
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

The Verse Calculus: a Core Calculus for Functional Logic
Programming

LENNART AUGUSTSSON, Epic Games, Sweden

JOACHIM BREITNER
KOEN CLAESSEN, Epic Games, Sweden

RANJIT JHALA, Epic Games, USA

SIMON PEYTON JONES, Epic Games, United Kingdom

OLIN SHIVERS, Epic Games, USA

TIM SWEENEY, Epic Games, USA

Functional logic languages have a rich literature, but it is tricky to give them a satisfying semantics. In this

paper we describe the Verse calculus,VC, a new core calculus for functional logical programming. Our main

contribution is to equipVC with a small-step rewrite semantics, so that we can reason about aVC program

in the same way as one does with lambda calculus; that is, by applying successive rewrites to it.

This draft paper describes our current thinking about Verse. It is very much a work in progress, not a finished

product. The broad outlines of the design are stable. However, the details of the rewrite rules may well change; we

think that the current rules are not confluent, in tiresome ways. (If you are knowledgeable about confluence proofs,

please talk to us!)

We are eager to enagage in a dialogue with the community. Please do write to us.

1 INTRODUCTION
Functional logic programming languages add expressiveness to functional programming by intro-

ducing logical variables, equality constraints among those variables, and choice to allow multiple

alternatives to be explored. Here is a tiny example:

∃xyz. x = ⟨y, 3⟩; x = ⟨2, z⟩; y

This expression introduces three logical (or existential) variables x, y, z, constrains them with two

equalities (x = ⟨y, 3⟩ and (x = ⟨2, z⟩), and finally returns y. The only solution to the two equalities

is y = 2, z = 3, and x = ⟨2, 3⟩; so the result of the whole expression is 2.

Functional logic programming has a long history and a rich literature. But it is somewhat tricky

for programmers to reason about functional logic programs: they must think about logical variables,

narrowing, backtracking, Horn clauses, resolution, and the like. This contrasts with functional

programming, where one can say “just apply rewrite rules, such as beta reduction, let-inlining, and

case-of-known-constructor.” We therefore seek a precise expression of functional logic programming

as a term-rewriting system, to give us both a formal semantics (via small-step reductions), and a

powerful set of equivalences that programmers can use to reason about their programs, and that

compilers can use to optimize them.

We make the following contributions in this paper. First, we describe a new core calculus for

functional logic programming, the Verse calculus or VC for short (Section 2 and 2.8). Like any

Authors’ addresses: Lennart Augustsson, Epic Games, Sweden, lennart.augustsson@epicgames.com; Joachim Breitner,

mail@joachim-breitner.de; Koen Claessen, Epic Games, Sweden, koen.claessen@epicgames.com; Ranjit Jhala, Epic Games,

USA, ranjit.jhala@epicgames.com; Simon Peyton Jones, Epic Games, United Kingdom, simonpj@epicgames.com; Olin

Shivers, Epic Games, USA, olin.shivers@epicgames.com; Tim Sweeney, Epic Games, USA, tim.sweeney@epicgames.com.

2023. 2475-1421/2023/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

HTTPS://ORCID.ORG/NNNN-NNNN-NNNN-NNNN
HTTPS://ORCID.ORG/0000-0003-3753-6821
HTTPS://ORCID.ORG/NNNN-NNNN-NNNN-NNNN
HTTPS://ORCID.ORG/NNNN-NNNN-NNNN-NNNN
HTTPS://ORCID.ORG/NNNN-NNNN-NNNN-NNNN
HTTPS://ORCID.ORG/NNNN-NNNN-NNNN-NNNN
HTTPS://ORCID.ORG/NNNN-NNNN-NNNN-NNNN
https://orcid.org/nnnn-nnnn-nnnn-nnnn
https://orcid.org/0000-0003-3753-6821
https://orcid.org/nnnn-nnnn-nnnn-nnnn
https://orcid.org/nnnn-nnnn-nnnn-nnnn
https://orcid.org/nnnn-nnnn-nnnn-nnnn
https://orcid.org/nnnn-nnnn-nnnn-nnnn
https://orcid.org/nnnn-nnnn-nnnn-nnnn
https://orcid.org/nnnn-nnnn-nnnn-nnnn
https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

functional logic language,VC supports logical variables, equalities, and choice, but it is distinctive

in several ways:

• VC natively supports higher-order programming, just like the lambda calculus. Indeed, every

lambda calculus program is aVC program. In contrast, most of the functional-logic literature

is rooted in a first-order world, and addresses higher-order features via an encoding called

defunctionalisation [Hanus 2013, 3.3].

• All functional logic languages have some notion of “flexible” vs. “rigid” variables, or “sus-

pending” vs. “narrowing” operations.VC offers a new way to address these notions, namely

the operators one (Section 2.5) and all (Section 2.6). This enables an elegant economy of

concepts: for example, there is just one equality (other languages have a suspending equality

and a narrowing equality), and conditional expressions are driven by failure rather than

booleans (Section 2.5).

• VC uses spatial choice, meaning that the choice operator behaves a bit like a data constructor:

it appears in normal forms (Section 3.5). This makesVC deterministic, unlike most functional

logic languages which are non-deterministic (Section 5.1). InVC choices are laid out in space,

in the syntax of the term, rather than in time.

As always with a calculus, the idea is thatVC distills the essence of functional logic programming.

Each construct does just one thing, andVC cannot be made smaller without losing key features.

We believe that it is possible to useVC as the compilation target for a variety of functional logic

languages such as Curry [Hanus 2016] (although see Appendix B.4). We are ourselves working on

Verse, a new general purpose programming language, built directly onVC; indeed, our motivation

for developingVC is practical rather than theoretical. No single aspect ofVC is unique, but we

believe that their combination is particularly harmonious and orthogonal. We discuss the rich

related work in Section 5, and design alternatives in Appendix B.

Our second contribution is to equipVC with a small-step term-rewriting semantics (Section 3).

We said that the lambda calculus is a subset of VC, so it is natural to give its semantics using

rewrite rules, just like the lambda calculus. That seems problematical, however, because logical

variables and unification involve sharing and non-local communication that seems hard to express

in a rewrite system.

Exactly the same difficulty arises with call-by-need. For a long time, the only semantics of call-

by-need that was faithful to its sharing semantics (in which thunks are evaluated at most once) was

an operational semantics that sequentially threads a global heap through execution [Launchbury

1993]. But then Ariola et al., in a seminal paper, showed how to reify the heap into the term itself,

and thereby build a rewrite system that is completely faithful to lazy evaluation [Ariola et al. 1995].

Inspired by their idea, we present a new rewrite system for functional logic programs, that reifies

logical variables and unification into the term itself, and exploits our notion of spatial choice to

replace non-deterministic search with a (deterministic) tree of successful results. For example, the

expression above can be rewritten thus
1
:

−→{deref-h} ∃xyz. x = ⟨y, 3⟩; ⟨y, 3⟩ = ⟨2, z⟩; y
−→{u-tup} ∃xyz. x = ⟨y, 3⟩; (y = 2; 3 = z; ⟨y, 3⟩); y
−→{deref-s × 2} ∃xyz. x = ⟨2, 3⟩; (y = 2; 3 = z; ⟨2, 3⟩); 2
−→{norm-seq-assoc,norm-swap-eq} ∃xyz. x = ⟨2, 3⟩; y = 2; z = 3; ⟨2, 3⟩; 2
−→{norm-val,elim-def} 2

Rules may be applied anywhere they match, again just like the lambda calculus. The question of

confluence arises, as we discuss in Section 4.

1
The rule names come from Fig. 3, to be discussed in Section 3; they are given here just for reference.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:3

Abstract syntax
Integers 𝑘

Variables 𝑥,𝑦, 𝑧, 𝑓 , 𝑔

Primops op ::= gt | add
Scalar Values 𝑠 ::= 𝑥 | 𝑘 | 𝑜𝑝
Heap Values ℎ ::= ⟨s1, · · · , sn⟩ | 𝜆x . e
Head Values hnf ::= ℎ | 𝑘
Values v ::= 𝑠 | ℎ
Expressions 𝑒 ::= v | 𝑒𝑢; e | ∃x . e | fail | e1 e2 | v1 v2 | one{e} | all{e}

𝑒𝑢 ::= e | v = e

Programs 𝑝 ::= one{e} where fvs(𝑒) = ∅
Bindings 𝑐 ::= x = v

Concrete syntax: Infix operators “ ”, “;”, “=”, and “>” are all right-associative.

“=” binds more tightly than “;”.

Function application (v1 v2) is left-associatve, as usual.
“𝜆”, “∃” scope as far to the right as possible.

e.g., (𝜆y. ∃x . x = 1; x + y) means (𝜆y. (∃x . ((x = 1); (x + y)))).
Desugaring

𝑣1 + 𝑣2 means add⟨v1, v2⟩
𝑣1 > 𝑣2 means gt⟨v1, v2⟩

∃x1x2 · · · xn . e means ∃x1. ∃x2. · · · ∃xn . e
e1 (e2) means ∃f a. f = e1; a = e2; f (a) f , a fresh

⟨e1, · · · , en⟩ means ∃x1x2 · · · xn . x1 = e1; · · · ; xn = en; ⟨x1, · · · , xn⟩ xi fresh

e1 = e2 means ∃x . x = e1; x = e2; x x fresh

if e1 then e2 else e3 means ∃y. y = one{(e1; 𝜆𝑥. e2) (𝜆𝑥 . e3)}; y⟨⟩ x, y fresh

x B e1; e2 means ∃x . x = e1; e2

fvs(𝑒) means the free variable of 𝑒; inVC, 𝜆 and ∃ are the only binders.

Fig. 1. The Verse Calculus: Syntax

2 THE VERSE CALCULUS, INFORMALLY
We begin by presenting the Verse calculus,VC, informally. We will give its rewrite rules precisely

in Section 3. The syntax ofVC is given in Fig. 1. It has a very conventional sub-language that is

just the lambda calculus with some built-in operations and tuples as data constructors:

• Values. A value v is either a scalar value s, which can be freely duplicated, or a heap value

h. A heap value is a lambda or a tuple; and tuples only have value components. In VC a

variable counts as a value, because in a functional logic language an expression may evaluate

to an as-yet-unknown logical variable.

• Built-in functions. Our tiny calculus offers only integer constants k and two illustrative

operators op, namely gt and add
• Expressions e includes values v, and applications v1 v2; we will introduce the other constructs

as we go. For clarity we sometimes write v1 (v2) rather than v1 v2 when v2 is not a tuple.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

• A program, p, is a closed expression from which we extract one result using one (see Sec-
tion 2.5).

The formal syntax for e allows only applications of values, (v1 v2), but the desugaring rules in Fig. 1

show how to desugar general applications (e1 e2). This ANF-like normalisation is not fundamental;

it simply reduces the number of rewrite rules we need. Modulo this desugaring, every lambda

calculus term is a VC term, and has the same semantics. Just like the lambda calculus, VC is

untyped; adding a type system is an excellent goal, but is the subject of another paper.

Expressions also include two other key collections of constructs: logical variables and unification

(Section 2.1), and choice (Section 2.2). The details of choice and unification, and especially their

interaction, are rather tricky, so this section will do a lot of arm-waving. But fear not: Section 3 will

make all this precise. We only have space to describe one incarnation ofVC; Appendix B explores

some possible alternative design choices.

2.1 Logical variables and unification
The Verse calculus includes first class logical variables and unification: you can bring a fresh logical

variable into scope with ∃; equate a value with an expression v = e; and sequence two expressions

with e1; e2 (see Fig. 1). As an example, what might be written let x = e1 in {e2} in a conventional

functional language can be written ∃x . x = e1; e2 inVC. A unification (v = e) always equates a
value to an expression, and can only appear to the left of a “; ” (see ue in Fig. 1). Again the deugaring

rules rewrite a general equality e1 = e2 into this simpler form.

A program executes by solving its equations. For example,

∃xyz. x = ⟨y, 3⟩; x = ⟨2, z⟩; y
is solved by unifying x with ⟨y, 3⟩ and with ⟨2, z⟩; that in turn unifies ⟨y, 3⟩ with ⟨2, z⟩, which unifies
y with 2 and z with 3. Finally 2 is returned as the result. Note carefully that, like any declarative

language, logical variables are not mutable; a logical variable stands for a single, immutable value.

We use “∃” to bring a fresh logical variable into scope, because we really mean “there exists an x

such that ...”. Logical variables are existential variables.

High-level functional languages usually provide some kind of pattern matching; in such a

language, we might define first by first⟨a, b⟩ = a. Such pattern matching is typically desugared to

more primitive case expressions, but inVC we do not need case expressions: unification does the

job. For example we can define first like this:

first = 𝜆pr . ∃ab. pr = ⟨a, b⟩; a
For convenience, in this presentation we allow ourselves to write a term like first⟨2, 5⟩, where we
define first separately. Formally, you can imagine each example e being wrapped with a binding for

first, thus ∃first . first = ...; e; and similarly for all other library functions.

This way of desugaring pattern matching means that the input to first is not required to be fully

determined when the function is called. For example:

∃xy. x = ⟨y, 5⟩; first (x) = 2; y

Here first (x) evaluates to y, which we then unify with 2. Another way to say this is that, as usual

in logic programming, we may constrain the output of a function (here first (x) = 2), and thereby

affect its input (here ⟨y, 5⟩).
Although “;” is called “sequencing”, the order of that sequence is immaterial for equations. For

example consider (∃xy. x = 3 + y; y = 7; x). In VC we can only unify x with a value; we will

see why in Section 2.2. So the equation x = 3 + y is stuck. No matter! We simply leave it and try

some other equation. In this case, we can make progress with y = 7; and that in turn unlocks

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:5

x = 3 + y because now we know that y is 7, so we can evaluate 3 + 7 to 10 and unify x with that.

The idea of leaving stuck expressions aside, and executing other parts of the program is called

residuation [Hanus 2013]
2
, and is at the heart of our mantra “just solve the equations.”

2.2 Choice
In conventional functional programming, an expression evaluates to a single value. In contrast,

aVC expression evaluates to a choice of zero, one, or many values (or it can get stuck, which is

different from producing zero values). The expression fail yields no values; a value v yields one

value; and the choice e1 e2 yields all the values yielded by e1 and all the values yielded by e2.

Duplicates are not eliminated and, as we shall see in Section 2.7, order is maintained; in short, an

expression yields a sequence of values, not a bag, and certainly not a set.

The equations we saw in Section 2.1 can fail, if the arguments are not equal, yielding no results.

Thus 3 = 3 succeeds, returns a single result, namely 3, while 3 = 4 fails, returning no results. In

general, we use “fail” and “returns no results” synonymously.

What if the choice was not at the top level of an expression? For example, what does ⟨3, (7 5)⟩
mean? In VC it does not mean a pair with some kind of multi-value in its second component.

Indeed, as you can see from Fig. 1, this expression is syntactically ill-formed. We must instead

give a name to that choice, and then we can put it in the pair, thus: ∃x . x = (7 5); ⟨3, x⟩. This
is syntactically legal, but what does it mean? In VC a variable is never bound to a multi-value.

Instead, x is successively bound to 7, and then to 5, like this:

∃x . x = (7 5); ⟨3, x⟩ −→ (∃x . x = 7; ⟨3, x⟩) (∃x . x = 5; ⟨3, x⟩))

We duplicate the context surrounding the choice, and “float the choice outwards.”

2.3 Mixing choice and unification
We saw in Section 2.1 that equations are insensitive to sequencing—but choice is not. Consider

∃xy. x = (3 4); y = (20 30); ⟨x, y⟩. The choices are made left-to-right, so that the result is

(⟨3, 20⟩ ⟨3, 30⟩ ⟨4, 20⟩ ⟨4, 30⟩).
So much for choice under unification. What if we have unification under choice? For example:

∃x . (x = 3; x + 1) (x = 4; x ∗ 2)

Intuitively, either unify x with 3 and return x + 1, or unify x with 4 and return x ∗ 2. But so far we

have said only “a program executes by solving its equations” (Section 2.1). Well, we can see two

equations here, (x = 3) and (x = 4), which are mutually contradictory, so clearly we need to refine

our notion of “solving.” The answer is pretty clear: in a branch of a choice, solve the equations in

that branch to get the value for some logical variables, and propagate those values to occurrences in

that branch (only). Occurrences of that variable outside the choice are unaffected. We call this local

propagation. This local-propagation rule would allow us to reason thus:

∃x . (x = 3; x + 1) (x = 4; x ∗ 2) −→ ∃x . (x = 3; 4) (x = 4; 8)

Are we stuck now? No, we can float the choice out as before
3
,

∃x . (x = 3; 4) (x = 4; 8) −→ (∃x . x = 3; 4) (∃x . x = 4; 8)

and now it is apparent that the sole occurrence of x in each ∃ is the equation (x = 3), or (x = 4)
respectively; so we can drop the ∃ and the equation, yielding (4 8).

2
Hanus did not invent the terms “residuation” and“narrowing”, but his survey is an excellent introduction and bibliography.

3
Indeed we could have done so first, had we wished.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

2.4 Pattern matching and narrowing
We remarked in Section 2.1 that we can desugar the pattern matching of a high-level language into

unification. But what about multi-equation pattern matching, such as this definition in Haskell:

append [] 𝑦𝑠 = 𝑦𝑠

append (x : 𝑥𝑠) 𝑦𝑠 = x : append 𝑥𝑠 𝑦𝑠

If pattern matching on the first equation fails, we want to fall through to the second. Fortunately,

choice allows us to express this idea directly
4
:

append = 𝜆⟨𝑥𝑠,𝑦𝑠⟩. (𝑥𝑠 = ⟨⟩; 𝑦𝑠) (∃x xrest . 𝑥𝑠 = ⟨x, xrest⟩; ⟨x, append⟨xrest, 𝑦𝑠⟩⟩)

If 𝑥𝑠 is ⟨⟩, the left-hand choice succeeds, returning𝑦𝑠 ; and the right-hand choice fails (by attempting

to unify ⟨⟩ with ⟨x, xrest⟩). If 𝑥𝑠 is of the form ⟨x, xrest⟩, the right-hand choice succeeds, and we

make a recursive call to append. Finally if 𝑥𝑠 is built with head-normal forms other than the empty

tuple and pairs, both choices fail, and append returns no results at all.

This approach to pattern matching is akin to narrowing [Hanus 2013]. Suppose single = ⟨1, ⟨⟩⟩, a
singleton list whose only element is 1. Consider the call ∃zs. append⟨zs, single⟩ = single; zs. The

call to append expands into a choice

(zs = ⟨⟩; single) (∃x xrest . zs = ⟨x, xrest⟩; ⟨x, append⟨xrest, single⟩⟩)

which amounts to exploring the possibility that zs is headed by ⟨⟩ or a pair—the essence of narrowing.
It should not take long to reassure yourself that the program evaluates to ⟨⟩, effectively running

append backwards in the classic logic-programming manner.

This example also illustrates thatVC allows an equality (for append) that is recursive. As in any

functional language with recursive bindings, you can go into an infinite loop if you keep fruitlessly

inlining the function in its own right-hand side. It is the business of an evaluation strategy to do

only rewrites that make progress towards a solution (Section 3.7).

2.5 Conditionals and one
Every source language will provide a conditional, such as if (x = 0) then e2 else e3. But what is

the equality operator in (x = 0)? One possibility, adopted by Curry, is this: there is one “=” for

equations (as in Section 2.1), and another, say “==”, for testing equality (returning a boolean with

constructors True and False).VC takes a different, more minimalist position. InVC there is just

one equality operator, written “=” just as in Section 2.1. The expression if (x = 0) then e2 else e3

tries to unify x with 0. If that succeeds (returns one or more values) the if returns e2; otherwise it
returns e3. There are no data constructors True and False; instead failure plays the role of falsity.

But something is terribly wrong here. Consider ∃xy. y = (if (x = 0) then 3 else 4); x = 7.

Presumably this is meant to set x to 7, test if it is equal to 0 (it is not), and unify y with 4. But what

is to stop us instead unifying x with 0 (via (x = 0)), unifying y with 3, and then failing when we try

to unify x with 7? Not only is that not what we intended, but it also looks very non-deterministic:

the result is affected by the order in which we did unifications!

To address this, we give if a special property: in the expression if e1 then e2 else e3, unifications

inside e1 (the condition of the if) can only unify variables bound inside e1; variables bound outside

e1 are called “rigid.” So in our example, the x in (x = 0) is rigid and cannot be unified. Instead, the if
is stuck, and we move on to unify x = 7. That unblocks the if and all is well. This special property

is precisely the local propagation rule that we sketched for choice (Section 2.3).

4
We use the empty tuple ⟨⟩ to represent the empty list and pairs to represent cons cells; and we allow ourselves to write

𝜆 ⟨x, y⟩. body rather than 𝜆p. ∃x y. p = ⟨x, y⟩; body

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:7

In fact, VC distills the three-part if into something simpler, the unary construct one{e}. Its
specification is this: if e fails, one{e} fails; otherwise one{e} returns the first of the values yielded
by e. Now, if e1 then e2 else e3 can (nearly) be re-expressed like this:

one{(e1; e2) e3}
If e1 fails, the first branch of the choice fails, so we get e3; if e1 succeeds, we get e2, and the outer one
will select it from the choice. But this isn’t right: what if e2 or e3 themselves fail or return multiple

results? Here is a better translation, given in Fig. 1, which wraps the then and else branches in a

thunk:

(one{(e1; (𝜆𝑥 . e2)) (𝜆𝑥. e3)})⟨⟩
The argument of one evaluates to either ((𝜆𝑥. e2) · · ·) or (𝜆𝑥. e3) depending on whether e1

succeeds or fails, respectively, and one then picks that lambda and applies it to ⟨⟩. As a bonus,
provided we do no evaluation under a lambda, then e2 and e3 will remain un-evaluated until the

choice is made, just as we expect.

We use the same local-propagation rule for one that we do for choice (Section 2.3); together

with the desugaring for if into one, we get the “special property” of if described above.

2.6 Tuples and all
The main data structure in VC is the tuple. A tuple is a finite sequence of values, ⟨v1, · · · , vn⟩.
It can be used like a function: indexing is simply function application with the argument being

integers from 0 and up. Indexing out of range is fail. For example, ∃t . t = ⟨10, 27, 32⟩; t (1) reduces
to 27 and t (3) reduces to fail. The reduction rule for indexing in tuples admits multi-valued index

expressions. For instance, ∃t . t = ⟨10, 27, 32⟩; t (1 0 1) reduces to (27 10 27).
Tuples can be constructed by collecting all the results from a multi-valued expression, using

the all construct: if e reduces to (v1 · · · vn) then all{e} reduces to the tuple ⟨v1, · · · , vn⟩; as a
consequence, if 𝑒 fails, all produces the empty tuple. Note that is associative, which means that

we can think of a sequence or tree of binary choices as really being a single 𝑛-way choice.

You might think that tuple indexing would be stuck until we know the index, but VC uses

narrowing to make progress. The expression ∃t . t = ⟨10, 27, 32⟩; ∃i. t (i) looks stuck because we

have no value for i, but in fact it rewrites to

∃i. (i = 0; 10) (i = 1; 27) (i = 2; 32)
which (as we will see in Section 3) simplifies to just (10 27 32). So all allows a choice to be

reified into a tuple; and (∃i. t (i)) allows a tuple to be turned back into a choice.

Do we even need one as a primitive construct, given that we have all? Can we not use (all{e})(0)
instead of one{e}? Indeed they behave the same if e fully reduces to finitely many choices of values.

But all really requires the evaluation of all choices before proceeding, while one only needs to

evaluate the first choice. So, supposing that loop is a non-terminating function, one{1 loop⟨⟩}
reduces to 1, while (all{1 loop⟨⟩})(0) loops.

2.7 for loops
The expression for(e1) do e2 will evaluate e2 for each of the choices in e1, rather like a list

comprehension in languages like Haskell or Python. The scoping is peculiar
5
in that variables

bound in e1 also scope over e2. So, e.g., for(∃x . x = 2 3 5) do (x + 1) will reduce to the tuple

⟨3, 4, 6⟩.
Like list comprehension, for supports filtering; in VC this falls out naturally by just using a

possibly failing expression in e1. So, for(x B 2 3 5; x > 2) do (x + 1) reduces to ⟨4, 6⟩. Nested
5
But similar to C++.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

Notation
f (x) B e means f B 𝜆x . e

f ⟨x, y⟩ B e means f B 𝜆p. ∃xy. p = ⟨x, y⟩; e p fresh

head (𝑥𝑠) := 𝑥𝑠 (0)
tail(𝑥𝑠) := all{∃i. i > 0; 𝑥𝑠 (i)}

cons⟨x, 𝑥𝑠⟩ := all{x ∃i. 𝑥𝑠 (i)}
append⟨𝑥𝑠,𝑦𝑠⟩ := all{(∃i. 𝑥𝑠 (i)) (∃i. 𝑦𝑠 (i))}
flatMap⟨f , 𝑥𝑠⟩ := all{∃i. f (𝑥𝑠 (i))}

map⟨f , 𝑥𝑠⟩ := if x B head (𝑥𝑠) then cons⟨f (x),map⟨f , tail(𝑥𝑠)⟩⟩ else ⟨⟩
filter ⟨p, 𝑥𝑠⟩ := all{∃i. x B 𝑥𝑠 (i); one{p(x)}; x}
find⟨p, 𝑥𝑠⟩ := one{∃i. x B 𝑥𝑠 (i); one{p(x)}; x}

every⟨p, 𝑥𝑠⟩ := map⟨p, 𝑥𝑠⟩

Fig. 2. Common list functions

iteration in a for works as expected, and requires nothing special. So, for(x B 10 20; y B
1 2 3) do (x + y) reduces to ⟨11, 12, 13, 21, 22, 23⟩

Just as if is defined in terms of the primitive one (Section 2.5), we can define for in terms of the

primitive all. Again, we have to be careful when e2 itself fails or produces multiple results; simply

writing all{e1; e2} would give the wrong semantics. So we put e2 under a lambda, and apply each

element of the tuple to ⟨⟩ afterwards, using the map function defined in Fig. 2. The full desugaring

is

for(e1) do e2 ≡ ∃v. v = all{e1; 𝜆𝑥. e2}; map⟨𝜆z. z⟨⟩, v⟩
for a fresh variable v. Note how this achieves that peculiar scoping rule: variables defined in

e1 are in scope in e2. Any effects (like being multivalued) in e2 will not affect the choices de-

fined by e1 since they are in a thunk. So, e.g., for(x B 10 20) do {x x + 1} will reduce to
⟨10, 20⟩ ⟨10, 21⟩ ⟨11, 20⟩ ⟨11, 21⟩. At this point it is crucial to use map, not flatMap.

Given that tuple indexing expands into choices, we can iterate over tuple indices and elements

using for. For example for(∃i x . x = t (i)) do (x + i) produces a tuple with the elements of t,

increased by their index in t.

2.8 Programming in Verse
VC is a fairly small language, but it is quite expressive. For example, we can define the typical list

functions one would expect from functional programming by using the duality between tuples and

choices, as seen in Fig. 2. A tuple can be turned into choices by indexing with a logical variable i.

Conversely, choices can be turned into a tuple using all. The choice operator, , serves as both cons

and append for choices.

Pattern matching for function definitions is simply done by unification of ordinary expressions.

This means that we can use ordinary abstraction mechanisms for patterns. For example, here is a

function that should be called like fcn⟨88, 1, 99, 2⟩.

fcn(t) B ∃xy. t = ⟨x, 1, y, 2⟩; x + y

If we want to give a name to the pattern, it is simple to do so:

pat⟨v,w⟩ B ⟨v, 1,w, 2⟩; fcn(t) B ∃xy. t = pat⟨x, y⟩; x + y

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:9

3 REWRITE RULES
How can we give a precise semantics to a non-strict functional programming language? Here are

some possibilities:

• A denotational semantics is the classical approach, but it is tricky to give a (perspicuous)

denotational semantics to a functional logic language, because of the logical variables. We

have such a denotational semantics under development, which we offer for completeness in

Appendix C, but that is the subject of another paper.

• A big-step operational semantics typically involves explaining how a (heap, expression) start-

ing point evaluates to a (heap, value) pair; Launchbury’s natural semantics for lazy eval-

uation [Launchbury 1993] is the classic paper. The heap, threaded through the semantics,

accounts for updating thunks as they are evaluated.

• A small-step operational semantics. Despite its “operational semantics” title, the big-step

approach does not convey accurate operational intuition, because it goes all the way to a

value in one step. So-called “small-step” operational semantics are therefore widely used;

they typically describe how a (heap, expression, stack) configuration evolves, one small step

at a time (e.g., [Peyton Jones 1992]). The difficulty is that the description is now so low level

that it is again hard to explain to programmers.

• A rewrite semantics steers between these two extremes. For example, Ariola et al.’s “A call by

need lambda calculus” [Ariola et al. 1995] shows how to give the semantics of a call-by-need

language as a set of rewrite rules. The great advantage of this approach is that it is readily

explicable to programmers. Indeed teachers almost always explain the execution of Haskell

or ML programs as a succession of rewrites of the program (e.g., inline this call, simplify this

case expression, etc.).

Up to this point there has been no satisfying rewrite semantics for functional logic languages (see

Section 5 for previous work). Our main technical contribution is to fill this gap with a rewrite

semantics forVC, one that has the following properties:
• The semantics is expressed as a set of rewrite rules (Fig. 3 and 4).

• Any rule can be applied, in either direction, anywhere in the program term (including under

lambdas) to obtain an equivalent program.

• The rules are oriented, with the intent that using them left-to-right makes progress.

• Despite this orientation, the rules do not say which rule should be applied where; that is the

task of a separate evaluation strategy (Section 3.7).

• The rules can be applied by programmers, to reason about what their program does; and by

compilers, to transform (and hopefully optimise) the program.

• There is no “magical rewriting” (Section 5.3): all the variables on the right-hand side of a rule

are bound on the left.

3.1 Functions and function application
Looking at Fig. 3, rule app-add should be familiar: it simply rewrites an application of add to integer

constants. For example add⟨3, 4⟩ −→ 7. Rules app-gt and app-gt-fail are more interesting: gt⟨k1, k2⟩
fails if 𝑘1 ⩽ 𝑘2 (rather than returning False as is more conventional), and returns k1 otherwise

(rather than returning True). An amusing consequence is that (10 > x > 0) succeeds iff x is between

10 and 0 (comparison is right-associative).

Beta-reduction is performed quite conventionally by app-beta; the only unusual feature is that

on the RHS of the rule we use a ∃ to bind x, together with (x = v) to equate x to the argument.

The rule may appear to use call-by-value, because the argument is a value v, but remember that

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

Expression context 𝐸 ::= □ | ⟨s1, · · · ,□, · · · , sn⟩ | 𝜆x . E | ∃x . E | E = e | e = E

| E; e | e; E | E v | v E | E e | e E | all{E} | one{E}
Application context 𝐴 ::= □ v | op□ | □ = hnf | v = A | ∃x .A | A; e | e; A

| A e | e A | all{A} | one{A}
Scope context 𝑆𝑋 ::= □ e | e □ | one{□} | all{□}
Choice context 𝐶𝑋 ::= □ | v = 𝐶𝑋 | 𝐶𝑋 ; e | ce; 𝐶𝑋 | ∃x .𝐶𝑋
Choice-free expr 𝑐𝑒 ::= v | v = ce | ce1; ce2 | one{e} | all{e} | op(v) | ∃x . ce
Bound variables bvs(𝐸) = The variables that are bound by E at the hole

e.g. bvs((∃x . x = 3) (∃y.□ = 4))) = {𝑦}
Unification:U
deref-s x = s; E[x] −→ x = s; E[s] 𝑥 . 𝑠, 𝑥 ∉ bvs(E), 𝑠 ∉ bvs(E)
deref-h x = h; A[x] −→ x = h; A[h] 𝑥 ∉ bvs(𝐴), fvs(ℎ) ∉ bvs(𝐴)
u-scalar s = s; e −→ e

u-tup ⟨v1, · · · , vn⟩ = ⟨v ′1, · · · , v ′n⟩; e −→ v1 = v
′
1
; · · · ; vn = v

′
n
; e

u-fail hnf
1
= hnf

2
−→ fail if neither u-scalar nor u-tup match

Application: A
app-beta (𝜆x . e) v −→ ∃x . x = v; e if x ∉ fvs(v)
app-tup0 ⟨⟩ v −→ fail
app-tup ⟨v0 · · · vn⟩ v −→ ∃x . x = v; (x = 0; v0 · · · x = n; vn) if x ∉ fvs(v), 𝑛 ⩾ 0

app-add add⟨k1, k2⟩ −→ k1 + k2
app-gt gt⟨k1, k2⟩ −→ k1 if 𝑘1 > 𝑘2

app-gt-fail gt⟨k1, k2⟩ −→ fail if 𝑘1 ⩽ 𝑘2

Speculation: S
choose SX [𝐶𝑋 [e1 e2]] −→ SX [𝐶𝑋 [e1] 𝐶𝑋 [e2]] if 𝐶𝑋 ≠ □
choose-assoc SX [(e1 e2) e3] −→ SX [e1 (e2 e3)]
choose-r SX [fail e] −→ SX [e]
choose-l SX [e fail] −→ SX [e]
one-fail one{fail} −→ fail
one-choice one{e1 e2} −→ e1 if ∅ ⊢ e1 ⇝ (𝑥 | 𝑐 | v)
one-value one{e} −→ e if ∅ ⊢ e ⇝ (𝑥 | 𝑐 | v)
all-fail all{fail} −→ ⟨⟩
all-choice all{e1 · · · en} −→ ∃𝑥 . 𝑐; ⟨𝑣⟩ if ⊢∗ 𝑒 ⇝ (𝑥 | 𝑐 | v), 𝑛 ⩾ 1

Fig. 3. The Verse Calculus: Rewrite Rules

values include variables, which may be bound to an as-yet-unevaluated expression. For example:

∃y. y = 3 + 4; (𝜆x . x + 1) (y) −→ ∃y. y = 3 + 4; ∃x . x = y; x + 1
Finally, the side condition 𝑥 ∉ fvs(𝑣) in app-beta ensures that the ∃ x does not capture any variables

free in v. If x appears free in v, just use α-conversion to rename x to 𝑥 ′ ∉ fvs(𝑣).
In VC, tuples behave like (finite) functions, in which application is indexing. Rule app-tup

describes how tuple application works. Notice that app-tup does not require the argument to be eval-

uated to an integer 𝑘 ; instead the rule works by narrowing. So the expression ∃x . ⟨2, 3, 2, 7, 9⟩(x) =

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:11

2; x does not suspend awaiting a value for x; instead it explores all the alternatives, returning

(0 2). This is a free design decision: a suspending semantics would be equally easy to express.

3.2 Unification
Next we study unification, again in Fig. 3. Rules u-scalar and u-tup are the standard rules for

unification, going back nearly 60 years [Robinson 1965]. Note that when unification succeeds it

yields the common value; hence s = s rewrites to s
6
. Rule u-fail makes unification fail on two

different head-normal forms (see Fig. 1 for the syntax of hnf). Note in particular that unification

fails if you attempt to unify a lambda with any other value (including itself) – see Section 4.2.

The key innovation in VC is the way bindings (that is, just ordinary equalities) of logical

variables are propagated. The key rules are:

deref-s x = s; E[x] −→ x = s; E[s] 𝑥 . 𝑠, 𝑥 ∉ bvs(E), 𝑠 ∉ bvs(E)
deref-h x = h; A[x] −→ x = h; A[h] 𝑥 ∉ bvs(𝐴), fvs(ℎ) ∉ bvs(𝐴)

These rules make use of so-called contexts, E and A, whose syntax is given in Fig. 3 [Felleisen and

Friedman 1986; Felleisen et al. 1987]. In general, a context is an expression containing a single hole,

written □. The notation E[s] is the expression obtained by filling the hole in E with s.

So deref-s says that if we have an equality (x = s) to the left of a term E[x] that mentions x, we

can replace that (single) occurrence of x with s, yielding E[s] instead. There are several things to
notice:

• deref-s fires only when the right-hand side of the unification is a scalar value s; that is, a

variable or integer literal. That is because E allows the occurrence of x to be in places that

only syntactically allow scalars. [LA: Is it really true now that E can have places where only

scalars are allowed?] Rule defref-h allows substitution of heap values, but again only in

places that syntactically allow such expressions; also see Section 4.2.

• Both rules fire only when the RHS is a value, so that the substitution does not risk duplicating

either work or choices. This restriction is precisely the same as the let-v rule of [Ariola et al.

1995], and (by not duplicating choices) it neatly implements so-called call-time choice [Hanus

2013]. We do not need a heap, or thunks, or updates; the equalities of the program elegantly

suffice to express the necessary sharing.

• Both deref rules replace a single occurrence of x, leaving the original (x = v) undisturbed.
For example, we can rewrite (x = 3; y = x + 1; z = x + 3) to (x = 3; y = 3 + 1; z = x + 3),
using E = (y = □ + 1; z = x + 3). We must not drop the (x = v) because there may be other

occurrences of x, such as the x + 3 in this example. When there are no remaining occurrences

of x we may garbage collect the binding: see Section 3.4.

• Both rules substitute only to the right of a binding. How can we rewrite (y = x + 1; x = 3),
where the occurrence of x is to the left of its binding? Answer, by moving the x = 3 binding

to the left, a process we call normalization, discussed in Section 3.4.

• The 𝑥 . 𝑠 in deref-s prevents a binding x = x from substituting infinitely often, doing nothing

each time. The guard 𝑥 ∉ bvs(𝐸) ensures that x is actually free in E[x], while 𝑠 ∉ bvs(𝐸)
ensures that s is not captured by E in E[s].
• deref-s substitutes a scalar anywhere, but deref-h is much more parsimonous: it never

substitutes a heap value h under a lambda or inside a tuple, as can be seen by examining the

syntax of application contexts A. This is a tricky point: see Section 4.2.

• Rather unconventionally, there is no “occurs check”, leading to fail. It is very important to

allow allow bindings like (f = 𝜆x . · · · (f (x − 1)) · · ·) to substitute, because that is how we

6
An alternative choice would for unification to yield ⟨⟩ on success. It does not make much difference either way.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

define a recursive function! We even allow (x = ⟨1, x⟩). Of course, recursive bindings can lead

to infinite rewriting sequences; it is up to the evaluation strategy to avoid this (Section 3.7).

3.3 Local substitution
Consider this (extremely) tricky term: ∃x . x = if (x = 0; x > 1) then 33 else 55. What should this

do? At first you might think it was stuck; how can we simplify the if when its condition mentions

x which is not yet defined? But in fact, rule deref-s allows us to substitute locally in any X-context

surrounding the equality (x = 0) thus:
∃x . x = if (x = 0; x > 1) then 33 else 55

−→{deref-s} ∃x . x = if (x = 0; 0 > 1) then 33 else 55

−→{u-fail,fail-seql} ∃x . x = if fail then 33 else 55

−→{simplify if} ∃x . x = 55

−→{elim-def} 55

Minor variants of the same example get stuck instead of reducing. For example, if you replace

the (x = 0) with (x = 100) then rewriting gets stuck, as the reader may verify; and yet there

is a solution to the equations, namely 𝑥 = 55. And if you replace (x = 0) with (x = 55) then
rewriting again gets stuck, and reasonably so, since in this case there are no valid solutions to

the equations. Perhaps this is not surprising: we cannot reasonably expect the program to solve

arbitrary equations. For example, ∃x . x ∗ x = x has two solutions but discovering that involves

solving a quadratic equation.

3.4 Normalization rules
The syntax of Fig. 1 allows (∃x . e), (v = e), and (e1; e2) to occur anywhere in an expression. But

to make other rules more applicable, it may be necessary to “float” these expression upward. For

example, we can’t use deref-h to substitute for x in (x = (e; 3); x + 2), because the RHS of the

x-equality is not a value. But if we were to float the semicolon outwards to give (e; x = 3; x + 2),
we could then substitute for x.

Thus motivated, Fig. 4 gives a collection of rules that systematically move existentials and

unifications upward and to the left. The net effect is to normalise the term to a form with existentials

at the top, then scalar equalities, and then heap equalities, thus

∃x1, · · · , xn . x1 = s1; · · · ; xi = hi; xn = hn; e

You can think of this form as “an expression e wrapped in some heap bindings xi = vi”. The heap

bindings express, as a term, the possibly-recursive values of the xi, but the right-hand sides vi are

all values, so there is no computation left in the heap. This decomposition is so important that we

define a judgement Γ ⊢ e1 ⇝ (𝑥 | 𝑐 | e2) in Fig. 5, which decomposes an expression e1 into its heap,

specified by 𝑥 and 𝑐 , and the expression wrapped in that heap, e2. (The non-terminal c is just short

for x = v; Fig. 1). Notice that, if invoked with Γ = ∅, this judgement checks that that the equalities

𝑐 fix only variables bound by one of the existentials 𝑥 ; and moreover that there is only one such

equality for any particular xi.

One very useful application of this decomposition is elim-def in Fig. 4, which allows an entire

heap of possibly-recursive (but computation-free) bindings to be discarded if none of its variables

are used. elim-def allows you to tidy up an expression, but it is not necessary for progress, and you

can omit it entirely if you want. The normalization rules of Fig. 4 also

• Associate “; ” to the right (rule norm-seq-assoc).

• Drop a value to the left of a “; ” (rule norm-val).

• Propagate fail (rules fail-seql, fail-seqr, and fail-eq).

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:13

Normalization: N
norm-val v; e −→ e

norm-seq-assoc (𝑒𝑢; e1); e2 −→ 𝑒𝑢; (e1; e2)
norm-seq-swap1 𝑒𝑢; (x = v; e) −→ x = v; (𝑒𝑢; e) if 𝑒𝑢 not of form x

′ = v
′

norm-seq-swap2 𝑒𝑢; (x = s; e) −→ x = s; (𝑒𝑢; e) if 𝑒𝑢 not of form x
′ = s

′

norm-eq-swap hnf = x −→ x = hnf

norm-seq-defr (∃x . e1); e2 −→ ∃x . (e1; e2) if x ∉ fvs(e2)
norm-seq-defl 𝑒𝑢; (∃x . e) −→ ∃x . 𝑒𝑢; e if x ∉ fvs(𝑒𝑢)
norm-defr v = (∃y. e1); e2 −→ ∃y. v = e1; e2 if y ∉ fvs(v, e2)
norm-seqr v = (𝑒𝑢; e1); e2 −→ 𝑒𝑢; v = e1; e2

Fail Propagation: F
fail-seql fail; e −→ fail
fail-seqr e; fail −→ fail
fail-eq v = fail −→ fail

Garbage Collection: G
elim-def e1 −→ e2 if ∅ ⊢ e1 ⇝ (𝑥 | 𝑐 | e2) and 𝑥 ∉ fvs(e2)
Structural rules

swap-d ∃x . ∃y. e ≡ ∃y. ∃x . e
swap-c x1 = v1; x2 = v2; e ≡ x2 = v2; x1 = v1; e

Fig. 4. The Verse Calculus: Normalization Rules

Γ ⊢ e1 ⇝ (𝑥 | 𝑐 | e2)
Γ ⊢ e ⇝ (∅ | ∅ | e)

WF-Exp

Γ, 𝑥 ⊢ 𝑒1 ⇝ (𝑥 | 𝑐 | e2) 𝑥 ∉ 𝑥

Γ ⊢ ∃x . e1 ⇝ (x, 𝑥 | 𝑐 | e2)
WF-Def

𝑥 ∈ Γ 𝑣 ≠ 𝑥 if 𝑣 = 𝑠 then 𝑥 ∉ fvs(e1)
Γ − 𝑥 ⊢ e1 ⇝ (𝑥 | 𝑐 | e2) fvs(ℎ) ∉ 𝑥

Γ ⊢ x = v; e1 ⇝ (𝑥 | x = v, 𝑐 | e2)
WF-Eq

∅ ⊢ 𝑟1 ⇝ (𝑥1 | 𝑐1 | e1) · · · ∅ ⊢ 𝑟𝑛 ⇝ (𝑥𝑛 | 𝑐𝑛 | en) all xi distinct

⊢∗ r1, · · · , rn ⇝ (𝑥1, · · · , 𝑥𝑛 | 𝑐1, · · · , 𝑐𝑛 | e1, · · · , en)
WF-many

Fig. 5. Well-formedness of Results

• Put a variable on the LHS of an equality, where possible (rule norm-swap-eq).

Note that the normalization rules preserve the left-to-right sequencing of expressions, which

matters because choices are made left-to-right as we saw in Section 2.3. Moreover, note that the

normalisation rules do not float equalities or existentials out of choices. That restriction is the key to

localizing unification (Section 2.3), and the flexible/rigid distinction of Section 2.5. For example,

consider the expression (y = ((x = 3; x ∗ 2) (x = 4)); ⟨x + 1, y⟩). We must not propagate the

binding (x = 3) to the expression (x + 1), because the latter is outside the choice, and a different

branch of the choice binds x to 4. But rule deref-s can propagate it locally within the first arm of

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

the choice, thus
7
:

y = ((x = 3; x ∗ 2) (x = 4)); ⟨x + 1, y⟩ −→ y = ((x = 3; 3 ∗ 2) (x = 4)); ⟨x + 1, y⟩
To make further progress, we need a rule for choice; see Section 3.5.

[LA: Somewhere we should mention that the result of a (non-stuck) reduction with be an

expression e with ∅ ⊢ e ⇝ (𝑥 | x = h | v), i.e., a value with a set of bindings for heap values.]

3.5 Rules for choice
The rules for choice are given in Fig. 3. Rules one-value, one-choice and one-fail describe the

semantics for one, just as in Section 2.5. Similarly all-fail and all-choice describe the semantics of

all (Section 2.6). These rules use the well-formed-result judgement, introduced in Section 3.4 and

defined in Fig. 5, to ensure that each arm of the choice(s) consists of a value wrapped in a heap.

The most interesting rule is choose which, just as described in Section 2.2, “floats the choice

outwards”, duplicating the surrounding context. But what “surrounding context” precisely? We

use two new contexts, SX and 𝐶𝑋 , both defined in Fig. 1. A choice context 𝐶𝑋 is like an execution

context 𝑋 , but with no possible choices to the left of the hole:

𝐶𝑋 ::= □ | v = 𝐶𝑋 | 𝐶𝑋 ; e | ce; 𝐶𝑋 | ∃x .𝐶𝑋
Here, ce is guaranteed-choice-free expression (syntax in Fig. 1). This syntactic condition is neces-

sarily conservative; for example, a call f (x) is considered not guaranteed-choice-free, because it

depends on what function f does. We must guarantee not to have choices to the left so that we

preserve order—see Section 2.3.

The context SX (Fig. 3) is a scope context; it ensures that𝐶𝑋 is as large as possible. This is a subtle

point: without this restriction we lose confluence. To see this, consider
8
:

∃x . (if (x > 0) then 55 else 44); x = 1; (77 99)
−→{norm-seq-swap2} ∃x . x = 1; (if (x > 0) then 55 else 44); (77 99)
−→{deref-s} ∃x . x = 1; (if (1 > 0) then 55 else 44); (77 99)
−→{simplify if} ∃x . x = 1; 55; (77 99)
−→{seq, elim-def} 77 99

But suppose instead we floated the choice out, part-way, like this:

∃x . (if (x > 0) then 55 else 44); x = 1; (77 99)
−→{Bogus choose} ∃x . (if (x > 0) then 55 else 44); (x = 1; 77) (x = 1; 99)

Now the (x = 1) is inside the choice branches, so we cannot use norm-seq-swap2 to move it to

the left of the if. Nor can we use choose again to float the choice further out, because the if is
not guaranteed choice-free (for example, the branches might contains choices). So, alas, we are

stuck! Our not-entirely-satisfying solution is to force choose to float the choice all the way to the

innermost enclosing scope construct; hence the SX in the rule.

Rule choose moves choices around; only one-choice and all-choice decompose choices. So choice

behaves a bit like a data constructor, or normal form, of the language. For this reason we call this

approach spatial choice, in contrast to approaches that eliminate choice by non-deterministically

picking one branch or the other, which immediately gives up confluence.

The rules for one and all expect multiple choices to be normalized into a right-associative list of

non-failing values, and the administrative rules assoc-choice, fail-l and fail-r bring nested choices

into that form. But why do these rules need a SX context? Again, they are needed to guarantee

7
You may wonder if this local propagation is useful, a point we return to in Section 3.3.

8
Remember, if is syntactic sugar for a use of one, see Section 2.5, but using if makes the example easier to understand.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:15

confluence. Suppose we had a rule fail-l-no-sx that unconditionally rewrites (fail e) to e. Now
consider these two reduction sequences, starting from the same expression:

f ⟨⟩; (fail (3 = (1 3))) −→{fail-l-no-sx} f ⟨⟩; 3 = (1 3)
f ⟨⟩; (fail (3 = (1 3))) −→{choose} f ⟨⟩; (fail ((3 = 1) (3 = 3)))

−→{ulit × 2} f ⟨⟩; (fail (fail 3))
−→{fail-l-no-sx × 2} f ⟨⟩; 3

The first sequence gets stuck after one step
9
, while the second makes more progress; and the two

results are not joinable.

3.6 VC is lenient
VC is lenient [Schauser and Goldstein 1995], not lazy (call-by-need), nor strict (call-by-value).

Under lenient evaluation, everything is eventually evaluated, but functions can run before their

arguments have a value. Consider a function call f (e). InVC applications are in administrative

normal form (ANF), so we must actually write ∃x . x = e; f (x). This expression will not return a

value until e reduces to a value: that is, everything is eventually evaluated. But even so f (x) can
proceed to beta reduce (Section 3.1), assuming we know the definition of f .

Lenience supports abstraction. For example, we can replace an expression (x = ⟨y, 3⟩; y > 7) by
∃f . f = (𝜆⟨p, q⟩. p = ⟨q, 3⟩; q > 7); f ⟨x, y⟩

Here, we abstract over the free variables of the expression, and define a named function f . Calling

the function is just the same as writing the original expression. This transformation would not be

valid under call-by-value.

This is not just a way to get parallelism, which was the original motivation for introducing

lenience in the data-flow language Id [Schauser and Goldstein 1995]; it affects semantics. Consider

∃f x y. f = (𝜆p. x = 7; p); y = (if (x > 0) then 7 else 8); f (y)
Here, y does not get a value until x is known; but x does not get its value (in this case 7) until f is

called. Without lenience this program would be stuck. Laziness would be another possible design

choice, one that is even more expressive, as we discuss in Appendix B.4.

3.7 Evaluation strategy
Any rewrite rule can apply anywhere in the term, at any time. For example in the term (x =

3 + 4; y = 3 ∗ 2; x + y) the rewrite rules do not say whether to rewrite 3 + 4→ 7 and then 3 ∗ 2→ 6,

or the other way around. The rules do, however, require us to reduce 3 + 4→ 7 before substituting

for x in x + y, because the deref rules only fire when the RHS is a value. By choosing rewrite rules

carefully, we can for example express call-by-name, call-by-name, and call-by-need [Ariola et al.

1995].

An evaluation strategy answers the question: given a closed term, which unique redex, out

of the many possible redexes, should I rewrite next to make progress towards the result? Any

decent evaluation strategy should (a) guarantee to terminate if there is any terminating sequence of

reductions; and (b) be amenable to compilation into efficient code. For example, in the pure lambda

calculus, normal-order reduction, sometimes called leftmost outermost reduction, is an evaluation

strategy that guarantees to terminate if any strategy does so.

It would be even better if the strategy could (c) guarantee to find the result in the minimal

number of rewrite steps—so called “optimal reduction” [Asperti and Guerrini 1999; Lamping 1990;

9
The strange f ⟨⟩ prevents us using choose to float the (1 3) upwards.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

Lévy 1978]—but optimal reduction is typically very hard, even in theory, and invariably involves

reducing under lambdas, so for practical purposes it is well out of reach.

Formalising an evaluation strategy forVC is beyond the scope of this paper, but we can make

some informal comments. First, in service of (b) we envisage compiling lambdas to code, and thus

we never rewrite under a lambda [Peyton Jones 1987]. Second, it never makes sense to evaluate

in the right-hand argument of a choice
10
, becauseVC’s strong-ordering semantics mean that we

must first find out what the left-hand argument is (especially, whether it fails) before the right-hand

one can be used. So the basic plan is: rewrite the leftmost-outermost redex, subject to these two

constraints.

The trouble is that it is hard to say what the “leftmost” redex is. For example in (e; ⟨x, 3⟩ = ⟨2, y⟩),
the equality may or may not be the leftmost redex, depending on whether e is stuck (i.e., contains

no redexes); and whether or not e is stuck is a not syntactic property, and (worse) may depend not

only on e itself, but on its context. Even worse, e may subsequently become un-stuck when we

rewrite the equality. Any calculus in which a redex to the “right” may unblock one to the “left”—that

is, residuation—must grapple with this problem, so we leave evaluation strategy and compilation

for future work.

4 METATHEORY
The rules of our rewrite semantics can be applied anywhere, in any order, and they give meaning

to programs without committing to a particular evaluation strategy. But then it had better be the

case that no matter how the rules are applied, one always obtains the same result!

Reductions and Confluence A reduction R is a binary relation on a set of terms E. We write R𝑘
for the 𝑘-step closure of R and R∗ for the reflexive and transitive closure of R, i.e.R∗ ≡ ∪0⩽𝑘R𝑘 . We

write 𝑒 −→R 𝑒 ′ (𝑎 steps to 𝑏) if (𝑒, 𝑒 ′) ∈ R and 𝑒 −→→R 𝑒 ′ (𝑎 reduces to 𝑏) if (𝑒, 𝑒 ′) ∈ R∗. A reduction R
is confluent if whenever 𝑒 −→→R 𝑒1 and 𝑒 −→→R 𝑒2, there exists an 𝑒

′
such that 𝑒1 −→→R 𝑒 ′ and 𝑒2 −→→R 𝑒 ′.

Confluence gives us the assurance that we will not get different results when choosing different

rules, or get stuck with some rules and not with others.

Normal Forms A term 𝑒 is an R-Normal Form if there does not exist any 𝑒 ′ such that 𝑒 −→R 𝑒 ′.
Confluence implies that ultimately, rewriting terminates with at most one unique normal form,

regardless of the evaluation strategy [Barendregt 1984].

Lemma 4.1 (Unicity). If R is confluent then every term reduces to at most one normal form.

4.1 Confluence
Our main result is thatVC’s reduction rules are confluent:

Theorem 4.2 (Confluence). The reduction relation defined in Fig. 3 and 4 is confluent.

Proof sketch. Our proof strategy is to divide the rules into groups, namedU, A, etc in the Figures,

prove confluence for each separately, and then prove that their combination is confluent. Given

two reduction relations 𝑅 and 𝑆 , we say that 𝑅 commutes with 𝑆 if for all terms 𝑒, 𝑒1, 𝑒2 such that

𝑒 −→→𝑅 𝑒1 and 𝑒 −→→𝑆 𝑒2 there exists 𝑒
′
such that 𝑒1 −→→𝑆 𝑒 ′ and 𝑒2 −→→𝑅 𝑒 ′. We prove each individual

sub-relation is confluent; and that they pairwise commute. Then confluence of their union follows,

using Huet [1980]:

Lemma 4.3 (Commutativity). If 𝑅 and 𝑆 are confluent and commute, then 𝑅 ∪ 𝑆 is confluent.

Proving confluence for R, A, N , F and G is easy: they all satisfy the diamond property, namely,

that two different reduction steps can be joined at a common term by a single step. This property can

10
Except perhaps in parallel, of course.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:17

be verified easily by taking critical pairs. Any relation satisfying the diamond property is confluent

[Barendregt 1984].

Alas, the unification relation U does not satisfy the diamond property, because it may need

multiple steps to join the results of two different one-step reductions. For example, consider the

term (x = ⟨1, y⟩; x = ⟨z, 2⟩; x = ⟨1, 2⟩; 3). It can be reduced in one step by substituting x in the

final equality by either ⟨1, y⟩ or ⟨z, 2⟩. After this it will take multiple steps to join the two terms.

Following a well-trodden path in proofs of confluence for the 𝜆-calculus (e.g. [Barendregt 1984]),

our proof of confluence forU works as follows: we find a sub-relation that satisfies three properties.

First, it is locally confluent, meaning if 𝑒 single-steps to 𝑒1 and 𝑒2 then 𝑒1 and 𝑒2 can be joined at

some 𝑒 ′. Second, it is terminating. Newman’s Lemma [Barendregt 1984] then implies the relation is

confluent; and hence so is its reflexive transitive closure. Third, that the closure of the sub-relation

is the same as the full reduction relation, which then implies that the full reduction relation is also

confluent.

4.2 Design for confluence
VC is carefully designed to ensure confluence. Rule deref-h is particularly important. It prevents

substituting heap values h under lambdas and inside tuples; and the A context only permits

substitution in a place where the value h can be used immediately, by application or unification.

These restrictions matter for at least three different reasons.

Nested tuples. Our proof strategy for the confluence of U requires that U terminates. But if

deref-h substituted inside tuples, or inside lambdas, it doesn’t terminate:

∃x . x = ⟨1, x⟩; x → ∃x . x = ⟨1, x⟩; ⟨1, x⟩ → ∃x . x = ⟨1, x⟩; ⟨1, ⟨1, x⟩⟩ → . . .

Here, each step makes one substitution for x. An exactly analogous example can be made for a

lambda value. We avoid this fruitless divergence by preventing deref-h from substituting under

tuples or lambdas. Instead an equality like (x = h) is left as a “heap-constraint” which can be used

(via deref-h) whenever we actually need to access the contents of the value, via unification or

appliction; or it can be eliminated via the garbage collection rules.

The odd/even problem. Suppose we combined deref-s and deref-h into a a single rule that freely

substituted any value v for an occurrence of x. Then we would lose confluence in the case of mutual

recursion:

∃x, y. x = ⟨1, y⟩; y = 𝜆z. x; x →∗ ∃y. y = 𝜆z. ⟨1, y⟩; ⟨1, y⟩ (1: substitute for x first)

∃x, y. x = ⟨1, y⟩; y = 𝜆z. x; x →∗ ∃x . x = ⟨1, 𝜆z. x⟩; x (2: substitute for y first)

The result of (1) and (2) have the same meaning (are indistinguishable by aVC context) but cannot

be joined by rewrite rules. This is a well known problem, and an exactly similar phenomenon

arises with inlining mutually recursive 𝜆-terms. Examples like this show that syntactic confluence

is too strong: what we really need is that our rewrites rules are semantics preserving — but of

course that requires an independent notion of semantics (see Appendix C for an initial attempt).

We restore confluence by restricting deref-h, but an interesting alternative approach would be to

seek a weaker form of confluence, such as skew confluence [Ariola and Blom 2002].

Unifying lambdas. InVC an attempt to unify two lambdas fails, even if the lambdas are semanti-

cally identical (rule u-fail). Why? Because semantic identity of functions is un-implementable. We

cannot instead say that the attempt to unify gets stuck, because that leads to non-confluence. Here

is an expression that rewrites in two different ways, depending on which equality we deref-h first:

(𝜆p. 1) = (𝜆q. 2); 1←−∗ ∃x . x = (𝜆p. 1); x = (𝜆q. 2); x ⟨⟩ −→∗ (𝜆q. 2) = (𝜆p. 1); 2

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

These two outcomes cannot be joined. But making unification on lambdas fail, both outcomes lead

to fail, and confluence is restored.

There is a very delicate interaction between u-fail and the apparently-innocuous rule u-scalar

(Fig. 3). Consider (∃x . x = (𝜆y. y); x = x; 0). If we apply u-scalar, and then deref-h we get (𝜆y. y).
But if we first apply deref-h, twice, we get ((𝜆y. y) = (𝜆y. y); 0), and that fails. Yikes!

But in fact all is well: the A context (Fig. 3) only allows deref-h to apply in positions where the

value is immediately consumed in some way, by being applied to an argument, or being unified

with a value. So in our example, deref-h simply does not apply. Only u-scalar does, so we get

(∃x . x = (𝜆y. y); x; 0). Confluence is restored. But the ice is thin here, so it is reassuring that we

have a proof of confluence.

5 VC IN CONTEXT: REFLECTIONS AND RELATEDWORK
Functional logic programming has a rich literature; an excellent starting point is Hanus’s sur-

vey [Hanus 2013]. Now that we know what VC is, we can identify its distinctive features, and

compare them to other approaches.

5.1 Choice and non-determinism
A significant difference between our presentation and earlier works is our treatment of choice.

Consider an expression like (3 + (20 30)). This is typically handled by a pair of non-deterministic

rewrite rules:

e1 e2 −→ e1 e1 e2 −→ e2

So our expression rewrites (non-deterministically) to either (3 + 20) or (3 + 30); and that in turn

allows the addition to make progress. Of course, including non-deterministic choice means the

rules are non-confluent by construction. Instead, one must generalize to say that a reduction

does not change the set of results; in the context of lambda calculi see for example [Kutzner and

Schmidt-Schauß 1998; Schmidt-Schauß and Machkasova 2008].

In contrast, our rules never pick one side or the other of a choice. And yet (3 + (20 30)) can
still make progress, by floating out the choice (rule choose in Fig. 3), thus (3 + 20) (3 + 30).
In effect, choices are laid out in space (in the syntax of the term), rather than being explored by

non-deterministic selection. Rule choose is not a new idea: it is common in calculi with choice, see

e.g., [de’Liguoro and Piperno 1995, Section 6.1, Dal Lago et al. 2020, Section 3] and, more recently,

has been used to describe functional logic languages where it is variously called bubbling [Antoy

et al. 2006] or pull-tabbing [Antoy 2011]. However, our formulation appears simpler, because we

avoid the need for attaching an identifier to each choice with its attendant complications.

5.2 One and all
Logical variables, choice, and equalities are present in many functional logic languages. However

one and all are distinctive features ofVC, with the notable exception of Smolka et al.’s language

Fresh. Introduced in a technical report nearly 40 years ago [Smolka and Panangaden 1985], Fresh

has confinement (equivalent to one) and collection (equivalent to all). It is a very interesting design,

but one does not appear to have been implemented, and its treatment of equality and thus logical

variables is rather different to ours.

Several aspects of all and one are worth noting. First, all reifies choice (a control operator)

into a tuple (a data structure); for example, all{1 7 2} returns the tuple ⟨1, 7, 2⟩. In the other

direction, indexing turns a tuple into choice (e.g., ∃i. ⟨1, 7, 2⟩(i) yields (1 7 2)). Other languages
can reify choices into a (non-deterministic) list, via an operator called bagof, or a mechanism called

set-functions in an extension of Curry [Antoy and Hanus 2021, Section 4.2.7], implemented in the

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:19

Kiel Curry System interpreter [Antoy and Hanus 2009; Brassel and Huch 2007, 2009]. But this is

regarded as a somewhat sophisticated feature, whereas it is part of the foundational fabric ofVC.
Curry’s set-functions need careful explanation about sharing across non-deterministic choices,

or what is “inside” and “outside” the set function, something that appears as a straightforward

consequence ofVC’s single rule choose.

Second, even under the reification of all,VC is deterministic. Choice is not non-deterministic:

VC takes pains to maintain order, so that when reifying choice into a tuple, the order of elements

in that tuple is completely determined. This determinism has a price: as we saw in Section 2.3 and

Section 3.5, we have to take care to maintain the left-to-right order of choices. However, maintaining

that order has other payoffs. For example, it is relatively easy to add effects other than choice,

including mutable variables and input/output, toVC.
Thirdly, one allows us to reify failure; to try something and take different actions depending on

whether or not it succeeds. Prolog’s “cut” operator has a similar flavour, and Curry’s set-functions

allow one to do the same thing.

Finally, one and all neatly encapsulate the idea of “flexible” vs. “rigid” logical variables. As we

saw in Section 2.5, logical variables bound outside one/all cannot be unified inside it; they are

“rigid.” This notion is nicely captured by the fact that equalities cannot float outside one and all
(Section 3.4).

5.3 The semantics of logical variables
Our logical variables, introduced by ∃, are often called extra variables in the literature, because they

are typically introduced as variables that appear on the right-hand side of a function definition, but

are not bound on the left. For example, in Curry we can write

first x | x =:= (a,b) = a where a,b free

Here a and b are logical variables, not bound on the left; they get their values through unification

(written “=:=”). In Curry they are explicitly introduced by the “where a,b free” clause, while in
many other papers their introduction is implicit in the top-level rules, simply by not being bound on

the left. These extra variables (our logical variables) are at the heart of the “logic” part of functional

logic programming.

Constructor-based ReWrite Logic (CRWL) [González-Moreno et al. 1999] is the brand leader

for high-level semantics for non-strict, non-deterministic functional logic languages. CRLW is a

“big-step” rewrite semantics that rewrites a term to a value in a single step. López-Fraguas et al.

[2007] make a powerful case for instead giving the semantics of a functional logic language using

“small-step” rewrite rules, more like those of the lambda calculus, that successively rewrite the

term, one step at a time, until it reaches a normal form. Their paper does exactly this, and proves

equivalence to the CRWL framework. Their key insight (like us, inspired by Ariola et al. [1995]’s

formalisation of the call-by-need lambda calculus) is to use let to make sharing explicit.

However both CRWL and Fraguas et al. suffer from a major problem: they require something we

call magical rewriting. A key rewrite rule is this:

𝑓 (𝜃 (𝑒1), . . . , 𝜃 (𝑒𝑛)) −→ 𝜃 (𝑟ℎ𝑠)
if (𝑒1, . . . , 𝑒𝑛) −→ 𝑟ℎ𝑠 is a top-level function binding, and

𝜃 is a substitution mapping variables to closed values, s.t 𝑑𝑜𝑚(𝜃) = fvs(𝑒1, . . . , 𝑒𝑛, 𝑟ℎ𝑠)

The substitution for the free variables of the left-hand side can readily be chosen by matching the

left-hand side against the call. But the substitution for the extra variables must be chosen “magically”

[López-Fraguas et al. 2007, Section 7] or clairvoyantly, so as to make the future execution work

out. This is admirably high level, because it hides everything about unification, but it is not much

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

help to a programmer trying to understand a program, nor is it directly executable. In a subsequent

journal paper they refine CRWL to avoid magical rewriting using “let-narrowing” [López-Fraguas

et al. 2014, Section 6]; this system looks rather different to ours, especially in its treatment of choice,

but is rather close in spirit.

To explain actual execution, the state of the art is described by Albert et al. [2005]. They give both

a big-step operational semantics (in the style of [Launchbury 1993]), and a small-step operational

semantics. These two approaches both thread a heap through the execution, which holds the

unification variables and their unification state; the small-step semantics also has a stack, to specify

the focus of execution. The trouble is that heaps and stacks are difficult to explain to a programmer,

and do not make it easy to reason about program equivalence. In addition to this machinery, the

model is further complicated with concurrency to account for residuation.

In contrast, our rewrite rules give a complete, executable (i.e., no “magic”) account of logical

variables and choice, directly as small-step rewrites on the original program, rather than as the

evolution of a (heap, control, stack) configuration. Moreover, we have no problem with residuation.

5.4 Flat vs. higher order
When giving the semantics of functional logic languages, a first-order presentation is almost univer-

sal. User-defined functions can be defined at top level only; and function symbols (the names of such

functions) are syntactically distinguished from ordinary variables. As Hanus describes, it is possible

to translate a higher-order program into a first-order form
11
using defunctionalisation [Hanus 2013,

Section 3.3], and a built-in apply function. Sadly, this encoding is hardly a natural rendition of

the lambda calculus, and it obstructs the goal of using rewrite rules to explain to programmers

how their program might execute. In contrast, a strength of ourVC presentation is that it deals

natively with the full lambda calculus.

5.5 Intermediate language
Hanus’s Flat Language [Albert et al. 2005, Fig 1], FLC, plays the same role asVC: it is a small core

language into which a larger surface language can be desugared. There are some common features:

variables, literals, constructor applications, and sequencing (written hnf in FLC). However, it seems

thatVC has a greater economy of concepts. In particular, FLC has two forms of equality (==) and

(=:=), and two forms of case-expression, case and fcase. In each pair, the former suspends if

it encounters a logical variable; the latter unifies or narrows respectively. In contrast,VC has a

single equality (=), and the orthogonal one construct, to deal with all four concepts.

FLC has let-expressions (let x=e in b), whereVC uses ∃ and (again) unification. FLC also

uses the same construct for a different purpose, to bring a logical variable into scope, using the

strange binding x=x, thus (let x=x in e). In contrast, ∃x . e seems more direct.

6 LOOKING BACK, LOOKING FORWARD
The semantics of VC is designed at a level intended to capture the computational model of the

language; not all formal semantics do so. Defining a language by giving its low-level semantics is

precise but not necessarily illuminating. For example, giving a reference compiler that compiles the

program to x86 instructions is precise, but is not helpful to a human who is trying to understand

exactly what the original program meant. Likewise, a high-level semantics simply provides the

eventual answer produced by the program, without insight into the computational steps that got us

from program start to program completion.

11
Hanus does not mention this, but for a language with arbitrarily nested lambdas one would need to do lambda-lifting as

well, but that is perhaps a minor point.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:21

The moral here is that formal specifications can be obfuscatory—or illuminating. The latter kind

shed light because they are defined in terms of the intended mechanisms of the language.VC does

this; it respects the conceptual structures of the Verse language.

Note that when we say “illuminating” we mean that in multiple ways. A semantics can be

illuminating for humans who are trying to understand what a particular program does, or how

a proposed change to the language will affect the language. It can drive analyses that help the

compiler optimize programs. It underlies the use of formal methods and verification to provide

machine-derived and -checkable proofs of correctness. All of these applications depend on the

semantics being defined at the appropriate level: the level of the computational model that underlies

the language. This has been our goal in this work.

We have much left to do. The full Verse language has statically checked types. In the dynamic

semantics, the types can be represented by partial identity functions—identity of the values of

the type and fail otherwise. This gives a distinctive new perspective on type systems, one that

we intend to develop in future work. The full Verse language also has a statically-checked effect

system, including both mutable references and input/output. All these effects must be transactional,

e.g., when the condition of an if fails, any store effects in the condition must be rolled back. We

have preliminary reduction rules for updateable references, but they are not included here.

ACKNOWLEDGMENTS
We thank our colleagues for their helpful and specific feedback on earlier drafts of this paper, includ-

ing Jessica Augustsson, Francisco López-Fraguas, Andy Gordon, Michael Hanus, Juan Rodríguez

Hortalá, John Launchbury, Dale Miller, Andy Pitts, Niklas Röjemo, Jaime Sánches-Hernández. and

Andrew Scheidecker.

REFERENCES
Elvira Albert, Michael Hanus, Frank Huch, Javier Oliver, and German Vidal. 2005. Operational semantics for declarative multi-

paradigm languages. Journal of Symbolic Computation 40, 1 (2005), 795–829. https://doi.org/10.1016/j.jsc.2004.01.001

Reduction Strategies in Rewriting and Programming special issue.

S. Antoy. 2011. On the Correctness of Pull-Tabbing. Theory and Practice of Logic Programming 11, 4-5 (2011), 713–730.

https://doi.org/10.1017/S1471068411000263

S Antoy, D Brown, and S Chiang. 2006. Lazy context cloning for non-deterministic graph rewriting. In Proc. of the 3rd

International Workshop on Term Graph Rewriting. Vienna, Austria, 61–70.

S. Antoy and M. Hanus. 2009. Set Functions for Functional Logic Programming. In Proceedings of the 11th ACM SIGPLAN

International Conference on Principles and Practice of Declarative Programming (PPDP’09). ACM Press, 73–82. https:

//doi.org/10.1145/1599410.1599420

S Antoy and M Hanus. 2021. Curry: a tutorial introduction. Technical Report. University of Kiel.

Zena M. Ariola and Stefan Blom. 2002. Skew confluence and the lambda calculus with letrec. Annals of Pure and Applied

Logic 117, 1 (2002), 95–168. https://doi.org/10.1016/S0168-0072(01)00104-X

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. 1995. A Call-by-Need Lambda

Calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San

Francisco, California, USA) (POPL ’95). Association for Computing Machinery, New York, NY, USA, 233246. https:

//doi.org/10.1145/199448.199507

Andrea Asperti and Stefano Guerrini. 1999. The Optimal Implementation of Functional Programming Languages. Cambridge

University Press.

H. P. (Hendrik Pieter) Barendregt. 1984. The lambda calculus : its syntax and semantics (rev. ed. ed.). North-Holland,

Amsterdam ;.

Bernd Brassel and Frank Huch. 2007. On a tighter integration of functional and logic programming. In 5th Asian Symposium

on programming languages and systems (APLAS’07) (LNCS), Vol. 4807. Springer, 122–138.

B Brassel and F Huch. 2009. The Kiel Curry System KiCS. In Applications of Declarative Programing and Knowledge

Management, Vol. 5437. Springer, 195–205.

Jan Christiansen, Daniel Seidel, and Janis Voigtländer. 2010. An Adequate, Denotational, Functional-Style Semantics for

Typed FlatCurry, In International Workshop on Functional and Constraint Logic Programming. International Workshop

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

https://doi.org/10.1016/j.jsc.2004.01.001
https://doi.org/10.1017/S1471068411000263
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1016/S0168-0072(01)00104-X
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/199448.199507

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

on Functional and Constraint Logic Programming, 119–136. https://doi.org/10.1007/978-3-642-20775-4_7

U. Dal Lago, G. Guerrieri, and W. Heijltjes. 2020. Decomposing Probabilistic Lambda-Calculi. In Foundations of Software

Science and Computation Structures (FoSSaCS’20) (Lecture Notes in Computer Science), Vol. 12077. Springer.

Ugor de’Liguoro and Adolfo Piperno. 1995. Nondeterministic extensions of untyped lambda calculus. Information and

Computation 122 (1995), 149–177.

Matthias Felleisen and Daniel P. Friedman. 1986. Control operators, the SECD machine, and the lambda calculus. In Formal

Description of Programming Concepts III. Elsevier, 193–217.

Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. 1987. A syntactic theory of sequential control.

Theoretical Computer Science 3 (1987), 205–237. Issue 52.

J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodríguez-Artalejo. 1999. An approach to

declarative programming based on a rewriting logic. Journal of Logic Programming 40 (1999), 47–87. https://doi.org/10.

1016/S0743-1066(98)10029-8

Michael Hanus. 2013. Functional Logic Programming: From Theory to Curry. In Programming Logics, A Voronkov and

C Weidenbach (Eds.). Lecture Notes in Computer Science, Vol. 7797. Springer Verlag. https://doi.org/10.1007/978-3-642-

37651-1_6

Michael Hanus. 2016. Curry: an integrated functional logic language. Technical Report. University of Kiel.

Gérard Huet. 1980. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems: Abstract

Properties and Applications to Term Rewriting Systems. J. ACM 27, 4 (oct 1980), 797–821. https://doi.org/10.1145/

322217.322230

A. Kutzner and M. Schmidt-Schauß. 1998. A non-deterministic call-by-need lambda calculus. In 3th ACM SIGPLAN

International Conference on Functional Programming (ICFP’98). ACM, 324–335.

John Lamping. 1990. An algorithm for optimal lambda-calculus reduction. In Proceedings of the Seventeenth ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. 16–30.

John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Proceedings of the 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (Charleston, South Carolina, USA) (POPL ’93). Association for

Computing Machinery, New York, NY, USA, 144154. https://doi.org/10.1145/158511.158618

Jean-Jacques Lévy. 1978. Réductions Correctes et Optimales dans le Lambda-calcul. Ph.D. Dissertation. Université Paris vii.

Francisco J. López-Fraguas, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. 2007. A Simple Rewrite Notion for

Call-Time Choice Semantics. In Proceedings of the 9th ACM SIGPLAN International Conference on Principles and Practice

of Declarative Programming (Wroclaw, Poland) (PPDP ’07). Association for Computing Machinery, New York, NY, USA,

197208. https://doi.org/10.1145/1273920.1273947

Francisco Javier López-Fraguas, Enrique Martin-Martin, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. 2014.

Rewriting and narrowing for constructor systems with call-time choice semantics. Theory and Practice of Logic program-

ming 14 (2014), 165–213. Issue 2.

Simon Peyton Jones. 1987. The implementation of functional programming languages. Prentice Hall.

Simon Peyton Jones. 1992. Implementing Lazy Functional Languages on Stock Hardware: The Spineless Tagless G-machine.

Journal of Functional Programming 2 (July 1992), 127–202. https://www.microsoft.com/en-us/research/publication/

implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/

JA Robinson. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12 (1965), 23–41. Issue 1.

Klaus E. Schauser and Seth C. Goldstein. 1995. How Much Non-Strictness Do Lenient Programs Require?. In Proceedings of

the Seventh International Conference on Functional Programming Languages and Computer Architecture (La Jolla, California,

USA) (FPCA ’95). Association for Computing Machinery, New York, NY, USA, 216225. https://doi.org/10.1145/224164.

224208

M. Schmidt-Schauß and E. Machkasova. 2008. A finite simulation method in a nondeterministic call-by-need lambda-calculus

with letrec, constructors, and case. In 19th International Conference on Rewriting Techniques and Applications (RTA’08)

(LNCS), Vol. 5117. Springer, 321–335.

Gert Smolka and Prakash Panangaden. 1985. FRESH: A Higher-Order Language with Unification and Multiple Results.

Technical Report TR85-685. Cornell University. https://hdl.handle.net/1813/6525

A EXAMPLE
A complete reduction sequence for a small example can be found in figure 6. This example shows

how constraining the output of a function call can constrain the argument. While most of the

reductions are administrative in nature, these are the highlights: At 1○ the swap function is inlined

so that at 2○ a 𝛽-reduction can happen.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

https://doi.org/10.1007/978-3-642-20775-4_7
https://doi.org/10.1016/S0743-1066(98)10029-8
https://doi.org/10.1016/S0743-1066(98)10029-8
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1145/322217.322230
https://doi.org/10.1145/322217.322230
https://doi.org/10.1145/158511.158618
https://doi.org/10.1145/1273920.1273947
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://doi.org/10.1145/224164.224208
https://doi.org/10.1145/224164.224208
https://hdl.handle.net/1813/6525

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:23

swap ⟨x, y⟩ B ⟨y, x ⟩; ∃p. swap (p) = ⟨2, 3⟩; p
−→{desugar} ∃swap. swap = (𝜆xy. ∃x y. ⟨x, y⟩ = xy; ⟨y, x ⟩) ; ∃p t . t = swap (p) ; t = ⟨2, 3⟩; p

1○ −→{deref-h,elim-def} ∃p t . t = (𝜆xy. ∃x y. ⟨x, y⟩ = xy; ⟨y, x ⟩) (p) ; t = ⟨2, 3⟩; p
−→{norm-seq-swap} ∃p t . t = ⟨2, 3⟩; t = (𝜆xy. ∃x y. ⟨x, y⟩ = xy; ⟨y, x ⟩) (p) ; p

2○ −→{app-beta} ∃p t . t = ⟨2, 3⟩; t = ∃xy. (xy = p; ∃x y. ⟨x, y⟩ = xy; ⟨y, x ⟩) ; p
−→{norm-defr,norm-seq-defr} ∃p t . t = ⟨2, 3⟩; ∃xy. t = (xy = p; ∃x y. ⟨x, y⟩ = xy; ⟨y, x ⟩) ; p
−→{norm-seq-defl} ∃p t xy. t = ⟨2, 3⟩; t = (xy = p; ∃x y. ⟨x, y⟩ = xy; ⟨y, x ⟩) ; p
−→{norm-seqr,norm-seq-assoc} ∃p t xy. t = ⟨2, 3⟩; xy = p; t = ∃x y. (⟨x, y⟩ = xy; ⟨y, x ⟩) ; p
−→{norm-seq-swap} ∃p t xy. xy = p; t = ⟨2, 3⟩; t = ∃x y. (⟨x, y⟩ = xy; ⟨y, x ⟩) ; p

3○ −→{deref-s,elim-def} ∃p t . t = ⟨2, 3⟩; t = ∃x y. (⟨x, y⟩ = p; ⟨y, x ⟩) ; p
−→{norm-defr,norm-seq-defr} ∃p t . t = ⟨2, 3⟩; ∃x . t = ∃y. (⟨x, y⟩ = p; ⟨y, x ⟩) ; p
−→{norm-seq-defl} ∃p t x . t = ⟨2, 3⟩; t = ∃y. (⟨x, y⟩ = p; ⟨y, x ⟩) ; p
−→{norm-defr,norm-seq-defr} ∃p t x . t = ⟨2, 3⟩; ∃y. t = (⟨x, y⟩ = p; ⟨y, x ⟩) ; p
−→{norm-seq-defl} ∃p t x y. t = ⟨2, 3⟩; t = (⟨x, y⟩ = p; ⟨y, x ⟩) ; p
−→{norm-seqr} ∃p t x y. t = ⟨2, 3⟩; (⟨x, y⟩ = p; t = ⟨y, x ⟩) ; p
−→{deref-h,elim-def} ∃px y. (⟨x, y⟩ = p; ⟨2, 3⟩ = ⟨y, x ⟩) ; p
−→{norm-seq-assoc,norm-swap-eq} ∃px y. p = ⟨x, y⟩; ⟨2, 3⟩ = ⟨y, x ⟩; p

4○ −→{u-tup,norm-seq-assoc} ∃px y. p = ⟨x, y⟩; 2 = y; (3 = x; ⟨2, 3⟩) ; p
−→{norm-swap-eq} ∃px y. p = ⟨x, y⟩; y = 2; (3 = x; ⟨2, 3⟩) ; p
−→{norm-seq-swap} ∃px y. y = 2; p = ⟨x, y⟩; (3 = x; ⟨2, 3⟩) ; p

5○ −→{deref-s,elim-def} ∃px . p = ⟨x, 2⟩; (3 = x; ⟨2, 3⟩) ; p
−→{norm-seq-assoc} ∃px . p = ⟨x, 2⟩; 3 = x; ⟨2, 3⟩; p
−→{norm-swap-eq} ∃px . p = ⟨x, 2⟩; x = 3; ⟨2, 3⟩; p
−→{norm-seq-swap} ∃px . x = 3; p = ⟨x, 2⟩; ⟨2, 3⟩; p

6○ −→{deref-s,elim-def} ∃p. p = ⟨3, 2⟩; ⟨2, 3⟩; p
7○ −→{norm-val} ∃p. p = ⟨3, 2⟩; p
−→{post-reduction-inline} ⟨3, 2⟩

Fig. 6. Sample reduction sequence

Step 3○ inlines the argument, and 4○ does the matching of the tuple. At 5○ and 6○ the actual

numbers are inline. After removing some garbage we reach the result at 7○.

B VARIATIONS AND CHOICES
In a calculus likeVC there is room for many design variations. We discuss some of them here.

B.1 Dead existentials
Consider the term (∃x . 99). This rewrites to 99 by def-elim, but you could argue that it should

instead be stuck. For example, the term (∃x . x = (1 2); 99) rewrites to (99 99), producing two

results, one for each solution for x. So, if x is entirely unconstrained, maybe we should return an

infinite number of results? It would be easy to change this decision, by adjusting the rules in Fig. 5

for well-formed results.

B.2 Ordering and choices
As we discussed in Section 3.5, rule choose is less than satisfying, for two reasons. First, the 𝐶𝑋

context uses a conservative, syntactic analysis for choice-free expressions; and second, the SX

context is needed to force 𝐶𝑋 to be maximal. A rule like this would be more satisfying:

simpler-choose 𝐶𝑋 [e1 e2] −→ 𝐶𝑋 [e1] 𝐶𝑋 [e2]

The trouble with that is that it may change the order of the results (Section 2.3). Another possibility

would be to accept that results may come out in the “wrong” order, but have some kind of sorting

mechanism to put them back into the “right” order. Something like this:

labeled-choose 𝐶𝑋 [e1 e2] −→ 𝐶𝑋 [L; e1] 𝐶𝑋 [R; e2]

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

Here the two branches are labeled with L and R. We can add new rules to reorder such labelled

expressions, something in the spirit of

sort (R; e1) (L; e2) −→ (L; e2) (R; e1)

We believe this can be made to work, and it would allow more programs to evaluate, but it adds

unwelcome clutter to program terms, and the cure may be worse than the disease.

B.3 Generalizing one and all
InVC, we introduced one and all as the primitive choice-consuming operators, and neither is

more general than the other, as discussed in Section 2.6. We could have introduced a more general

operator split as 𝑒 ::= · · · | split{e, v1, v2} and rules

split-fail split{fail, f , g} −→ f ⟨⟩
split-choice split{e1 e2, f , g} −→ g⟨e1, 𝜆𝑥 . e2⟩ if ∅ ⊢ e1 ⇝ (𝑥 | 𝑐 | v), x fresh

split-value split{e, f , g} −→ g⟨e, 𝜆𝑥 . fail⟩ if ∅ ⊢ e ⇝ (𝑥 | 𝑐 | v), x fresh

The intuition behind split is that it distinguishes a failing computation from one that returns at

least one value. If e fails, it calls f , and if e returns at least one value, passes that to g together with

the remaining computation, safely tucked away behind a lambda.

Indeed, this is more general, as we can implement one and all with split:

one{e} ≡ f (x) B fail; g⟨x, y⟩ B x; split{e, f , g}
all{e} ≡ f (x) B ⟨⟩; g⟨x, y⟩ B cons⟨x, split{y⟨⟩, f , g}⟩; split{e, f , g}

For this paper we stuck to the arguably simpler one and all, to avoid confusing the presentation

with these higher-order encodings, but there are no complications using split instead.

B.4 Laziness
As Section 3.6 discussed, VC is lenient. Unlike Curry however, VC is not lazy. For example,

consider: ∃x . x = loop⟨⟩; 3. In a lazy language this expression would yield 3, but inVC everything

is evaluated, and the infinite computation loop⟨⟩ will prevent the expression from returning a value.

There a good reason for this choice: the call to loop⟨⟩ might fail, and we should not return 3 until

we know there is no failure. With laziness we could easily lose confluence.

Another place that laziness could play a role is this. Remembering the duality between values

and choices, one might also want all to return a lazy stream of results, one by one, rather than

waiting for them all to terminate. For example, one might hope that this program would converge:

∃yz. ⟨y, z⟩ = all{∃onec. onec = (1 onec)}; y

Here we suppose that all returns a lazy stream of values (represented as nested pairs), from which

we may pick the first and discard the rest.

In short, there are good reasons for lenience, but a lazy variant ofVC could be worth exploring.

C A DENOTATIONAL SEMANTICS FORVC
It is highly desirable to have a denotational semantics for VC. A denotational semantics says

directly what an expression means rather than how it behaves, and that meaning can be very

perspicuous. Equipped with a denotational semantics we can, for example, prove that the left hand

side and right hand side of each rewrite rule have the same denotation; that is, the rewrites are

meaning-preserving.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:25

Domains
𝑊 = Z + ⟨𝑊 ⟩ + (𝑊 →𝑊 ∗)
⟨𝑊 ⟩ = a finite tuple of values𝑊

𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊

Semantics of expressions and values
EJeK : 𝐸𝑛𝑣 →𝑊 ∗

EJvK 𝜌 = unit (VJ𝑣K 𝜌)
EJfailK 𝜌 = empty

EJe1 e2K 𝜌 = EJe1K 𝜌 ⋓ EJe2K 𝜌
EJe1 = e2K 𝜌 = EJe1K 𝜌 ⋒ EJe2K 𝜌
EJe1; e2K 𝜌 = EJe1K 𝜌 # EJe2K 𝜌
EJv1 v2K 𝜌 = apply(VJv1K 𝜌, VJv2K 𝜌)
EJ∃x . eK 𝜌 =

⋃
𝑤∈𝑊 EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])

EJone{e}K 𝜌 = one(EJ𝑒K 𝜌)
EJall{e}K 𝜌 = unit (all(EJ𝑒K 𝜌))

VJvK : 𝐸𝑛𝑣 →𝑊

VJxK 𝜌 = 𝜌 (𝑥)
VJkK 𝜌 = 𝑘

VJ𝑜𝑝K 𝜌 = OJ𝑜𝑝K
VJ𝜆x . eK 𝜌 = 𝜆𝑤.EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])

VJ⟨v1, · · · , vn⟩K 𝜌 = ⟨VJ𝑣1K 𝜌, · · · ,VJ𝑣𝑛K 𝜌⟩

OJopK : 𝑊

OJaddK = 𝜆𝑤. if (𝑤 = ⟨k1, k2⟩) then unit (𝑘1 + 𝑘2) elseWRONG

OJgtK = 𝜆𝑤. if (𝑤 = ⟨k1, k2⟩ ∧ 𝑘1 > 𝑘2) then unit (𝑘1) else empty

OJintK = 𝜆𝑤. if (𝑤 = 𝑘) then unit (𝑘) else empty

𝑎𝑝𝑝𝑙𝑦 : (𝑊 ×𝑊) →𝑊 ∗

𝑎𝑝𝑝𝑙𝑦 (𝑘,𝑤) = WRONG 𝑘 ∈ Z
𝑎𝑝𝑝𝑙𝑦 (⟨𝑣0, . . . , 𝑣𝑛⟩, 𝑘) = unit (𝑣𝑘) 0 ⩽ 𝑘 ⩽ 𝑛

= empty otherwise

𝑎𝑝𝑝𝑙𝑦 (𝑓 ,𝑤) = 𝑓 (𝑤) 𝑓 ∈𝑊 →𝑊 ∗

Fig. 7. Expression semantics

But a denotational semantics for a functional logic language is tricky. Typically one writes a

denotation function something like

EJeK : 𝐸𝑛𝑣 →𝑊

where 𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊 . So E takes an expession e and an environment 𝜌 : 𝐸𝑛𝑣 and returns the

value, or denotation, of the expresssion. The environment binds each free variable of e to its value.

But what is the semantics of ∃x . e? We need to extend 𝜌 with a binding for x, but what is x bound

to? In a functional logic language x is given its value by various equalities scattered throughout e.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

Domains
𝑊 ∗ = (WRONG + P(𝑊))⊥
Operations

Empty empty : 𝑊 ∗

empty = { }
Unit unit : 𝑊 →𝑊 ∗

unit (𝑤) = {𝑤}
Union ⋓ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠1 ⋓ 𝑠2 = 𝑠1 ∪ 𝑠2
Intersection ⋒ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠1 ⋒ 𝑠2 = 𝑠1 ∩ 𝑠2
Sequencing # : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠1 # 𝑠2 = 𝑠2 if 𝑠1 is non-empty

= { } otherwise

One one : 𝑊 ∗ →𝑊 ∗ The result is either empty or a singleton

one(𝑠) = ???

All all : 𝑊 ∗ → ⟨𝑊 ⟩
all(𝑠) = ???

All operations over𝑊 ∗ implicitly propagate ⊥ and WRONG. E.g.

𝑠1 ⋓ 𝑠2 = ⊥ if 𝑠1 = ⊥ or 𝑠2 = ⊥
= WRONG if (𝑠1 = WRONG and 𝑠2 ≠ ⊥) or (𝑠2 = WRONG and 𝑠1 ≠ ⊥)
= 𝑠1 ∪ 𝑠2 otherwise

Fig. 8. Set semantics for𝑊 ∗

This section sketches our approach to this challenge. It is not finished work, and does not count

as a contribution of our paper. We offer it because we have found it an illuminating alternative way

to understandVC, one that complements the rewrite rules that are the substance of the paper.

C.1 A first attempt at a denotational semantics
Our denotational semantics forVC is given in Fig. 7.

• We have one semantic function (here E andV) for each syntactic non terminal (here 𝑒 and 𝑣

respectively.)

• Each function has one equation for each form of the construct.

• Both functions take an environment 𝜌 that maps in-scope identifiers to a single value; see

the definition 𝐸𝑛𝑣 = 𝐼𝑑𝑒𝑛𝑡 →𝑊 .

• The value functionV returns a single value𝑊 , while the expression function E returns a

collection of values𝑊 ∗ (Appendix C.1).

The semantics is parameterised over the meaning of a “collection of values 𝑊 ∗”. To a first

approximation, think of𝑊 ∗ a (possibly infinite) set of values𝑊 , with union, intersection etc having

their ordinary meaning.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:27

Our first interpretation, given in Figure 8, is a little more refined:𝑊 ∗ includes ⊥ and WRONG as

well as a set of values. Our second interpretation is given in Figure 9, and discussed in Appendix C.4.

The equations themselves, in Fig. 7 are beautifully simple and compositional, as a denotational

semantics should be.

The equations forV are mostly self-explanatory, but an equation likeVJkK 𝜌 = 𝑘 needs some

explanation: the 𝑘 on the left hand side (e.g. “3”) is a piece of syntax, but the 𝑘 on the right is

the corresponding element of the semantic world of values𝑊 (e.g. 3). As is conventional, albeit

a bit confusing, we use the same 𝑘 for both. Same for 𝑜𝑝 , where the semantic equivalent is the

corresponding mathematical function.

The equations for E are more interesting.

• Values EJvK 𝜌 : compute the single value for v, and return a singleton sequence of results.

The auxiliary function unit is defined at the bottom of Fig. 7.

• In particular, values include lambdas. The semantics says that a lambda evaluates to a singleton

collection, whose only element is a function value. But that function value has type𝑊 →𝑊 ∗;
that is, it is a function that takes a single value and returns a collection of values.

• Function application EJv1 v2K 𝜌 is easy, because V returns a single value: just apply the

meaning of the function to the meaning of the argument. The apply function is defined in

Figure 7.

• Choice EJe1 e2K 𝜌 : take the union (written ⋓) of the values returned by e1 and e2 respectively.
For bags this union operator is just bag union (Figure 8).

• Unification EJe1 e2K 𝜌 : take the intersection of the values returned by e1 and e2 respec-

tively. For bags, this “intersection” operator ⋒ is defined in Fig. 8. In this definition, the

equality is mathematical equality of functions; which we can’t implement for functions; see

Appendix C.1.

• Sequencing EJe1; e2K 𝜌 . Again we use an auxiliary function # to combine the meanings of

e1 and e2. For bags, the function # (Fig. 8 again) uses a bag comprehension. Again it does a

cartesian product, but without the equality constraint of ⋒.
• The semantics of (one{e}) simply applies the semantic function one : 𝑊 ∗ → 𝑊 ∗ to the

collection of values returned by e. If e returns no values, so does (one{e}); but if e returns one
or more values, (one{e}) returns the first. Of course that begs the question of what “the first”

means – for bags it would be non-deterministic. We will fix this problem in Appendix C.4,

but for now we simply ignore it.

• The semantics of (all{e}) is similar, but it always returns a singleton collection (hence the

unit in the semantics of all{·}) whose element is a (possibly-empty) tuple that contains all

the values in the collection returned by e.

The fact that unification “=” maps onto intersection, and choice “ ” onto union, is very satisfying.

The big excitement is the treatment of ∃. We must extend 𝜌 , but what should we bind x to?

(Compare the equation forVJ𝜆x . eK , where we have a value𝑤 to hand.) Our answer is simple: try

all possible values, and union the results:

EJ∃x . eK 𝜌 =
⋃
𝑤∈𝑊

EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤])

That
⋃

𝑤∈𝑊 means: enumerate all values in𝑤 ∈𝑊 , in some arbitrary order, and for each: bind 𝑥 to

𝑤 , find the semantics of 𝑒 for that value of 𝑥 , namely EJ𝑒K (𝜌 [𝑥 ↦→ 𝑤]), and take the union (in the

sense of ⋓) of the results.
Of course we can’t possibly implement it like this, but it makes a great specification. For example

∃x . x = 3 tries all possible values for x, but only one of them succeeds, namely 3, so the semantics

is a singleton sequence [3].

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

C.2 The denotational semantics is un-implementable
This semantics is nice and simple, but we definitely can’t implement it! Consider

∃x . (x2 − x − 6) = 0; x

The semantics will iterate over all possible values for x, returning all those that satisfy the equality;

including 3, for example. But unless our implementation can guarantee to solve quadratic equations,

we can’t expect it to return 3. Instead it’ll get stuck.

Another way in which the implementation might get stuck is through unifying functions:

(𝜆x . x + x) = (𝜆y. y ∗ 2) or even (𝜆x . x + 1) = (𝜆y. y + 1)
But not all unification-over-functions is ruled out. We do expect the implementation to succeed

with

∃f . ((𝜆x . x + 1) = f); f 3
Here the ∃ will iterate over all values of f , and the equality will pick out the (unique) iteration in

which f is bound to the incrementing function.

So our touchstone must be:

• If the implementation returns a value at all, it must be the value given by the semantics.

• Ideally, the verifier will guarantee that the implementation does not get stuck, or go WRONG.

C.3 Getting WRONG right
Getting WRONG right is a bit tricky.

• What is the value of (3 = ⟨⟩)? The intersection semantics would say empty, the empty

collection of results, but we might want to say WRONG.

• Should WRONG be an element of𝑊 or of𝑊 ∗? We probably want (one{3 wrong} to
return a unit (3) rather then WRONG?

• What about fst (⟨3,wrong⟩)? Is that wrong or 3?
There is probably more than one possible choice here.

C.4 An order-sensitive denotational semantics
There is a Big Problem with this approach. Consider ∃x . x = (4 3). The existential enumerates all

possible values of x in some arbitrary order, and takes the union (i.e. concatention) of the results

from each of these bindings. Suppose that ∃ enumerates 3 before 4; then the semantics of this

expression is the sequence [3, 4], and not [4, 3] as it should be. And yet returning a sequence (not a

set nor a bag) is a key design choice in Verse. What can we do?

Figure 9 give a new denotational semantics that does account for order. The key idea (due to

Joachim Breitner) is this: return a sequence of labelled values; and then sort that sequence (in one

and all) into canonical order before exposing it to the programmer.

We do not change the equations for E, V , and O at all; they remain precisely as they are in

Figure 7. However the semantics of a collection of values,𝑊 ∗, does change, and is given in Figure 9:

• A collection of values𝑊 ∗ is now ⊥ or WRONG (as before), or a set of labelled values, each of

type 𝐿𝑊 .

• A labelled value (of type 𝐿𝑊) is just a pair ([𝐿] ×𝑊) of a label and a value.

• A label is a sequence of tags 𝐿, where a tag is just L or R.
• The union (or concatention) operation ⋓, defined in Fig. 9, adds a L tag to the labels of the

values in the left branch of the choice, and a R tag to those coming from the right. So the

labels specify where in the tree the value comes from.

• Sequencing # and ⋒ both concatenate the labels from the values they combine.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

The Verse Calculus: a Core Calculus for Functional Logic Programming 1:29

Domains
𝑊 ∗ = (WRONG + P(𝐿𝑊))⊥
𝑊 ? = {𝑊 } Set with 0 or 1 elements

𝐿𝑊 = [𝐿] ×𝑊 Sequence of 𝐿 and a value

𝐿 = L + R

Operations
Empty empty : 𝑊 ∗

empty = ∅
Singleton unit (.) : 𝑊 →𝑊 ∗

unit (𝑤) = {([],𝑤)}
Union ⋓ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠1 ⋓ 𝑠2 = {(L : 𝑙,𝑤) | (𝑙,𝑤) ∈ 𝑠1} ∪ {(R : 𝑙,𝑤) | (𝑙,𝑤) ∈ 𝑠2}
Intersection ⋒ : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠1 ⋒ 𝑠2 = {(𝑙1 ⊲⊳ 𝑙2,𝑤1) | (𝑙1,𝑤1) ∈ 𝑠1, (𝑙2,𝑤2) ∈ 𝑠2,𝑤1 = 𝑤2}
Sequencing # : 𝑊 ∗ →𝑊 ∗ →𝑊 ∗

𝑠1 # 𝑠2 = {(𝑙1 ⊲⊳ 𝑙2,𝑤2) | (𝑙1,𝑤1) ∈ 𝑠1, (𝑙2,𝑤2) ∈ 𝑠2}
One one : 𝑊 ∗ →𝑊 ∗

one(𝑠) = head (sort (𝑠))
All all : 𝑊 ∗ →𝑊 ∗

all(𝑠) = tuple(sort (𝑠))
Head head : [𝑊] →𝑊 ?

head [] = 𝑒𝑚𝑝𝑡𝑦

head (𝑤 : 𝑠) = unit (𝑤)
To tuple tuple : [𝑊] → ⟨𝑊 ⟩

tuple[𝑤1, · · · ,𝑤𝑛] = ⟨𝑤1, · · · ,𝑤𝑛⟩

Sort sort : 𝐿𝑊 ∗ → ([𝑊] +WRONG)⊥
sort (𝑠) = [] if 𝑠 is empty

= WRONG if𝑤𝑠 has more than one element

= 𝑤𝑠 otherwise

⊲⊳ sort{(𝑙,𝑤) | (L : 𝑙,𝑤) ∈ 𝑠}
⊲⊳ sort{(𝑙,𝑤) | (R : 𝑙,𝑤) ∈ 𝑠}

where𝑤𝑠 = [𝑤 | ([],𝑤) ∈ 𝑠]

Fig. 9. Labelled set semantics for𝑊 ∗

• Finally sort puts everything in the “right” order: first the values with an empty label, then the

values whose label starts with L (notice the recursive sort of the trimmed-down sequence),

and then those that start with R. Notice that sort removes all the labels, leaving just a bare

sequence of values𝑊 ∗.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30Lennart Augustsson, Joachim Breitner, Koen Claessen, Ranjit Jhala, Simon Peyton Jones, Olin Shivers, and Tim Sweeney

• Note that if sort encounters a set with more than one unlabelled element then this considered

WRONG. This makes ambiguous expressions, like one{∃x . x}, WRONG.

Let us look at our troublesome example ∃x . x = (4 3), and assume that ∃ binds x to 3 and then 4.

The meaning of this expression will be

EJ∃x . x = (4 3)K 𝜖 = [(R, 3), (L, 4)]
Now if we take all of that expression we will get a singleton sequence containing ⟨4, 3⟩, because
all does a sort, stripping off all the tags.

EJall{∃x . x = (4 3)}K 𝜖 = [([], ⟨4, 3⟩)]

C.5 Related work
[Christiansen et al. 2010] gives another approach to a denotational semantics for a functional logic

language. We are keen to learn of others.

Proc. ACM Program. Lang., Vol. 1, No. PLDI, Article 1. Publication date: January 2023.

	Abstract
	1 Introduction
	2 The Verse calculus, informally
	2.1 Logical variables and unification
	2.2 Choice
	2.3 Mixing choice and unification
	2.4 Pattern matching and narrowing
	2.5 Conditionals and one
	2.6 Tuples and all
	2.7 for loops
	2.8 Programming in Verse

	3 Rewrite rules
	3.1 Functions and function application
	3.2 Unification
	3.3 Local substitution
	3.4 Normalization rules
	3.5 Rules for choice
	3.6 VC is lenient
	3.7 Evaluation strategy

	4 Metatheory
	4.1 Confluence
	4.2 Design for confluence

	5 VC in context: reflections and related work
	5.1 Choice and non-determinism
	5.2 One and all
	5.3 The semantics of logical variables
	5.4 Flat vs. higher order
	5.5 Intermediate language

	6 Looking back, looking forward
	Acknowledgments
	References
	A Example
	B Variations and choices
	B.1 Dead existentials
	B.2 Ordering and choices
	B.3 Generalizing one and all
	B.4 Laziness

	C A denotational semantics for VC
	C.1 A first attempt at a denotational semantics
	C.2 The denotational semantics is un-implementable
	C.3 Getting WRONG right
	C.4 An order-sensitive denotational semantics
	C.5 Related work

