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ABSTRACT
The sampling theorem is a notion linking continuous and
discrete signals. Due to that, it is a very important con-
cept in both engineering practice and mathematical theory,
closely related with many other basic results. This paper
is a brief review of historic development of the sampling
theorem for functions on different groups.

1. INTRODUCTION

The sampling theorem is a very fundamental concept in
signal processing with many applications and a variety
of different extensions and generalizations. We point just
few of firstly published related publications, [2], [15], [20],
[24], [31], [37], [39], [41], [42], [51], [55], [65], [67],
[72], [73], [74].

It is also an important concept in mathematics and,
although basically belonging to theory of approximation
and theory of interpolation, it can be related with some
basic notions in few different areas of mathematics, see
for instance [8].

5can be derived from it [8].
Due to that, and as it is often the case with basic con-

cepts, the sampling theorem has been contributed to few
authors, and its historical roots have been often discussed,
in few historic overviews as, for instance, [14], [27], [32],
[43], [60]. Most, if not all, of these overviews are focussed
and restricted to discussions of the sampling theorem and
generalizations for functions on the real lineR. In this
paper, we discuss the history of sampling theorem in the
framework of abstract harmonic analysis by viewing the
real lineR as a particular locally compact Abelian group.

2. SAMPLING THEOREM FOR BAND-LIMITED
FUNCTIONS

2.1. Work by E.T. Whittaker

The Japanese mathematician K. Ogura formulated in [49]
the sampling theorem in the from similar as we know it
now, and suggested a way to derive a rigorous proof of it
by using the results from calculus of residues presented
in the book [40] by Finnish mathematician E. Lindelof, a
Professor at the University of Helsinki, from after gradu-
ation in 1895 to the retirement in 1938. As it is explained
in [14], Ogura contributed the sampling theorem to E.T.
Whittaker due to his work in 1915 [68]. In [14], it is re-
marked that Ogura was the first who stated the sampling

theorem and traced the way of a rigorous proof for it, and
that erroneously referenced to Whittaker as the initiator of
the theorem, since Whittaker did not consider the related
applications. It is interesting to note, that the authors of
[14] used the term Whittaker-Shannon theorem when dis-
cussing mathematical applications of it.

In [68], E.T. Whittaker proposed the function

C(x) =
∞∑
−∞

f(a + kw)
sin π

w (x− a− kw)
π
w (x− a− kw)

, (1)

as a solution of the problem of determining a function
passing through the points(a + kw, f(a + kw)), where
k ∈ Z, andw is a complex number. Whittaker searched
for the smoothest possible interpolation without singulari-
ties and rapid oscillations for given tabular values off(x),
and determined the above interpolation function from the
requirement that its Fourier transform does not contain
any terms with periods less than2w. Since this interpo-
lation function is a unique function with this property, it
was called by Whittaker the cardinal function and the cor-
responding series the cardinal series. In his terminology,
the term tabular interval corresponds to the sampling in-
terval, and cotabular set is the set of all possible functions
with the same tabular or sampling values.

It is shown, for instance in [14], see also [28], that
the Whittaker interpolation formula can be derived as the
limiting case of the Lagrange interpolation formula when
the number of nodes, i.e., tabular values, tends to infin-
ity. In this setting, notice that the Lagrange interpolation
theorem can be viewed as a sampling theorem for band-
limited periodic functions [43], since determines a linear
combination of sine functions such that it coincides with
the approximated function atn equidistant points.

Further important contributions to the theory of cardi-
nal series are due to J.M. Whittaker [69], [70], and in this
latter paper there is a result that is characterized in [14]
as a weak version of the sampling theorem. This result
has not been included in the book [71], which give rise for
a conjecture in [14] that J.M. Whittaker himself probably
was not thinking about the sampling theorem.

2.2. Kotelnikov Formulation of Sampling Theorem

It is commonly accepted that first precise formulation of
the sampling theorem for applications in communication
engineering is due to Vladimir Aleksandrovich Kotelnikov



[36]. In his notation and formulation, the sampling theo-
rem is stated as follows.

Theorem 1 [36] Any functionF (t) which consists of fre-
quencies from0 to f1 periods per second may be repre-
sented by the following series

F (t) =
∞∑
−∞

Dk

sin w1

(
t− k

2f1

)

t− k
2f1

, (2)

wherek-integer, w1 = 2πf1, Dk - constant which de-
pends onF (t). Conversely, any functionF (t) which is
represented by the series in (2) consists of frequencies
from0 to f1 periods per second.

The paper by Kotelnikov contains seven theorems dis-
cussing both lowpass and bandpass signals, and the sec-
ond theorem is stated as follows.

Theorem 2 [36] Any functionF (t), which consists of fre-
quencies form0 to f1, can be transmitted continuously
with an arbitrary accuracy, by means of numbers sent at
intervals of 1

2f1
seconds. Indeed, by measuring of the

valueF (t) at t = n
2f1

(n integer), we get

F

(
n

2f1

)
= Dnw1.

Since all terms of the series (2) for this value oft tend to
zero, except the term fork = n, that, as it can be easily
established by calculation of the indefinite point, equals
Dnw1. In this way, after each1

2f1
we can determine the

nextDk. When theseDk transmitted in a row at each2f1

sec., we can from (2) reconstructF (t) termwise to any
degree of accuracy.

2.3. Shannon Formulation of Sampling Theorem

Claude Elwood Shannon published his version of the sam-
pling theorem in [53] in 1948, but it is recorded that he
had it written already in 1940, and the long publication
time was a consequence of the situation after the World
War. The proof of the theorem is given in [54]. In the for-
mulation and notation by Shannon, the sampling theorem
presented as the Theorem13 in [53], is the following.

Theorem 3 [53] Letf(t) contain no frequencies overW .
Then

f(t) =
∞∑
−∞

Xn
sin π(2Wt− n)

π(2Wt− n)
, (3)

whereXn = f
(

n
2W

)
.

It is clear that after some linear transformation and
proper settings of parameters, the same as in the case of
formulation by Kotelnikov,f(t) = C(t) in the notation by
E.T. Whittaker. Shannon was aware of this mathematical
work and wrote in [54] the following

Theorem 3 has been given previously in other forms by
mathematicians (and put the reference to E.T. Whittaker

[68]) but in spite of its evident importance seems not to
have appeared in the literature of communication theory.

Notice that the sampling theorem is somewhere called
also as the Niqyist-Shannon theorem by referring to the
work by Henry Nyquist [47], [48], although the problem
of distortionless transmission of telegraphic, i.e., digital,
signals and the error-free interpolation of sampling pulses
of an analog signals cannot be viewed as the same prob-
lem [43]. It is remarked in [43] thatfor this reasons these
works cannot be regarded as sources for the sampling the-
orem, especially during the 1920s and 1930s. The sim-
plest way to clarify the relationships to the work by Nyquist
is to recall what Shannon wrote about this in [54]

Niquist [47], [3], however, and more recently Gabor
[23], have pointed out that approximately2TW numbers
are sufficient, basing their arguments on a Fourier series
expansion of the function over thre time intervalT . This
givenTW and(TW +1) cosine terms up to frequencyW .
The slight discrepancy is due to the fact that the functions
obtained in this way will not be strictly limited to the band
W but, because of the sudden starting and stopping of
the sine and cosine components, contain some frequency
content outside of the band. Nyquist pointed out the fun-
damental importance of the time interval1/2W seconds
in connection with telegraphy, and we will call this the
Nyquist interval corresponding to the bandW .

2.4. Further Rediscovering of the Sampling Theorem

Notice that the sampling theorem has been rediscovered
by H. Raabe in his PhD Thesis including discussions of
bandpass signals, and considering also practical applica-
tions of this theorem. The results were published in [52]
in 1939. This result was referenced by W.R. Bennett in
[3], and as we see above, this reference is commented by
Shannon who wrote in [54]

A result similar to Theorem 3 is established (in [3]),
but on a steady-state basis.

The years after, the Japanese scientists Isao Someya
discussed the sampling theorem in his book [56] published
in 1949. Therefore, in the literature, the term Someya
theorem can be found, as well as Someya-Shannon the-
orem [62], Whittaker-Shannon theorem [5], Whittaker-
Kotelnikov-Shannon theorem [13], Whittaker-Koteljnikov-
Raabe-Shannon Someya theorem [7], etc.

3. SAMPLING THEOREM FOR TIME-LIMITED
FUNCTIONS

Another problem in sampling theory is related to relax-
ation of the requirement for band-limitedness, which is
also related to the reconstruction of duration-limited sig-
nals, also called time-limited signals, i.e., signals defined
on the real lineR but vanishing outside and interval[a, b].
Such signals cannot be band-limited, and their study be-
longs to the theory of reconstruction of non-necessarily
band-limited signals in terms of equally spaced samples
originated by Charles-Jean Baron de la Vallée Poussin in
1908. In [18], he has shown the interpolation formula for



such functions as

Fm(x) =
∑

αk∈[a,b)

f(αk)
sinm(x− αk)

m(x− αk)
,

whereαk = kπ
m , k ∈ Z = {0,±1,±2, . . .}, m = n or

m = n + 1/2 with n ∈ N = {1, 2, 3, . . .}. The function
Fm interpolatef at the nodesαn, thus,Fm(αn) = f(αn),
n ∈ Z. De la Valĺee Poussin viewed his considerations
as a generalization of the Lagrange interpolation formula
for infinite number of nodes and, as pointed in [14] con-
sidered the counterpart of Riemann localization principle
for Fourier integrals in the case ofFm. In [14], it has
been shown, however, that under the additional condition
f(b) = 0 besidesf(x) = 0, for x 6= [a, b], the interpo-
lation functionFm can be viewed as a discrete version of
the Dirichlet convolution integral, a particular form of the
Fourier inversion integral, and the behaviour ofFm for
m →∞ is similar to that of the Fourier inversion integral
for f .

A continuation of the work by de la Vallée Poussin can
be found in [63], where the author Maria Theis has shown
that for the convergence ofFm(x) to f(x) besides conti-
nuity of f on [a, b], the condition thatf(x) is a function
of the bounded variation has to be provides. These re-
sults are derived as a modification of more general results
in [25] about the convergence of interpolation processes,
where the reference to the work by de la Vallée Poussin
has been given. For the convergence ofFm(x) for any
continuous functionf(x), Theis used the kernel function
φ(x) = (sin πx/πx)2 which can be viewed as the partic-
ular Fej́er kernel.

By exploiting the condition of bounded variation for
f , J.M. Whittaker studied the case whenf does non neces-
sarily vanish outside a finite interval[a, b], and has shown
the following.

Theorem 4 [69] Consider a functionf that is Riemann
integrable over any finite interval ofR and f(x)/x is
of bounded variation in(N,∞) and (−∞, N) for some
N > 0. If f is continuous atx0 ∈ R and of bounded
variation in a neighborhood ofx0, then

f(x0) = lim
m→∞

∞∑

k=−∞
f(αk)

sin m(x0 − αk)
m(x0 − αk)

.

Further contributions to the sampling theory for non-
band-limited functions have been provided by P. Weiss
[66] and J.L. Brown [4] in 1963 and 1967, respectively.
This research has been continued and importantly con-
tributed by P.L. Butzer and his associates at Aachen Uni-
versity of Technology, Aachen, Germany, see for instance
[9], [12], [57], [61], [6], and [11] and references therein.

4. SAMPLING THEOREM ON LOCALLY
COMPACT ABELIAN GROUPS

The sampling theorem has been defined for function on
the real lineR, and latter generalized to various classes of

functions of real variables functions. Very good reviews
of these results can be found in [27], [32], [60].

The real line can be viewed as a particular locally com-
pact Abelian group. A generalization with respect to the
domain groups has been provided by Kluvánek [35], who
replaced the real lineR by an arbitrary locally compact
Abelian group and integer multiples inDk orXn in Kotel-
nikov and Shannon notation, respectively, are denoted by
Kluvánek ash, by a discrete subgroup.

We denote byG and arbitrary additive locally com-
pact Abelian group, and byΓ its dual group. Consider
a discrete subgroupH of G with the discrete annihilator
Λ = {w|χ(y, w) = 1, ∀y ∈ H}, and the Baier measur-
able subsetΩ of Γ which contains a single element from
each coset ofΛ, i.e.,Ω ∩ (w + Λ) contains a single point
for eachw ∈ Γ. With this notation, the sampling theorem
is formulated by Kluv́anek as follows [35].

Theorem 5 If f ∈ L2(G) and its Fourier transformSf (w) =
0 for almost allw ∈ Ω, thenf is almost everywhere equal
to a continuous function, and iff is a continuous function,

f(x) =
∑

y∈H

f(y)φ(x− y), (4)

where this series converge both uniformly onG as well as
in the norm inL2(G). Further,

‖f‖2 =
∑

y∈H

|f(y)|2.

The functionχ in (4) is defined as

φ(x) =
∫

Ω

χ(x,w)dmΓ(w), (5)

wheremΓ is the Haar measure onΓ and χ(x,w) are
group characters ofG.

As pointed out by Kluv́anek [35],
If G = Γ = (−∞,∞), Ω = (−α, α) and, conse-

quently,H = {. . . ,−2h,−h, 0, h, 2h, . . .} with hα = π
for the function from (5) we getφ(x) = (sin αx)/(αx).
Hence, iff ∈ L2(−∞,∞) and f̂ = 0 for |γ| > α, we
obtain (3).

Kluvánek concluded his paper by the statement
If we choose forG the multiplicative group of complex

numbersz with |z| = 1 for H the group of all roots of the
equationzn − 1 = 0, we get a formula due to Cauchy ob-
tained in [16] by the means of the Lagrange interpolation
formula.

5. SAMPLING THEOREM ON DYADIC GROUP

Sequency theory [26], that is based on Walsh functions,
which are compatible with operation of digital comput-
ers, has found some interesting applications in signal pro-
cessing [1], [30]. Therefore, it was interesting to extend
the sampling theorem to Walsh-Fourier analysis [9], [10].
This theorem is often called the dyadic sampling theorem
[19]. It sates that any sequency-limited function (defined



below) can be reconstructed from its values at equidis-
tant sampling pints. Extensions to random signals with
limited sequency and sequency-band-limited nonstation-
ary random processes are given by Maqusi in [44], [45],
see also [46], and further elaborated in [19], and several
other publications by the research group of Prof. Butzer
in Aachen, Germany.

For the illustration, we will show that the sampling
theorem in Walsh-Fourier analysis [9] can be derived as
a particular case of the Kluvánek sampling theorem. No-
tice that the sampling theorem in Walsh-Fourier analysis
has been for the first time formulated by Pichler in a com-
pletely different way [50].

To state this theorem, recall the following basic no-
tions and definitions from Walsh-Fourier analysis.

Any x ∈ R+ = [0,∞) has the dyadic expansion

x =
∞∑

i=−N(x)

xi2−i,

with xi ∈ {0, 1}, andN(x) ∈ Z = {0,±1,±2, . . .} is the
largest integeri such thatx−i 6= 0. This representation is
unique ifx is not dyadically rational, i.e.,x /∈ D+, where
D+ = {x ∈ R+|x = p/2p, p ∈ P = {0, 1, 2, . . .}, q ∈
Z}. If x is a dyadic rational, in which case there can be an
infinite and a finite expansion forx, the finite expansion is
chosen.

Walsh-Fourier analysis for functions onR+ is defined
in terms of the generalized Walsh functionsψ(y, x), x, y ∈
R+ defined by Fine [21]. The Walsh-Dirichlet kernel, also
called the Fine integral, is defined as [21]

J(x, r) =
∫ r

0

ψx(s)ds.

In particular, whenr = 2n, the value of the Walsh-
Diriclet kernel is

J(x, 2n) =
{

2n, 0 ≤ x < 2−n,
0, otherwise,

form where

J(1, 2nx⊕ s) =
{

1, x ∈ [2−ns, 2−n(s + 1),
0, otherwise.

Theorem 6 [9] If a given functionf and its Walsh-Fourier
spectrumf̂ belong toL1(g), andf is continuous onR+ \
D+, and continuous from the right onD+, and such that
f̂(y) = 0 for y ≥ 2n, n ∈ Z, Z-the set of integers, then

f(x) =
∞∑

s=0

f(
s

2n
)J(1, 2nx⊕ s), x ∈ R+. (6)

Notice that the parametery in generalized Walsh func-
tions is often calledsequencyby the analogy to the notion
of frequencyin the classical Fourier analysis. In this set-
ting, functions satisfying the conditions of Theorem 6 are
calledsequency limited.

Proof. In the case of Walsh-Fourier analysis, the domain
group is the additive groupG′ of thedyadic field, whose
dual group is the set of generalized Walsh functions [21].
A discrete subgroupH can be defined asH = s/2n, s =
0, 1, . . ., wheren is a fixed integer, and fors/2n the finite
dyadic expansion is taken.

The annihilatorΛ for H is isomorphic to the sequences
of the formΛ = . . . , λ−k, 0, . . . , 0, . . ., whereλi ∈ {0, 1}.
Therefore, it follows that for everyx ∈ H, it is

∑
λ1−nxn =

0 andΨ(λ, x) = 1, whereψ(λ, x) is the generalized Walsh
function of the indexλ.

We select the setΩ = [0, 2n), and define the recon-
struction function or the sampling function as

φ(x) = 2−n

∫ 2n

0

ψ(y, x)dy =
{

1, if x ∈ (0, 2−n),
0, otherwise.

Since the conditions for the application of the theorem
are satisfied, from the Kluv́anek theorem,

f(x) =
∫ 2n

0

f̂(y)φ(y, x)dy.

Further, for everyx ∈ [2−nk, 2−n(k + 1)),

f(x) = 2n

∫ 2−n(k+1)

2−nk

f(u)du, k ∈ P,

whereP is the set of positive integers. Thus,f is a con-
stant on all the intervals[2−nk, 2−n(k + 1)), k ∈ P , and
has the value equal tof in the left limit point. Therefore,

f(x) =
∑

k=0

f(
k

2n
ρ[2−nk, 2−n(k + 1))(x), x ∈ R+,

whereρ(a, b)(x) is thecharacteristic functionof the in-
terval[a, b) defined as

ρ[a, b)(x) =
{

1, if x ∈ [a, b),
0, if x /∈ [a, b).

Since fork ∈ P ,

ρ[2−nk, 2−n(k + 1))(x) =
{

1, x ∈ In,k,
0, otherwise,

= J(1, 2nx⊕ k),

whereIn,k = [2−nk, 2−n(k + 1)), the proof is complete.
From (6), if the functionf is approximated by firstN

terms, the corresponding truncation error is

eN (x) = f(x)−
N−1∑
s=0

f(
s

2m
)J(1, 2nx⊕ s)

=
∞∑

s=N

f(
s

2m
)J(1, 2nx⊕ s).

From there the bound of the truncation error is

|eN (x)| ≤
∞∑

s=N

|f(
s

2n
)|J(1, 2nx⊕ s)| ≤

∑

s=N

|f(
s

2n
)|,



since|J(1, 2nx⊕ s)| ≤ 1 for everys.
The bound thus determined provides impact into be-

haviour of the error depending onN or x. Two cases
should be distinguished, as it has been done in [44] and
[46], where the following conclusions have been derived.

If the sampling moment isx = xs = s
2n , then after

some calculations,

eN (x) =
{

f( s
2n ), if s ≤ N,

0, if s < N,

which is a result comparable to the corresponding result
for the cardinal series for the sampling theorem in classi-
cal Fourier analysis.

If x 6= xs = s
2n m then [46]

|eN (x)| ≤ 2n/2E1/2,

whereE is theenergyof the signal that is in the case of
sequnecy limited signals determined as

E =
∫ ∞

0

f2(x)dx =
∫ 2n

0

(f̂(y))2dy =
1
2n

∞∑
s=0

f2(
s

2n
).

It can be shown by using properties of the Fine inte-
gral that forx < N/2n, it follows eN (x) = 0, which
shows advantages of the application of the Walsh-Fourier
sampling theorem for sequency limited signals compared
to the classical representation by cardinal series. The sam-
pling theorem in Walsh-Fourier analysis has been discussed
also in [19], [33], [34], and elsewhere else.

Notice that sequency limitedness of signals is a rather
strongly restrictive condition and form the point of view
of some authors [9], this theorem is of a limited practi-
cal applicability. For that reason the sampling theorem in
Walsh-Fourier analysis has been defined also for limited
duration signals. Recall that unlike classical Fourier anal-
ysis, the finite duration signals may be at the same time
sequency limited. An example of such signals is the sig-
nal described by the characteristic functionρ[0, 1)(x) for
which ρ̂(y) = ρ[0, 1)(y), y ∈ R+. Another example of
such signals can be found in [33].

In Walsh-Fourier analysis,the sampling theorem for fi-
nite duration signals has been defined as follows [9].

Theorem 7 If f is continuous onR+ \D+ and right con-
tinuous onD+, and such thatf, f̂ ∈ L1(R+), andf(x) =
0 for x /∈ [0, Te), whereTe ∈ R+, then,

lim
n→∞

K∑
s=0

f(
s

2n
)J(1, 2nx⊕ s) = f(x), x ∈ R+,

whereK = K(n, Te) ∈ P is the smallest integer such
that2−n(K + 1) ≥ Te.

The proof of this theorem can be derived in the same
way as for the corresponding theorem in classical Fourier
analysis, and can be found in [9].

6. SAMPLING THEOREM ON FINITE ABELIAN
GROUPS

In a simplified description, the sampling theorem states
that if a functionf satisfies certain conditions in the spec-
tral domain, then it is completely specified by its values
at a particular suitably determined area of the domain of
definition of f . From the application point of view, that
reduction of the domain of definition brings many advan-
tages. Therefore, it is interesting to defined the sampling
theorem for discrete functions, i.e., functions defined in
countably many points or even a finite number of points.

The sampling theorem in finite Walsh-Fourier analy-
sis, i.e., for functions defined on the setBn of non-negative
integers smaller than someN = 2n, n is a natural num-
ber, has been defined in [38] and has been proven in the
same way as the sampling theorem is proven in classical
Fourier analysis. The proof given in [58] directly follows
from properties of the discrete Walsh functions and basic
results from group theory. The same approach was used
to prove the sampling theorem on other finite Abelian and
non-Abelian groups [59].

Recall that the setBn with the addition moduloN
forms a group isomorphic to the finite dyadic groupCn

2

consisting of binaryn-tuples with the componentwise ad-
dition modulo2. Therefore, functions defined inN = 2n

points, can be viewed as functions on finite dyadic group,
whose group characters are the discrete Walsh functions
[1].

Definition 1 [38] Consider a functionf(x) defined on
Bn and a numberM = 2m, wherem < n. The func-
tion f(x) is called M -sequency band limited (MBL), if
the Walsh transform̂f(w) = 0, for w ≥ M .

Theorem 8 [38] An MBL function f(x) can be com-
pletely reconstructed from itsM values as

f(x) = M−1
M−1∑
p=0

f(p)dM (x⊕ p),

where⊕ is componentwise addition modulo2, anddM (x)
is the Walsh-Fourier kernel defined as

dM (x) =
M−1∑
w=0

wal(w, x) = M

R−1∑
r=0

δ(x⊕ r), R = NM−1,

andδ(x) = δx,0 is the discrete delta function.

As noticed above, in [38], this theorem is proven in a
way completely analogous to than used to prove the sam-
pling theorem in classical Fourier analysis and in [58] as
a particular case of sampling theorem on locally compact
Abelian groups.

The sampling theorem for functions on finite dyadic
groups has been generalized to functions on an arbitrary
Abelian group which can be represented as a direct prod-



uct ofm cyclic groupsGi of ordersgi, i = 0, 1, . . . , m−1,

G = ×m−1
i=0 Gi, (7)

g =
m−1∏

i=0

gi, g0 ≤ g1 ≤ · · · ≤ gm−1.

If p = M =
∏k

i=0 gm−i−1, k ∈ {0, 1, . . . , m − 1},
then the Fourier kernel can be defined as

DM (x) =
M−1∑
w=0

χ∗(w, x) = M

R−1∑

k=0

δ(kM ◦ x−1),

where◦ is the group operation onG, R = g/M , χ(w, x)
are the group characters ofG, χ∗ is the complex conjugate
of χ, andδ(x) = δx,0 is the discrete delta function onG.

As in the case of the sampling theorem on dyadic groups,
we impose the requirements onf that should be satisfied
in the spectral domain.

Definition 2 A functionf on a finite Abelian groupG of
order g, is calledM -band limited (MBL) if its Fourier
transformf̂(w) = 0 for w ≥ M .

Theorem 9 [59] AnMBL functionf(x) on a finite Abelian
groupG can be reconstructed from itsM values as

f(x) = M−1
M−1∑
p=0

f(p)DM (p ◦ x−1)

= m−1
M−1∑
p=0

f(p)

(
M

R−1∑

k=0

δ(kM ◦ (p ◦ x−1)−1)

)
,

whereR = g/M .

Extensions of the sampling theorem to bandpass func-
tions on finite dyadic groups and finite Abelian groups are
also given in [38] and [59], respectively.

Since every finite Abelian group is a locally compact
Abeliean group, these theorems can be related to the Kluvánek
sampling theorem in abstract harmonic analysis. Formu-
lation of the sampling theorems on finite Abelian groups is
much simpler, and therefore, their practical applicability.
For instance, these theorems can be used to detect partic-
ular properties of multiple-valued functionsf : Ln → L,
L = 0, 1, . . . , p − 1, when these functions are viewed
as a subset of complex-valued functions on finite Abelian
groups. It is assumed that logic values0, 1, . . . p − 1 are
interpreted as the corresponding integers.

The sampling theorem and the requirement to have a
band-limited spectrum can be used to formulate the fol-
lowing statement.

Statement 1 Consider the subset of spectral coefficients
A = {f̂(w)|wi = 0} of a multiple-valued logic function
f(x1, . . . , xi−1, xi, x+1, . . . xn). Thenf is independent
on the variablexi iff all the non-zero Fourier coefficients
are inA.

Therefore, the detection of essential variables in multiple-
valued functions can be expressed as the requirement that
the functions belong toMPL or MBL classes for some
M . The same statement has be derived in a different way
in [64], and represents a generalization of the correspond-
ing statement for Boolean functions [29].

7. SAMPLING THEOREM ON FINITE
NON-ABELIAN GROUPS

The results in the previous section have been generalized
to function on finite non-Abelian groups in [59].

We assume that in the groupG representable in the
form (7) some of subgroupsGi can be non-Abelian, thus,
G is also a non-Abelian group.

The group representationsRw of G can be derived as
the Kronecker product of the group representationsRwi

of Gi, i = 0, . . . , m − 1. Therefore, the set of group rep-
resentations, written in a matrix form, has a block struc-
ture analogous to the structure of matrices of group char-
acters for decomposable Abelian groups. In other word,
if Mm−1 is the number of unitary irreducible representa-
tions of the subgroupGm−1 of ordergm−1, then the first
Mm−1 representations of the groupG are periodic with
the periodgm−1, provided that subgroupsGi are ordered
such thatg0 ≤ g1 ≤ · · · ≤ gm−1.

If Mi is the number of irreducible unitary representa-
tions ofGi, for a fixedk ∈ {0, 1, . . . ,m− 1}, we define a
numberM =

∏k
i=0 Mm−i−1, M < K, wereK is the

number of unitary irreducible representations ofG.
As in the case of sampling theorems on other groups,

some requirements are imposed onf in the transform do-
main in order to be able to apply the sampling theorem.

Definition 3 A functionf(x) on a finite non-Abelian group
representable as in (7), is anM -band limited (MBL) func-
tion if its Fourier transform onG, Sf (w) = 0 for w ≥ M .

Theorem 10 [59] AnMBL function on a finite non-Abelian
groupG representable as in (7) can be reconstructed from
its Q values as

f(x) =
1
Q

Q−1∑
u=0

f(u)DM (x ◦ u−1),

whereQ =
∏k

i== gm−i−1, wherek is a fixed value deter-
mined in definition ofM , and

dM (x) =
M−1∑
w=0

rw(TrRw(x)),

whereTrRw is the trace ofRw.

The sampling theorem on finite non-Abelian groups
can be applied in study of properties of functions on these
groups in the same way as in the case of Abelian groups.



8. CLOSING REMARKS

Sampling theorem has an immense in signal processing
and is in very foundations of digital signal processing and
its applications in practice. In this settings, several results
can be consider as predecessors of the sampling theorem
from the practical engineering point of view. A condensed
overview of such results is given in [43].

As the same time, the sampling theorem, is considered
as a very fundamental theoretical result having an unique
role in various branches of mathematics, providing a back-
ground for relating other fundamental results and to make
generalizations [8].

In [8], it is shown that the sampling theorem is es-
sentially equivalent to the Poisson summation formula of
Fourier analysis, a particular form of Cauchy integral for-
mula in complex function theory and the Euler-Maclaurin
summation formula of numerical analysis.

The sampling theorem can be a starting point to de-
rive these formulas and vice versa, as shown in [8]. It can
be also used to generalize the Vandermonde convolution
formula for binomial coefficients to fractional and infinite
series form, which put links to the Gauss summation theo-
rem in the theory of hypergeometric series. The sampling
theorem can be also used to introduce the Stirling func-
tions, as an extension of the Stirling numbers, which links
to the Riemann-Zeta functionξ. More about these gener-
alizations can be found in [8].
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