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Summary: There will be six (sub)challenges or competitions in total (two in each of three categories).
For (nearly) balanced graph partitioning, there will be one category. It combines two measures (edge
cut and communication volume) with equal importance. For graph clustering it was taken into con-
sideration that solver results do not always match the expectation of the underlying applications, for
instance depending on the optimization criterion. Thus, there will be two graph clustering categories.
One is solely based on the established measure modularity, the other one combines several other mea-
sures, see Section 2.2.2. Within each category there will be two challenges, one purely based on quality
and one that takes both the quality of a solution and the amount of work to compute it into account.

Description

In the following, let G = (V, E,w) be the input graph with the edge weight function w.

1 Graph Partitioning (GP)

There will be two challenges on graph partitioning, one Quality Challenge and one Pareto Challenge.
The rationale of the Pareto Challenge is to take the work into account an algorithm requires to compute
a solution. Hence, the two dimensions considered here are quality and work. Work will be normalized
with respect to the machine performance, measured by a graph-based benchmark, see Section 3.

We describe the optimization objectives and the scoring rules in detail below.

1.1 Objective Functions
1.1.1 Minimizing the Balanced Edge Cut (EC)

e Output: Compute a partition IT of V into k parts of size at most (1 + e)f%l, where £ can
be any power of 2 between 2 and 1024 and € = 0.03 (we might include more values for ¢ in the
future, for example € = 0 and € = 0.1; if so, this will be announced before June 15, 2011). Note
that the final competition does not necessarily include all powers of 2 in the range given above.

e Objective/evaluation: Smallest total weight of the set of cut edges C' = {{u,v} € E|II(u) #
II(v)}. If no weights are used, then total size of C.



1.1.2 Minimizing the Maximum Communication Volume (CV)

e Output: As in Section 1.1.1 (edge cut minimization).

e Objective/evaluation: Let w denote a possible vertex weight function. If no vertex weights
are used, w(v) = 1 for all v € V' by definition. The communication volume for part 7, 1 < p < k,

is defined as comm(m,) == Zveﬂp w(v) f(v), where f(v) denotes the number of different parts in

which v has a neighbor vertex, excluding m,. The partition II = U];:1 mp is evaluated based on

max, comm(m,).!

1.2 Quality Challenge Scoring

We anticipate the following scoring rules, which might have to be adapted slightly to the number of
solver submissions.

For each challenge instance result (EC and CV results are counted as one instance each), points
are given to the best ranks based on the Formula 1 scoring rules used between 1991 and 2002.2 This
means that the first six ranks receive a descending number of points (10, 6, 4, 3, 2, 1). The solver with
the highest total number of points wins the Quality Challenge.

1.3 Pareto Challenge Scoring

The Formula 1 scoring scheme is also used in the Pareto Challenge. However, it might become necessary
to adapt this scheme based on the number of participating solvers. In that process, the Pareto scoring
scheme might become (slightly) different from the scoring scheme in the Quality Challenge.

Recall that the two dimensions considered here are quality and work. For each challenge instance
result, each algorithm gets a Pareto dominance count, which expresses by how many other algorithms
it has been Pareto-dominated; then algorithms are ranked by this number (lower count = better) and
receive points according to the F1 scoring scheme (until further notice).

2 Graph Clustering (GC)

There will be two categories (modularity optimization, mix challenge) with two challenges each (one
Quality Challenge and one Pareto Challenge) on graph clustering to account for the fact that the
quality of a clustering can differ significantly depending on the underlying application. Again, the
rationale of the Pareto Challenge is to take the work into account an algorithm requires to compute a
solution and the two dimensions considered in the Pareto Challenges are quality and work. Work will
be normalized with respect to the machine performance, measured by a graph-based benchmark.

We describe the optimization objectives and the scoring rules in detail below. Note that the quality
measure definitions can be found in Appendix A.

2.1 Objective Functions
2.1.1 GC Objective 1: Modularity

e Output: Compute a partition C of V.

e Objective/evaluation: Highest modularity of C. If edge weights are used, then they are also
used to compute the modularity value; otherwise all edge weights are defined to be 1.

LAlso see the Metis user guide, http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf, page 19, where
the total communication volume is mentioned.

2See https://secure.wikimedia.org/wikipedia/en/wiki/List_of_Formula_One_World_Championship_points_
scoring_systems.



2.1.2 GC Objective 2: Mix
e Output: Compute a partition C of V such that cov(C) > 0.5 and cov(C') > 0.5.

e Objectives: Optimize performance, average isolated inter-cluster conductance, average isolated
inter-cluster expansion, and minimum intra-cluster density at the same time. If edge weights
are used, then they are also used to compute the function values; otherwise all edge weights are
defined to be 1.

2.2 Quality Challenge Scoring
2.2.1 Modularity Quality Challenge

The scoring scheme used for this Challenge is analogous to the one described in Section 1.2.

2.2.2 Mix Quality Challenge

A solution for a particular challenge instance is ranked as follows: Let r; be the rank of C among all
competing solutions with respect to performance (e.g. if r;1 = 2, then there is only one competing
solution with a performance higher than the performance of C). Similarly, let 75 be the rank of C with
respect to —aixc, r3 the rank with respect to mid and 74 the rank with respect to —aixe. The mixed
final rank r of the solution for the mix challenge is computed as r = i -(ry +ro+1r3+r4). Based on
the mixed final rank r, Formula 1 points are assigned analogous to the description in Section 1.2.

2.3 Pareto Challenge Scoring

For each of the two clustering challenges (modularity and mix), we have one Pareto challenge each. Note
that the Mix Pareto Challenge uses the combined rank r described in Section 2.2.2 as pseudo-quality
function. The scoring of the Pareto tuples will be analogous to the scheme described in Section 1.3.

3 Speed Considerations

Since we do not anticipate that all submissions will run on the same (or at least similar) hardware,
there should also be a measure to account for different execution speeds. We will provide a graph-based
benchmark that is to be executed to measure the system performance. More details will be announced
at a later date.

A Clustering Measures

Let G = (V, E,w) be an undirected, weighted graph without parallel edges and with non-empty sets
V and E. In the following, we assume e = {u,v} € E is a multiset, i.e., u = v is allowed. We also
assume the sum iterating over an empty set (for example ) _,w(v)) to be zero. Addendum for
aixc: Clusters without edges contribute 0 to outer sum over C' € C (as if 0/0 = 0).

Let M = max.cpw(e) be the maximum weight of an edge in the graph. Then, in a slight abuse of
notation, let the vertex weight function be defined as:

(o) = {z{w}ewe) if {v,0} ¢ E
Z{u,v}EE,u7év (-L)(B) +2- W({’U, ’U}) if {U7 U} S

We define the following quality measures for a clustering C:
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