the next window by expanding the primary VMs’ assignment
and contracting the ElasticVM’s assignment (lines 12–13 and
lines 21–22).

When awindow completes and the short-term safeguard is
not engaged, the agent runs the learning algorithm to predict
the peak number of cores needed by primary VMs for the
next window (lines 14–18). The agent ensures that this is
always greater than the number of currently busy primary
cores, to avoid preempting active primary software threads
(line 20). Having decided the number of peak primary cores
for the next window, the agent then assigns any remaining
primary cores to the ElasticVM (lines 21–22). This implicitly
sizes the idle buffer: the number of cores in the buffer is
the difference between the predicted primary peak and the
current number of primary busy cores.
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Primary VMs ElasticVM Primary VMs ElasticVM

Window i Window i+1

Peak Prediction Peak Prediction

Figure 2. Two consecutive windows: dark circles correspond to
busy cores, and white circles correspond to idle buffer cores.

The call to SafeAssignCoresAndWait implements a long-
term safeguard that disables harvesting for a few seconds
when it is deemed injurious to the primary workload. Oth-
erwise, the agent issues the cpugroups call and sleeps for a
short period because the core reassignment operation takes
a little time to take full effect.

The learning algorithm uses the CPU usage data collected
about the primary VMs during the learning window (line 6)
in two ways: as input features to predict the peak primary
cores needed for the next window (lines 17–18), and as cost
feedback for how good the current window’s prediction was
(lines 15–16). We discuss this in detail in the next section.

Figure 2 illustrates two consecutive learning windows.
Before the first window (left), SmartHarvest had predicted
that at most 2 cores would be needed by the primary VMs,
so it sized the idle buffer to 1 core. During the first window,
SmartHarvest observes the usage of the primary VMs and
uses its learning algorithm to predict a peak of at most 4
needed cores for the next window. Just before the start of
the second window (right), SmartHarvest resizes the buffer
to 3 cores to accommodate the predicted peak.

3.4 Harvesting with Smart Decisions

The EVMAgent from Algorithm 1 uses online learning to
decide how many cores from the primary VMs to assign to
the ElasticVM in each time window. This continuous, win-
dowed learning approach is necessary for two reasons. First,
the load on primary VMs may vary over time. Second, core
reassignments need time to take effect, making it infeasible
to reassign cores every time the usage of the primary VMs
changes. EVMAgent chooses the number of cores for the
ElasticVM once per window. If the primary VMs exhaust
their assigned cores, the agent invokes a safeguard to reclaim
cores from the ElasticVM.
Online learner. The online learner uses a cost-sensitive
multi-class classification algorithm to predict the peak core
usage of the primary VMs in each time window. Despite the
large number of options along several dimensions (prediction
target, input features, type of feedback received, learning
algorithm, and model representation), the properties and
constraints of our problem led to fairly natural choices.
Prediction target: As the ElasticVM should only use cores
the primary VMs are unlikely to need, a natural prediction
target is the peak number of primary cores in the next win-
dow. Given that number, we can assign any cores from the

primary VMs above the predicted peak to the ElasticVM. This
implicitly sizes the idle core buffer, which grows and shrinks
between the predicted peak (which remains fixed during a
window) and the current primary VMs’ usage (Figure 2).
Features: Since SmartHarvest runs in a public cloud, it only
has black-box access to the primary VMs, which severely
restricts the types of features it can use. Besides static prop-
erties of the VMs, EVMAgent can only observe the external
resource utilization of the VMs by calling the hypervisor. We
focus on CPU utilization; application performance metrics or
service-level objectives are completely opaque to the agent.

EVMAgent collects the CPU utilization of primary VMs
in the current learning window and computes the following
five features for training and predictions: the min, max, aver-
age, standard deviation, and median CPU usage. We identify
these features using a feature selection technique [3] that
trains a decision tree using offline data to rank features ac-
cording to their importance in deciding the predicted value.
We considered additional features (e.g., different CPU usage
percentiles, delta between consecutive CPU peaks), but elim-
inated them during feature selection because they did not
improve prediction accuracy. The number of features was
intentionally kept small to reduce training and prediction
overheads and enable millisecond learning windows.
Feedback: The feedback we receive for predictions deter-
mines the learning paradigm we can apply. If the primary
VMs use fewer cores than the predicted peak of a window,
we learn their actual peak usage, so we can apply a super-
vised learning algorithm (the actual peak usage is the cor-
rect “label”). But if the primary VMs use all of the predicted
peak cores, then we never learn the actual number of peak
cores they would have used (we get no feedback)! Not co-
incidentally, this is precisely when EVMAgent invokes the
safeguard mechanism discussed below (lines 12 to 13, Algo-
rithm 1). The safeguard helps restore the supervised feedback
in the next window, allowing the agent to continue training
the online learner (lines 14 to 18).
Learning algorithm: Supervised learning algorithms can
broadly be classified into regression (what is the relationship
between 𝑥 and 𝑦) or classification (which class 𝑦 does input
𝑥 correspond to). In our setting, a regression—such as linear
regression or time-series analysis methods like ARIMA [19]—
would predict a continuous value for the peak usage of the
primary VMs. This is awkward because a continuous value
forces the regressor to accommodate “cliffs” around the tar-
get values. Moreover, an underprediction of the peak usage is
far worse than an overprediction; a single regression target
does not naturally allow us to minimize such a differentiated
cost function.
In contrast, a cost-sensitive multi-class classification algo-

rithm [2, 17] allows us to train a separate predictor for each
core count (class) and select the class with lowest cost during
predictions. This accommodates our notion of differentiated
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costs, because it allows us to specify any cost value for each
class without worrying about the relationship between these
values. Since the costs are continuous, we can run a separate
regression for each class with cost as the predicted value.
We describe our cost function in Section 4. In general, we
assign lower costs to classes that are equal or closely above
the correct class, and higher costs to all other classes. This
skews the learner towards making small overpredictions,
and heavily penalizes it for underpredicting primary usage
(which triggers the safeguard).
Model: In theory, we can use any model we want for the
per-class regressors, ranging from linear models to decision
trees to neural networks. These models vary in their training
and prediction time, and not all of them can be efficiently
trained in an online manner. Given our requirement of a
lightweight learner that needs to make predictions every
few milliseconds, we opt for a simple linear model.
Safeguards.The online learner is designed to predict slightly
more than the peak core usage of the primary VMs. However
it is still possible that it under-predicts the CPU peak. When
this happens, the primary VMs do not get all cores they
need and their performance degrade. We design a two-level
safeguard mechanism to mitigate this problem.
The first-level, short-term safeguard is triggered when-

ever the usage of the primary VMs matches their predicted
peak (i.e., the idle core buffer becomes empty). Two major
problems occur when there is no idle core in the buffer. First,
the primary VMs may have wanted to use more cores but
were unable to do so. Second, the online learner no longer
receives supervised feedback for its prediction because we
do not know what the true peak usage of the primary VMs
would have been. Thus, the learner is unable to properly up-
date the learned model. The first-level safeguard addresses
this failure by proactively expanding the number of cores as-
signed to primary VMs for the next learning window instead
of following the online learner’s prediction. Lines 7–10, lines
12–13 and lines 20–22 in Algorithm 1 implement this logic;
the function GetSafePrimaryCores computes the new core
assignment to the primary VMs as one plus the peak number
of cores used by them over the past one second, or the total
number of cores originally allocated to them if this num-
ber is smaller. While the safeguard is in place, EVMAgent
continues to monitor the primary VMs’ core usage. Since
the safeguard has expanded the number of cores assigned to
primary VMs, there is a good chance we will observe their
actual peak usage, and hence collect supervised learning
feedback. This feedback is particularly important because it
comes from a period where the learner made an underpre-
diction.
Some VM workloads may temporarily experience unpre-

dictable CPU usage due to high swings in load. To avoid per-
formance degradation from frequent misprediction of peak
CPU needs, we use a second-level, long-term safeguard that

temporarily disables harvesting altogether. Since primary
VMs are treated as black-boxes, we use vCPU dispatch wait
times available from the hypervisor as a proxy for VM QoS.
Ready vCPUs from primary VMs experience longer wait time
to be scheduled onto physical CPUs when the hypervisor is
short of physical cores to run them. Therefore, we can infer
performance degradation from long vCPU wait times and
trigger the long-term safeguard to protect primary VMs’ per-
formance. EVMAgent monitors the 99th percentile value in
the wait time per dispatch across all vCPUs belonging to the
primary VMs, for every 500ms. Based on our experimental
setting, the P99 vCPU wait time is typically below 6 𝜇s when
there are abundant idle physical cores to schedule them on. If
at least 1% of all vCPU wait times is longer than 50 𝜇s for two
consecutive 500ms windows, EVMAgent immediately gives
all cores back to the primary VMs and stops harvesting. EV-
MAgent restarts harvesting 10 seconds after it is stopped to
check for possible VM load changes. This second safeguard
is implemented in function SafeAssignCoresAndWait in
Algorithm 1. While harvesting is disabled, the learner con-
tinues to learn in the background to take advantage of the
full-information feedback.
Hyperparameters. We tuned the SmartHarvest hyperpa-
rameters, including the prediction window, cost function and
safeguards, for the most latency-sensitive workloads with
microsecond-scale service-level objectives (e.g., Memcached).
The tuning is done once and the same set of parameter values
are conservatively used for all other workloads. We discuss
these parameters further in Section 5.

4 Implementation

SmartHarvest can be implemented for any hypervisor that
accepts calls (aka hypercalls) from privileged VMs for mon-
itoring core utilization and for reassigning physical cores
across VMs. The faster these mechanisms are, the more accu-
rate the assignments are and the fewer cores are needed in
the idle buffer to handle spikes in the primary VMs’ load. It is
important for hypercalls to complete quickly and the core as-
signment to take effect as soon as possible after the call. For
non-preemptive hypervisors, for example, the reassignment
may not take effect until a later scheduling event. Next, we
describe our SmartHarvest implementation for Hyper-V [59],
and the changes needed in the hypervisor. SmartHarvest can
be easily implemented for other hypervisors (e.g., Xen, KVM),
some of which might not require modifications.
SmartHarvest. Hyper-V is a type-1 hypervisor that runs
directly on the bare-metal hardware. It uses a priviledged
VM, called “root partition”, for executing device drivers and
any server-level agents. The root partition is equivalent to
the “Dom0” VM in Xen [16]. The hypervisor directs I/O oper-
ations from guest VMs to the root partition and returns the
results back to those VMs. We build EVMAgent as a user-
space program that runs in the root partition and implements
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Algorithm 1 in 1,900 lines of C++. We used C++ because
the agent must run frequently and efficiently. EVMAgent
makes hypercalls using Hyper-V’s Host Compute Service
(HCS) API, which provides calls for monitoring server-wide
physical core utilization and assigning a group of physical
cores (cpugroup) to a VM. Core reassignment involves ad-
justing cpugroups. EVMAgentmaintains 2 non-overlapping
cpugroups for (1) the ElasticVM, including any cores that it
has harvested from primary VMs, and (2) primary VM cores
being actively used or in the idle core buffer.
The online learning component of EVMAgent is agnos-

tic to the hypervisor. We implement it using the Vowpal
Wabbit (VW) library [9], which contains an efficient online
implementation of the cost-sensitive multi-class classifica-
tion algorithm described in Section 3.4.
Changes to Hyper-V. In the original version of Hyper-V,
changing the set of cores assigned to a VM involves two
hypercalls: one to detach the VM from the cpugroup and one
to attach it to a different cpugroup. Since EVMAgent main-
tains two non-overlapping cpugroups, core reassignment
between two VMs involves 4 hypercalls in total. Hyper-V
is also non-preemptive, so it waits until the next time the
affected VMs are scheduled to effect the cpugroup changes.
This means that the impact of a cpugroup change can be
delayed for an entire scheduling period (10ms) in the worst
case.

To address these issues, we modify Hyper-V as follows: (1)
We create a new cpugroup hypercall, called merge-call, that
combines detaching a VM from a cpugroup and attaching
it to a new one. Besides reducing the number of hypercalls,
this change optimizes cpugroup management in that physi-
cal cores belonging to both the existing and new cpugroups
are not affected by merge-call. (2) Instead of waiting until
the next scheduling event, we make core reassignments pre-
emptive by sending interprocessor interrupts (IPIs) to the
affected cores. The IPIs immediately stop VM execution on
any core to which the VM is no longer attached.

Implementing SmartHarvest on Xen would require the IPI
change above because Xen is also non-preemptive [10]. KVM
on Linux already uses IPIs to effect cpugroup changes [6].
SmartHarvest versions and configurations. We imple-
ment two versions of SmartHarvest. Version cpugroups uses
unmodified cpugroups with the existing delayed effect of
non-preemption. To remove cpugroup creation from the crit-
ical path, EVMAgent pre-creates all possible cpugroups and
simply makes detach/attach hypercalls to the desired cpu-
groups. We use this version for most of our experiments. We
also implement a more efficient version called IPIs. This
version uses our merge-call and our preemptive IPI mech-
anism for core reassignments. We use this version to assess
the importance of online learning as a function of how fast
the underlying system is at reassigning cores.
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Figure 3. Sample cost function (skewed cost).

By default, we configure both versions to use a 25ms learn-
ing window and poll the primary VMs’ usage every 50us
during this window (lines 4–10, Algorithm 1). We set the
learning rate to be 0.1 (the default value from VW). The learn-
ing rate is kept constant so the agent can learn continuously
online. In the cpugroups version, if a core reassignment is
needed, we configure the agent to sleep for 10ms after the
change (in SafeAssignCoresAndWait). The IPIs version
does not need this delay because core reassignments take
effect faster.

The cost function we use for our cost-sensitive multi-class
classification algorithm is shown in Figure 3. The cost grows
linearly as our predicted peak usage of the primary VMs
deviates from their actual peak usage. It adds a constant ad-
ditional cost (equal to the initial number of cores allocated
to the primary VM) to underpredictions because they trig-
ger the safeguard. We explore alternative cost functions in
Section 5.6. For the safeguard, we implement both a default
conservative one, which increases the number of cores as-
signed to the primary VMs based on their peak CPU usage in
the last second, and an aggressive version, which reassigns
all cores to the primary VMs. To query the vCPU wait times,
we use the Hypervisor Virtual Processor\CPU Wait Time Per
Dispatch counter from Hyper-V.

5 Evaluation

5.1 Methodology

Workloads.We use four real latency-sensitive workloads as
primary VMs: IndexServe, Memcached, moses and img-dnn.
They all have stringent latency requirements, so SmartHar-
vest must protect their tail latencies. IndexServe is used
by Microsoft Bing to serve the web index for user search
queries [36]. We use real query traces from Microsoft to gen-
erate load for IndexServe in our experiments. Memcached

is a widely used in-memory key-value store that has sub-
millisecond latency [8]. We usemutilate [44] to generate load
using query distributions from Facebook [14] with all GET
requests. moses and img-dnn are latency-critical bench-
marks from the TailBench suite [41].moses [43] is amachine
translation application written in C++. img-dnn [24] is an
image recognition application that identifies handwritten
characters in the MNIST dataset [30].



SmartHarvest: Harvesting Idle CPUs Safely and Efficiently in the Cloud EuroSys ’21, April 26–29, 2021, Online, United Kingdom

IndexServe
(500QPS)

Memcached
(40KQPS)

moses
(400QPS)

img-dnn
(2000QPS)

CPU usage 1.3 2.3 1.5 1.7
Peak CPU usage 7 7.7 5.2 6.9

Table 1. avg CPU stats in #cores.

Each primary workload is allocated a 10-core VM. Hence,
the maximum number of cores we can harvest from each
primary VM is 10. For all the primary workloads, we launch
the client and server processes in the same VM to put more
pressure on SmartHarvest to protect tail latencies: perfor-
mance losses due to harvesting cannot be hidden behind
networking delays or other overheads. We run each work-
load at low load on the server configuration we use (see
below), which present good opportunities for harvesting
allocated but idling CPU cores. Table 1 lists the average num-
ber of busy cores and the average of the peak number of
busy cores for the four primary workloads when each is
run alone in a 10-core VM. We poll CPU usage every 50𝜇𝑠
and calculate the peak over every 25ms windows. Although
the average number of busy cores is low, the peak usage
is significantly higher due to short-term query bursts. The
peak usage is more important for harvesting, since we must
reserve enough cores in the idle buffer to accommodate the
bursts of activity in the primary VMs.

We tested threeworkloads in ElasticVMs: CPUBully, HDIn-
sight, and Terasort.CPUBully is a multi-threaded, synthetic
workload where each worker thread performs a CPU-bound
sum operation on integer values. It has few memory/disk ac-
cesses and can utilize as many CPU cores as available.HDIn-

sight [1] is a real workload that trains a machine learning
(ML) model with TensorFlow used by ML teams in Bing. To
keep experiments short, we run one iteration of the training
of a logistic regression model with 2GB of data. HDInsight
is a CPU-bound workload that completes faster with more
CPU cores. TeraSort [4] executes Hadoop’s TeraSort bench-
mark to sort a given number of records. We use it to sort 10
million records of 100MB of data. It exhibits high memory
and I/O usage due to read and shuffle operations.
Evaluation metrics. SmartHarvest aims to maximize the
number of harvested core cycles, while having minimal im-
pact on the QoS of the primary VMs that are co-located with
the ElasticVM. We quantify QoS for all four primary work-
loads using their reported P99 latency, and compare it to the
latency in the absence of harvesting. We assume that their
P99 latency should not degrade more than 10%. We quantify
the amount of harvesting using the average number of cores
harvested for CPUBully. For HDInsight and TeraSort, we use
the reduction in execution time (speedup), compared to their
execution on a single core.
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Figure 4. Learning window size exploration.

Baseline.We compare SmartHarvest against two baseline
approaches. For a fair comparison, we implement both of the
baselines using our own agent and check CPU utilization of
primary VMs (i.e., their number of busy cores) every 50us
to detect bursts. After each core reassignment, we insert
a 10ms delay in the cpugroups implementation. The IPIs
implementation of baselines does not need a delay after the
core reassignment.
(1) Prev Peak is a simple heuristic-based approach that

allocates cores to primary VMs based on observed CPU peak
from the previous time window. We picked 25ms as the
window length to match the learning window size used in
SmartHarvest. When the primary VMs use up all their allo-
cated cores, all cores are returned to them from ElasticVM
for the next 25ms to obtain accurate information on their
peak usage again.
(2) Fixed Buffer approach applies the design proposed by

PerfIso [36] to a virtualized environment. When configured
to maintain a fixed-size buffer, the agent simply “slides” the
idle buffer reactively every time it reads the primary VMs’
CPU utilization, by adding or removing ElasticVM cores as
the primary VMs’ usage changes, so that the size of the idle
buffer stays fixed.
Testbed.We use a two-socket Intel server with Xeon Plat-
inum 8160 processor with 24 cores per socket, running at
2.10GHz, and 255GB DRAM. We report the average of 3 runs.
To avoid performance jitter on primary VMs that is indepen-
dent of harvesting, we disable simultaneous multithreading
(SMT), so that a single VM uses each physical core at each
point in time. We also disable C-states, P-states, and Turbo-
Boost to isolate power management jitter. We run both the
primary VMs and ElasticVM on one socket to avoid the vari-
ation caused by workloads spanning across NUMA nodes.
This maximizes interference between the two workloads. By
default, the root partition can run on any logical processor on
the server. To isolate management work from the workloads
inside guest VMs, we restrict the root partition to 3 cores us-
ing Hyper-V’s minroot configuration [5]. EVMAgent itself
only requires 1 core since it is single-threaded.

5.2 Learning Window Selection

As described in Algorithm 1, EVMAgent makes predictions
at regular intervals called learning windows. The window
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Figure 5. Single Primary VM co-located with CPUBully.

length is key to SmartHarvest’s effectiveness. Longer win-
dows allow us to observe the CPU usage for longer and be
more conservative, but may fail to adapt quickly enough to
behavior changes in primary VMs. Shorter windows make
more predictions, potentially leading to frequent core reas-
signments that may end up violating the SLO of a primary
VM. Given the lack of information about the primary VMs’
workloads in public clouds, we conservatively use Mem-
cached to tune the window length because it is a very latency
sensitive workload with P99 latency in hundreds of 𝜇𝑠 . We
use the tuned value for the rest of our experiments, and also
recommend this value for deployments of SmartHarvest for
other workloads.
We vary the window length between 15ms to 35ms in

Figure 4 and study the impact on the performance of the
primary VM and the amount of harvesting. The y axis is the
P99 latency of Memcached (starting at the nominal 421𝜇𝑠),
while the x axis shows the average number of cores harvested
by the CPUBully over one-minute runs. The 25ms window
length strikes a balance between the observation time and
reassignment frequency. Hence, achieves a good amount of
harvesting while having a low impact on the performance
of Memcached. We use 25ms in all subsequent experiments.

5.3 Harvesting from One Primary VM

We first evaluate the cpugroups version of SmartHarvest
with a single primary VM. We launch the primary VM with
10 cores and the ElasticVM with 1 core in a single NUMA
node. The ElasticVM can grow to a maximum of 11 cores.
We quantify the impact of harvesting by comparing the tail
latency of the primary VM with harvesting enabled and
disabled. In the latter case, the ElasticVM is limited to 1 core.
We verified that ElasticVM on a single core does not impact
the latency of the primary VM. We use the 25ms prediction
window for all primary VMs (no per-application tuning).

Figure 5 shows the P99 latency for each primary VM and
the corresponding average number of harvested cores for
CPUBully. The horizontal lines across the graphs mark the
allowable P99 latency (10% increase from the original P99
latency). The green curves show the results for fixed-sized
buffers (decreasing in size from left to right). For IndexServe,
a fixed buffer of 4 cores is enough to harvest more than
5 cores and stay within the allowed P99 latency. But for
Memcached, a minimum of 7 buffered cores are needed to
harvest up to just 2 cores due to greater load variation.
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Figure 6. IndexServe co-located with real workloads.

Overall, any static buffer size selection is likely to either
harvest fewer cores than possible or lead to SLO violations.
The heuristic that uses the CPU peak from previous time
window fails to meet target latencies for the more stringent
workloads. For both moses and img-dnn, PrevPeak results
in more than 50% increase in P99 latency due to sudden
increases in CPU utilization that is not captured from the
CPU peak usage in the past 25ms.
SmartHarvest keeps the P99 latency of the primary VM

below the allowed maximum for all workloads while har-
vesting between 1.5 to 3.5 cores. SmartHarvest does not
always harvest as much as the best fixed-size buffer for
each load because we use a conservative learning window
length that works for sub-millisecond workloads. The fact
that SmartHarvest’s dynamic tuning approach behaves well
across all workloads is an indication of its robustness.
Realistic workloads in ElasticVMs. Figures 6 show re-
sults with realistic batch processing jobs, HDInsight and
TeraSort, respectively, colocated with IndexServe. The X-
axes show speedup on completion time of the batch jobs, so
higher is better. The results show realistic batch jobs can get
meaningful work completed on harvested cores. SmartHar-
vest allows the batch workloads to achieve substantial reduc-
tion in execution time (2x - 3x) without significant perfor-
mance slowdown for primary VMs. The results also show
that SmartHarvest is robust to widely different batch work-
loads running in the ElasticVM.
Single primary VM with varying load.We evaluate our
system with varying load in a primary VM by decreasing
the offered load for Memcached from 80kQPS (medium load)
to 20kQPS (vey low load), and then increasing it to 160kQPS
(high load) again. Each offered load is run for a minute. Ta-
ble 2 shows the increase in P99 latency at each load and the
average number of cores harvested over the entire 3-minute
run. SmartHarvest keeps P99 latency low across all load
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P99 Latency (𝜇𝑠)

80kQPS 20kQPS 160kQPS Avg #cores
harvested

NoHarvest 477 300 943 0
SmartHarvest 477 + 10 300 + 4 943 + 5 1.6
PrevPeak 477 + 19 300 + 15 943 + 18 1.4
Fixed buffer 5 477 + 53 300 + 400 943 + 158 2.4
Fixed buffer 6 477 + 14 300 + 150 943 + 19 1.6
Fixed buffer 7 477 + 8 300 + 28 943 + 8 1.1

Table 2. Memcached with varying load over time.
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Figure 7. Synthetic workload co-located with CPUBully.

while harvesting 1.6 cores. SmartHarvest is able to quickly
adapt to load changes by continuously learning CPU usage
patterns. The fixed buffer policy fails to maintain P99 latency
at low levels. For example, a fixed buffer size of 6 harvests
as much as SmartHarvest at the cost of doubling the P99
latency at 20kQPS load. Both PrevPeak and a fixed buffer
size of 7 lead to low impact on all tail latencies but harvest
fewer cores than SmartHarvest.
Conservative heuristic policy. We also evaluated a more
conservative version of the heuristic baseline that uses the
highest CPU peak observed across multiple windows. For
example, PrevPeak10 uses the peak from the past ten 25ms
time windows (total 250ms) to assign cores to the primary
VMs. To balance this very conservative allocation, instead of
giving all cores back whenever the primary VM runs out of
idle cores, PrevPeak10 returns one core to the primary VM at
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Figure 8. Memcached + Memcached with CPUBully.
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Figure 9. Memcached + IndexServe with CPUBully.

a time. Figure 7 shows results from a synthetic workload with
a square-wave CPU usage pattern run inside primary VM.
This workload simulates a multi-threaded server working
on client requests with fixed processing duration. Figure 7a
shows the peak CPU utilization of the primary VM and the
allocated cores under no-harvest, PrevPeak10 and SmartHar-
vest; the red solid line marks the number of cores allocated
to the primary VM and the black dashed line shows the peak
number of cores used by primary VM from every 25ms win-
dow. PrevPeak10 fails to react fast to drops in CPU utilization
because it relies on old peak usage, which is not representa-
tive of the reduced CPU usage. It also takes longer to expand
the primary VM when its CPU usage rises. SmartHarvest
learns the occurrence of sudden high-to-low transitions af-
ter observing it for a few times and starts allocating fewer
cores to the primary VM. SmartHarvest also adapts better
to increases in CPU usage due to its safeguard design. As a
result, SmartHarvest is able to harvest more than PrevPeak10
while impacting the P99 latency less, as shown in Figure 7b.
We believe any heuristic-based approach that relies on peak
usage from longer windows in the past will suffer from these
shortcomings.

5.4 Harvesting from Multiple Primary VMs

We now evaluate SmartHarvest with more than one pri-
mary VM running on the server, again using the cpugroups
version. Since each primary is allocated 10 cores, the oppor-
tunity for harvesting idle cores is higher (20 total).

SmartHarvest treats multiple primary VMs as a single log-
ical entity that shares the same cpugroup. The co-located
ElasticVM runs on another (non-overlapping) cpugroup. The
maximumnumber of (physical) cores belonging to the shared
cpugroup is the sum of allocated cores for each individual
VM. Each VM may have one of its virtual cores scheduled
on any physical core in the shared cpugroup, but the VM
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Figure 10. Effectiveness of short-term safeguards.
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Figure 11. Effectiveness of long-term safeguard.

cannot use more physical cores than its original core allo-
cation. When VMs share a cpugroup, we rely on Hyper-V
to make the right scheduling decisions among the VMs to
minimize interference. EVMAgent just needs to learn the
aggregated CPU usage patterns and adjust the cpugroup
sizes accordingly. This approach incurs low computational
overhead, since SmartHarvest maintains and updates a single
ML model.
We experiment with the following combinations of pri-

mary VMs: (A) Memcached + Memcached and (B) Memcached
+ IndexServe . CPUBully is the batch workload in ElasticVM.
Figures 8 - 9 show the impact on P99 latency for each primary
VM and the total number of harvested cores.

Combination A (Figure 8) includes two Memcached in-
stances run at the same load. Running two primary VMs
in the same cpugroup means sharing of cores and possible
loss of data locality due to cold caches. Due to the latency-
sensitive nature of Memcached, as many as 17 buffer cores
are required to maintain P99 latencies bellow their allowable
values. SmartHarvest dynamically achieves the harvesting
policy without any tuning of its parameters.

Combination B (Figure 9) presents a more interesting sce-
nario as the two primary VMs have different latency require-
ments and load. Hence, it is challenging to find any single
fixed buffer size that works well for both. Since SmartHarvest
automatically stops harvesting when any of the primary VMs
experiences long scheduling delay for its vCPUs, it harvests
conservatively and maintains low performance degradation
across all instances.

5.5 Effectiveness of Safeguards

SmartHarvest’s two-level safeguard mechanism is triggered
whenever the primary VMs exhaust the idle core buffer or
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Figure 12. Alternative cost functions.
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Figure 13. Comparison of different cost functions.

their vCPUs experience long wait time before getting sched-
uled to run. We study the effectiveness of the safeguards
described in Section 3.4 for running Memcached.
In Figure 10, we compare two versions of the short-term

safeguard: conservative-safeguard, which increases the num-
ber of primary cores to match peak CPU usage over the past
one second plus one, and aggressive-safeguard, which gives
all cores back to the primary VMs. The aggressive-safeguard
allows themodel to acquire complete feedback (i.e., the actual
peak usage of the primary VMs) when triggered. However,
this safeguard tends to be wasteful of resources when the
primary VMs’ CPU utilization exceeds all assigned cores
by small amounts. The conservative safeguard prevails by
maintaining similar primary tail latency while allowing a
few more cores to be harvested. We use the conservative
safeguard in all other experiments.
We next evaluate the effectiveness of the long-term safe-

guard. SmartHarvest struggles when primary workloads
show aperiodic patterns that are hard to predict. For example,
when two Memcached VMs are co-located, SmartHarvest
without the long-term safeguard fails to predict the aggre-
gate usage pattern of the two VMs, resulting in more than
50% increase in their tail latencies (Figure 11). To avoid per-
formance loss for primary VMs, we rely on the long-term
safeguard to disable harvesting in such scenarios. Figure 11
shows that the long-term safeguard effectively maintains
workloads’ P99 latencies by detecting long primary vCPU
wait time and temporarily disabling the harvesting.

5.6 Cost Function Exploration

All results thus far have been collected using the skewed cost
function in Figure 12a, which is a natural choice because it pe-
nalizes underpredictions more severely than overpredictions.
We also considered two alternative cost functions, shown
in Figure 12b. Figure 13 compares the three cost functions
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Figure 14. CDF of time to grow/shrink ElasticVM by one core.

Feature Computation Model Update Model Inference
2.6 ± 1.2 10.8 ± 4.6 6.5 ± 4.1

Table 3. Latencies of learning operations (in 𝜇𝑠).

for Memcached running with CPUBully in the ElasticVM.
We observe that by not differentiating the cost of underpre-
dictions and overpredictions, the Symmetric-cost function
makes more underpredictions and has a larger impact on
the primary VM. On the other hand, since the Hinged-cost
function assigns the same cost to all overprediction labels
(even those that are far from the true label), the model learns
to overpredict frequently, thereby reducing the opportunity
to harvest cores from the primary VMs. Figure 13 shows our
Skewed-cost function harvests more than Hinged-cost while
achieving similar tail latency for the primary VMs.

5.7 Overheads Incurred by SmartHarvest

We now discuss the latency overheads added by SmartHar-
vest’s components.
Systems component of EVMAgent. We benchmarked
the time taken to expand and shrink a VM using cpugroups
and IPIs and plot the distribution in Figure 14. Resizing a
VM using cpugroups requires two hypercalls: one to unbind
the current cpugroup and another to bind it to a different
cpugroup. Each hypercall takes approximately 200𝜇𝑠 . The
cpugroup assignment is not immediate and may take up
to 5ms for growing and 10ms for shrinking as shown in
Figure 14a. IPIs with our new merge-call requires a single
hypercall to change the core-affinity of the current cpugroup.
The changes are typically visible in less than 100𝜇𝑠 from
the time the hypercall is initiated (Figure 14b). Section 5.8
quantifies the impact of these overheads on responsiveness
and learning accuracy.
Learning component of EVMAgent. The learning com-
ponent of EVMAgent is lightweight. We benchmarked fea-
ture computation, model update, and prediction latencies
from EVMAgent and report them in Table 3. On average,
it takes less than 22 𝜇𝑠 to perform all learning operations,
which is negligible compared to the learning window length
(milliseconds).

5.8 Responsiveness Vs Learning Accuracy

IPIs allow the effect of adding or removing a core to/from
a VM to take effect within 130𝜇𝑠 at the 99th percentile, sub-
stantially faster than the 10ms with unmodified cpugroups.
Intuitively, if cores can be reassigned very quickly, reacting
to primary VMs’ needs after observing changes might per-
form better than predicting their demands in advance. To
help answer this question, we explore if the faster assign-
ment mechanism with IPIs eliminates the need of online
learning for core harvesting.
Figure 15 compares cpugroups and IPIs by running In-

dexServe with CPUBully at various loads on a two-socket
Intel server with Xeon E5-2690 v4 processor (14 cores per
socket, 256GB DRAM, 2.60GHz). The faster implementation
(“IPIs fixed buffer”) results in smaller tail latency increase and
more harvesting for every fixed-buffer configuration and for
every load, compared to using the unmodified cpugroups
(“Cpugroups fixed buffer”). The frequent CPU usage moni-
toring and the fast reaction with IPIs allow more fixed buffer
configurations to operate safely.

Figure 15 also shows that, though shrinking the ElasticVM
in the cpugroups implementation of SmartHarvest (labeled
“Cpugroups SmartHarvest”) may take up to 10ms, the P99
latency of IndexServe is not substantially affected. The rea-
son is that this delay is only detrimental to primary VMs
when they need more cores than are available in the buffer of
idle cores. Its negative impact is more pronounced at higher
IndexServe latency percentiles. Still, the cpugroups imple-
mentation harvests fewer cores on average than its IPIs
counterpart (labeled “IPI SmartHarvest”). The faster core
re-assignment enabled by IPIs allows SmartHarvest to both
harvest more cores and have less performance impact on
IndexServe.
When SmartHarvest uses IPIs, it harvests more cores

with the same or lower tail latencies than the fixed-buffer
configurations. The relative benefits of online learning are
lower than those with the cpugroups implementation. Nev-
ertheless, the online nature of SmartHarvest is crucial for
efficient harvesting at medium and high loads (QPS) even
when IPIs are used: there is no single fixed buffer size that
works well across all loads, whereas learning consistently
and automatically meets tail latency requirements without
additional tuning across loads.

6 Related Work

Several proposed systems use the SLOs of the primary ten-
ants to regulate resource harvesting [40, 44–46, 51, 68, 70],
which limits their applicability in public clouds where such
information is not available. Other proposals perform ex-
tensive profiling to measure or reduce interference among
co-located workloads [49, 67, 69]. Profiling the diverse cus-
tomer workloads is impractical at large scale, especially as
the workload characteristics and load change over time. We
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Figure 15. SmartHarvest using cpugroups vs. IPIs for dif-
ferent IndexServe loads.

therefore focus next on prior work that assumes no knowl-
edge of the workloads and SLOs of the primary VMs.
Time series forecasting models such as ARIMA [20] and

neural networks [32] can be used for online prediction and
achieve good accuracy. However, they require expensive of-
fline training and/or suffer from high overheads in online
retraining and prediction. A lightweight online learner has
the advantage of adapting to frequent changes in data pat-
terns at a fine time granularity. PRACTISE [62] uses a neural
network model to predict future VM resource usage (e.g.,
CPU, memory, disk, and network bandwidth). The model has
an average retraining time of 30 seconds and prediction time
of 10 seconds on a 4-core Intel i7 CPU, which is orders of
magnitude higher than the microsecond-level update/predict
times in SmartHarvest. The quick learning operations in
SmartHarvest are necessary to meet sub-millisecond tail la-
tency requirements of latency-critical workloads.

MS Manners [31] targets older machines with single-core
CPUs and manages CPU cycles that background tasks can
use. We manage CPU cores rather than just CPU cycles; this
is critical for hosting latency sensitive workloads on modern
multicore servers.

PerfIso [36] maintains a fixed number of cores in the idle
buffer, which corresponds to the fixed-buffer policies we
compared SmartHarvest against in this work. PerfIso needs
offline profiling to determine the fixed number, and does not
adapt the number of idle cores to different primary VMs or
load levels on the same primary VM. SmartHarvest over-
comes these limitations and maintains lower latency for the
primary VMs while harvesting more resources.

Kalyvianaki et al. [39] designed a Kalman-filter-based feed-
back controller that can self-configure its parameters to pro-
vision CPU resources for any workload without a priori in-
formation. However, the self-configured controller can result
in a latency increase for more than 20% of scheduled requests
under load variations. Scavenger [37] employs a regulator to

harvest resources including cores and main memory using
the average and standard deviation of the primary resource
consumption. Some of the reported results show large in-
creases in P95 latencies and the impact on P99 latencies is
unclear. In contrast to these work, SmartHarvest directly
predicts the peak needed cores of primary VMs and protects
their P99 tail latencies.
Machine learning has shown promise in various aspects

of resource management, including learning-based cluster
schedulers [28, 29], learning-assisted schedulers [47, 48, 63–
65], and resource allocation mechanisms [11, 60, 66]. These
approaches use models that are trained offline, limiting their
applicability to our problem of adapting to the resource us-
age of black-box VMs running in the public cloud. Deep-
Dive [52] applies online unsupervised learning to detect
resource interference across black-box VMs, but does not
address resource allocation. PRESS [33] and AGILE [50] use
online predictors for resource allocation, and we build on
such continuous learning methodology. However, we com-
pute additional features from the instantaneous cores states,
employ skewed cost functions to penalize underpredictions
more than overpredictions, and use safeguards to quickly
recover from mispredictions.

7 Conclusion

We proposed SmartHarvest, a system that uses online learn-
ing to dynamically predict the number of cores that can be
safely harvested from a set of black-box VMs. We also pro-
posed ElasticVM, a new VM type that harvests these cores.
Our results showed that SmartHarvest and ElasticVM are
capable of harvesting cores aggressively, while protecting
the tail latency of co-located latency-sensitive VMs.
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