
Bandwidth requirement and state consistency in
three multiplayer game architectures

Joseph D. Pellegrino
Department of Computer Science

University of Delaware
Newark, Delaware 19711

Email: jdp@elvis.rowan.edu

Constantinos Dovrolis
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332

Email: dovrolis@cc.gatech.edu

Abstract— Multiplayer games become increasingly pop-
ular, mostly because they involve interaction among hu-
mans. Typically, multiplayer games are organized based on
a Client-Server (CS) or a Peer-to-Peer (PP) architecture. In
CS, players exchange periodic updates through a central
server that is also responsible for resolving any state
inconsistencies. In PP, each player communicates with
every other player while state inconsistencies are resolved
through a distributed agreement protocol.

In this paper, we first examine these architectures from
two perspectives: bandwidth requirement at the server
and players, and latency to resolve any player state
inconsistencies. Our results are based on both analysis
and experimentation with an open-source game called
“BZFlag”. The CS architecture is not scalable with the
number of players due to a large bandwidth requirement
at the server. The PP architecture, on the other hand,
introduces significant overhead for the players, as each
player needs to check the consistency between its local
state and the state of all other players. We then propose
an architecture that combines the merits of CS and
PP. In that architecture, called Peer-to-Peer with Central
Arbiter (PP-CA), players exchange updates in a peer-to-
peer manner but without performing consistency checks.
The consistency of the game is checked by a central arbiter
that receives all updates, but contacts players only when
an inconsistency is detected. As a result, the central arbiter
has a lower bandwidth requirement than the server of a
CS architecture.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
NetGames2003, May 22-23, 2003, Redwood City, California.
Copyright 2003 ACM 1-58113-734-6/03/0005 $5.00.

I. INTRODUCTION

The recent popularity of first-person shooting multi-
player games brings along the complexities of bandwidth
management and state consistency [1]. Bandwidth re-
quirement is directly related to the scalability of a game.
If, say, the bandwidth requirement at a game server
increases quadratically with the number of players, the
network connection of that server will probably become
a bottleneck as the number of players increases. Another
important issue about multiplayer games is that they
need to maintain state consistency among players [2].
For instance, in racing games all players should have
the same view about the position of each car, while in
first-person shooting games all players should agree on
who is alive and who is dead.

In this paper, we first examine two major architectures
for multiplayer games. These architectures are based
on the Client-Server (CS), and the Peer-to-Peer (PP)
models. We analyze these models from two perspec-
tives: bandwidth requirement and inconsistency resolu-
tion latency. Then, we propose a new architecture called
Peer-to-Peer with Central Arbiter (PP-CA). With the
CS architecture, it is simpler to maintain state consis-
tency, but the server bandwidth requirement increases
quadratically with the number of players. With the PP
architecture, the server bandwidth bottleneck is removed,
but resolving state inconsistencies requires a distributed
agreement protocol [3]. With the PP-CA architecture,
a centralized arbiter resolves any state inconsistencies,
but with a lower bandwidth requirement than the server
of a CS architecture. The reason is that the central
arbiter of the PP-CA architecture contacts the players
only when it detects an inconsistency, while the server
of the CS architecture contacts the players in each update
period. We use an open-source “capture-the-flag” game

called BZFlag to experimentally measure the bandwidth
requirement and consistency resolution latency of the
previous three architectures.

A. Bandwidth Requirement

Players often use limited-bandwidth links, such as
dialup and DSL modems, and so the bandwidth require-
ment of a game is of major importance to them. In a
CS architecture, the server has often (but not always)
a network access link of higher bandwidth than the
players. Even when this is the case, however, we cannot
ignore the bandwidth requirement at the server. If the
server bandwidth requirement increases rapidly with the
number of players, its access link can become the game’s
bottleneck.

In a typical multiplayer game, a player executes a
certain loop throughout the duration of the game. This
loop includes reading the input of the local player,
receiving updates from remote players, computing the
new local state, and rendering the graphical view of the
player’s world. The duration of this loop is referred to
as the player update period

���
. While

���
can vary

among different computers playing the same game, it
is typically fairly stable at the same machine. In this
paper, we will assume for simplicity that all players have
the same update period. Each player sends an update
message in every iteration of the previous loop to either
all other players, or to a central server. The size of the
update messages can vary, depending on the activity of
the player during that loop iteration. To simplify the
bandwidth requirement calculations, we will also assume
that all updates have the same size, namely � �

bytes.

So, the bandwidth requirement of a player or of the
server are determined by the number of update messages
sent and received in each update period

���
. This number

of messages depends on the underlying game architec-
ture, and on the way state inconsistencies are detected
and resolved. In the following, when referring to the
bandwidth requirement at a certain node, we use the
term upstream to refer to data sent by that node, and
downstream to refer to data received by that node. For
instance, if a player sends and receives � updates in
every update period, it would have a bandwidth require-
ment of ��� ���	�
�

in each of the upstream and down-
stream links. We note that the bandwidth requirement
of the CS and PP architectures has also been studied in
[4], under slightly different modeling assumptions, and
experimentally measured for Quake [5].

B. Inconsistency Resolution Latency

The state �
������� of a game for player � at a time instant
� is a collection of all attributes that describe completely
the view of the game as player � sees it at time � .
Typically, the state of a game would include things such
as position, direction, velocity and acceleration, carried
objects, for each of the participating players.

Ideally, all players should have the same game state,
i.e., ��������������������� for any pair of players ����� �!� and
at any time instant � . Given that players communicate
through a network, however, there is always some delay
between players. Let "#��$ � be the network delay from
player � to player � . An action of player � at time
��% will become known to player � at time ��%'&(")��$ � .
Thus, because of network delays, it is not possible to
maintain state consistency among players at all times.
Instead, we are interested in minimizing the time period
during which two players have inconsistent states. We
refer to this time period as inconsistency resolution
latency. Consider, for instance, a CS architecture where
the server detects and resolves all state inconsistencies
among players. If player � moves to position X at time
��% , while that position is already occupied by player � , a
state inconsistency will result. The inconsistency will last
until the server responds to player � that its latest move
is unacceptable. The inconsistency resolution latency in
that case is related to the round-trip delay between the
server and player � (an exact formula is given in the next
section).

The inconsistency resolution latency can vary for
different players. So, we are mostly interested in the
Maximum Inconsistency Period (MIP)

��*
, which is the

maximum inconsistency resolution latency among all
players for a given game architecture. In deriving MIP,
we assume that the network delays between players (or
between a player and the server) have a known upper
bound, and that update messages are never lost.

Previous work has proposed algorithms for maintain-
ing state consistency in multiplayer games. A “bucket
synchronization” mechanism was designed in [6] and
used in the game MiMaze [7]. With bucket synchroniza-
tion, updates sent by different players are processed at
periodic time instants, referred to as “buckets”, rather
than immediately upon receipt. The latency between
the receipt of an update and its processing intends to
mask the variable delays between players. The bucket
synchronization mechanism requires clock synchroniza-
tion among players with an accuracy of a few tens of
milliseconds. It is not clear whether the Internet clock

synchronization protocol NTP can provide such accuracy
over wide-area networks.

[8] outlines several cheating techniques in multiplayer
games, and proposes two mechanisms to avoid cheat-
ing. In the “lockstep protocol”, players generate one-
way hashes of their next move. Only after all players
announce these next-move signatures, players will reveal
their actual moves. An important issue about the lockstep
protocol is that the game progresses at the pace of the
slowest player. A less restrictive approach is the “asyn-
chronous synchronization” protocol. Its difference with
the lockstep protocol is a player only need to interact
with players that reside in its “sphere of influence”,
similar to the filtering techniques described in [1], [9].

C. Experimental Methodology

The experimental results reported in this paper were
measured using BZFlag, a multiplayer open-source 3D
tank battle game developed in 1992 by Riker [10]. The
original implementation of BZFlag was based on the CS
architecture. We have modified the code, however, to also
create PP and PP-CA variations of the game.

The original BZFlag code did not provide state con-
sistency. Player tanks could occupy the same space on
the graphical terrain. We modified the game, so that
the centralized server can resolve inconsistencies that
are related to the position of player tanks. In particular,
the server maintains the coordinates of all players. After
player � sends an update with its new coordinates, the
server checks if the new position of player � overlaps
with a circle of a certain radius centered at each player’s
tank. If that is the case, the server denies player � ’s move,
returning to that player its previous coordinates.

Our measurements were performed on Pentium-III
based PCs running Redhat Linux 7.0 connected via a
Fast Ethernet Switch. Games were played between four
(human) players for ten minutes, with the first 10,000
packets captured using “tcpdump” and used in our anal-
ysis. All players were located at the same lab, meaning
that the network delays between the player machines
were quite small (less than a millisecond). To facilitate
the measurements, several modifications were made in
the BZFlag source code, such as expanding application
level headers to include timestamps on outbound packets,
and adding additional server control messages to mea-
sure the inconsistency resolution latency.

The player update period and the server latency to
respond to a player’s update were measured through code
profiling. Round-trip times were measured by bouncing
a number of timestamped packets between the client

and server. For the round-trip time measurements, the
client and server operated in a tight-loop mode, returning
packets immediately upon reception.

Inconsistency resolution latencies were measured as
follows. The server checked received updates against
the current coordinates of other players. If no conflict
was found, the server permitted the move and forwarded
the update to all players; otherwise, the server copied
the timestamp from the received update to a corrected
update, generated a position correction, and forwarded
that revised update to all players. The player being
corrected used the received timestamp to measure the
inconsistency resolution latency.

II. CLIENT-SERVER ARCHITECTURE

The most common architecture for multiplayer Inter-
net games is the CS model. In this architecture, one
host (sometimes a player itself) is designated as the
server through which other players connect. The game
simulation (i.e., state processing) takes place at the
server, rather than at the clients. Each player sends its
new actions to the server. The server uses the received
information to advance the simulation, and it sends the
resulting states back to the players who then display the
updated game view to the users.

There are several reasons for the popularity of the CS
architecture. In particular, with only one connection to
worry about, it is a simpler architecture to implement.
Additionally, it is simpler to maintain state consistency
with a centralized server, and cheating becomes harder.
Finally, game providers can create and control a sub-
scription structure that they can potentially use for pric-
ing and game monitoring.

There are some problems with the CS architecture
however. First, the server represents a single point-of-
failure [11], [12]. Second, while the bandwidth require-
ment at the players is minimal, the bandwidth require-
ment at the server can be significant [4], [12]. As a
result, the server needs to operate behind a high capacity
link. Additionally, relaying messages to players through
a server adds communication latencies. These commu-
nication latencies can also increase the inconsistency
resolution latency.

A. Bandwidth Requirement

A client sends a player update to the server in every
player update period, and so the client upstream band-
width requirement is � ���	�
�

. The downstream band-
width requirement is derived from the updates sent
from the server. Specifically, the server replies to each

player with a global state message, which represents
the new state of each of the � players. The size of
the global state message is ��� � � � �

bytes. So,
the client downstream bandwidth requirement is � � �	���

.
The aggregate bandwidth requirement at a player in the
CS architecture is

� � & ������ � � � & � � � �
��� (1)

which scales linearly with � .
The bandwidth requirement at the server can be

derived similarly. The server receives player updates,
advances the game state accordingly (for player updates
that do not cause inconsistencies), and responds to the
players with a global state message. The delay between
receiving an update from a player and responding with a
global state message to that player is referred to as server
latency

���
. The upstream bandwidth requirement at the

server is � � � �	� �
, because an update is received from

each player in every update period. The downstream
bandwidth requirement is � � � �	���

, because a global
state message is sent to each player in every update
period. The aggregate bandwidth requirement at the
server is

��� � & ��� �� � � � � � & � � � �
� � (2)

The key point here is that the bandwidth requirement
at the server scales quadratically with the number of
players � .

We note that, as it was shown in [9], the use of good
interest filtering techniques can significantly reduce the
network traffic at the server. Measurements taken at a
Quake server showed that the bandwidth usage was less
than predicted, even though it still scaled faster than
linearly [4].

B. Maximum Inconsistency Period

Recall that the MIP was defined as the maximum time
period in which a player may have an inconsistent state,
assuming no packet losses and bounded network delays.
In the CS architecture, the MIP consists of three terms:
the player update period

���
, the server latency

���
, and

the round-trip time � ��$ � between player � and the server
� : � * �	��

��

� ��� & ��� &�� ��$ ��� (3)

Note that we need to include the player update period,
as it takes a full update period, in the worst case, from
the time a message is received from the server to the
time that that message is processed and displayed to the
user.

C. Experimental Results

15 20 25 30 35
Time In Milliseconds

0

1000

2000

3000

4000

5000

C
li

e
n
t

It
e
ra

ti
o
n
s

Player Update Period

0 1 2 3 4 5 6 7 8 9 10
Time In Microseconds

1000

2000

3000

4000

5000

6000

S
e
rv

e
r

It
e
ra

ti
o
n
s

Server Latency

Fig. 1. CS game: player update period ��� and server latency ��� .

Figures 1 and 2 show measurements of the three MIP
components for a 4-player CS game. If we fill in the
measurements of

���
,

���
, and � ��$ � in Equation 3, we

find that the MIP for this game is about 27ms.
Figure 3 shows the inconsistency resolution latency

measured for 5000 artificially caused inconsistencies in
the previous 4-player CS game. The inconsistencies were
introduced at the server, by manipulating the coordinates
of the player tanks. We see that most inconsistencies are
resolved within 25ms. The slight difference between the
measurements of Figure 3 and the estimated MIP is that
the latter is an upper bound of the inconsistency resolu-
tion latency, while the former are actual measurements
of that latency.

III. PEER-TO-PEER ARCHITECTURE

In the PP gaming model, each player (peer) is re-
sponsible for executing its own game simulation. Since
there is no server to detect and resolve inconsistencies

50 60 70 80 90 100 110 120 130 140 150 160 170 180
Time In Microseconds

2000

4000

6000

8000

P
a
c
k
e
ts

Round Trip Time

Fig. 2. CS game: round-trip time ����� � measurements

15 20 25 30 35
Time In Milliseconds

500

1000

1500

2000

2500

In
c
o
n
si

st
e
n
c
ie

s

Inconsistency Period Measurements

Fig. 3. CS game: inconsistency resolution latency measurements

among players, however, any inconsistencies have to be
detected by the players using a distributed agreement
protocol. For instance, the trailing state [13] or the
bucket synchronization [7] techniques have been pro-
posed to resolve inconsistencies in distributed games.
An important issue with both these methods is that
they rely on accurate clock synchronization. Even if
player hosts run NTP (which is often not the case with
home PC’s), it is unclear whether NTP can synchronize
clocks of machines connected through the commercial
Internet with the required accuracy (typically, tens of
milliseconds).

The lack of a centralized server brings several advan-
tages to the PP architecture, such as reduced message
latency between clients [11], [7], and elimination of a
single point-of-failure. Perhaps most importantly, the PP
architecture does not have a server bottleneck. While the

PP architecture has a higher bandwidth requirement at
the players than the CS architecture, that requirement
increases linearly with the number of players.

The PP architecture is not nearly as popular, how-
ever, as the CS architecture in the gaming industry. An
important reason is that the PP architecture is more dif-
ficult to implement and configure than a comparable CS
architecture. Additionally, it is harder to maintain state
consistency among players. Also, the PP architecture
relinquishes too much control of the game to the users.
The lack of a server means that there is no control over
who is playing and for how long, and makes it harder for
gaming companies to generate revenue via subscriptions.

A. Bandwidth Requirement

In the PP architecture, each player sends and receives
an update to and from each other players periodically. So,
the upstream and downstream bandwidth requirements
are the same, equal to � ��� � � � � �	���

. Thus, the aggre-
gate bandwidth requirement at a player is

� � ��� � � � �
� � 	

� ��� �
� � (4)

Note that this is roughly twice the bandwidth require-
ment of a player in the CS architecture. The bandwidth
requirement, however, scales linearly with the number of
players � , removing the server’s bandwidth bottleneck.
Interest filtering techniques such as those proposed in [9]
can reduce the bandwidth requirement even further.

B. Maximum Inconsistency Period

In a PP architecture, an inconsistency can be detected
when a player � receives an update from player � which
disagrees with player � ’s state. In that case, player
� responds to all players, including player � , with a
“update-rejection” message. The purpose of that message
is to invalidate � ’s latest update. Upon the receipt of
that message, player � needs to rollback to its previous
(accepted) state. The inconsistency resolution latency in
this case would consist of the round-trip delay between
players � and � � ��$ � , and of twice the update period
(one

���
spent in the worst-case at player � and another���

spent at player �). Thus, the maximum inconsistency
resolution period for any two players would be:

� * �	��

���$ �
� � � � & � ��$ � � (5)

assuming bounded network delays and no packet losses.
Whether the inconsistency resolution latency of the

PP architecture is less than that of the CS architecture
depends on the relation between the round-trip times �'��$ �
and � � $ � .

IV. PEER-TO-PEER WITH CENTRAL ARBITER

ARCHITECTURE

A game architecture with the scalability properties of
the PP model, but also with the simple consistency reso-
lution mechanism of the CS model, would be desirable.
To that end, we propose a modified version of the PP
model which we call Peer-to-Peer with Central Arbiter
model (PP-CA).

In PP-CA, players exchange updates communicating
directly with each other, just as in the PP model. This
minimizes the communication delays between players.
Each player sends its updates not only to all other
players, but also to the central arbiter. The role of the
central arbiter is to listen to all player updates, simulate
the global state of the game, and detect inconsistencies.
In the absence of inconsistencies, the central arbiter
remains silent, without sending any messages to the
players. When an inconsistency is detected however, the
central arbiter will resolve it, create a corrected update,
and transmit that update to all players. The corrected
players should then rollback to the previous accepted
state.

The consistency resolution protocol in PP-CA is basi-
cally the same with that in the CS architecture. The key
difference between the CS server and the PP-CA arbiter
is that the former sends a global state update (of size
� � �

) to each of the � players in every player update
period, while the latter sends a corrected update (of size
� �

) to each of the � players only when an inconsistency
occurs. If inconsistencies are rare events, the bandwidth
requirement at the PP-CA arbiter will be significantly
lower than the bandwidth requirement at the CS server.

A. Bandwidth Requirement

In the downstream direction, the bandwidth require-
ment at a PP-CA player is � � �

� � � � �	�
�
, because a

player receives updates from (N-1) other players in each
player update period. The bandwidth requirement can
be higher by � � �	� �

, however, when the central arbiter
detects a state inconsistency. In the upstream direction,
we need to include the central arbiter as an additional
peer, and so the bandwidth requirement is � � ���	���

. The
aggregate bandwidth requirement at a PP-CA player, in
Equation 6, shows a slight increase compared to the PP
model, but the relation with the number of players � is
still linear,

��� � & � � �
� � � �

�
� 	
� � � �

��� (6)

The bandwidth requirement at the central arbiter de-
pends on the frequency of state inconsistency events. If

inconsistencies never occur, the central arbiter just re-
ceives � updates in each update period, without sending
any messages, and its aggregate bandwidth requirement
becomes ��� � �	���

. If a single state inconsistency occurs
in each update period, the central arbiter would have
to send � corrected updates in each update period. In
that case, the aggregate bandwidth requirement at the
central arbiter would be

�������
� � , which is equal to the

bandwidth requirement at a player, and scales linearly
with � . The bandwidth requirement would be higher if
multiple inconsistency events occur in the same update
period. The worst case scenario is that each player
reports an inconsistency in every update period; in that
cawe the bandwidth requirement at the central arbiter
would increase quadratically with � , as in the server of
the CS architecture.

B. Maximum Inconsistency Period

In the PP-CA model, inconsistencies are detected and
resolved as in the CS model. Thus, the MIP is

�
* �	�

��
� ��� & ��� & � ��$ � � (7)

C. Experimental Results

0 1 2 3 4
Number of Players

0

50000

1e+05

1.5e+05

2e+05

S
e
n

t
-

R
e
c
ie

v
e
d

 U
p

d
a
te

s

Client - Server
Peer To Peer-CA

Server Traffic

Fig. 4. CS vs PP-CA server bandwidth requirement.

Measurements of an active BZflag game, shown in
Figure 4, compare the traffic load at a CS server and
at a PP-CA central arbiter. In this experiment, we have
artificially created a 50% inconsistency rate at the ex-
changed updates (i.e., 50% of the player updates received
at the central arbiter are detected as inconsistent). The
traffic load at the central arbiter increases almost linearly
with the number of players, and it is significantly lower
than the traffic load at the CS server which increases
quadratically.

15 20 25 30 35
Time In Milliseconds

1000

2000

3000

4000

C
li

e
n
t

It
e
ra

ti
o
n
s

Player Update Period

0 1 2 3 4 5 6 7 8 9 10
Time In Microseconds

0

2000

4000

6000

8000

10000

S
e
rv

e
r

It
e
ra

ti
o
n
s

Server Update Period

Fig. 5. PP-CA game: player update period � � and server latency
� � .

Figures 5 and 6 show measurements of the three MIP
components for a 2-player CS game. If we fill in the
measurements of

���
,

���
, and � ��$ � in Equation 7, we

find that the MIP for this game is roughly 29ms.
Figure 7 shows the inconsistency resolution latency

measured for 5000 artificially caused inconsistencies
in the previous 2-player CS game. We see that most
inconsistencies are resolved within 28ms. The slight
difference between the measurements of Figure 7 and
the estimated MIP is that the latter is an upper bound
of the inconsistency resolution latency, while the former
are actual measurements of that latency.

V. CONCLUSIONS

The PP-CA model attempts to combine the best
features of the CS and PP architectures. The player-
to-player communication latency is lower in the PP
architecture, and this feature is inherited to the PP-CA
architecture. Inconsistencies in PP-CA are resolved by
a central entity (arbiter), and so a complex distributed

50 60 70 80 90 100 110 120 130 140 150 160 170 180
Time In Microseconds

0

1000

2000

3000

4000

5000

6000

7000

P
a
c
k
e
ts

Round Trip Time

Fig. 6. PP-CA game: round-trip time ��� � � measurements

15 20 25 30 35
Time In Milliseconds

500

1000

1500

In
c
o
n
si

st
e
n
c
ie

s

Inconsistency Period Measurements

Fig. 7. PP-CA game: inconsistency resolution latency measurements

agreement protocol is not required. The central arbiter
receives updates from all players, but it only sends
corrected updates when an inconsistency is detected. The
bandwidth requirement at the central arbiter increases
linearly with the number of players, and it is equal
to the player bandwidth requirement, in the case of a
single inconsistency per update period. Additionally, the
presence of a centralized arbiter allows game providers to
still monitor the game for accounting or pricing reasons.

Finally, we note that even though the PP-CA helps to
reduce the bandwidth requirement of the central arbiter,
it does not reduce its processing load. The central arbiter
needs to simulate the state of the entire game, just like a
CS architecture server. This means that if the bottleneck
of a game is the CPU power of the server, rather than
its network bandwidth, the PP-CA architecture will not
be scalable either.

REFERENCES

[1] J. Smed and T. Kaukoranta and H. Hakonen “Aspects of
Networking in Multiplayer Computer Games”. In Proceedings
of International Conference on Applications and Development
of Computer Games in the 21st Century, November 2001.

[2] L. Pantel and L. C. Wolf. “On the Impact of Delay on Real-
Time MultiPlayer Games”. In Proceedings of ACM NOSSDAV,
May 2002.

[3] G. Coulouris, and J. Dolimore, and T. Kindberg. “Distributed
Systems Concepts and Design”. Addison-Wesley, 2001.

[4] E. Cronin, B. Filstrup, and A. Kurc. “A Distributed Multi-
Player Game Server System”. EECS589, Course Project Report,
University of Michigan, May 2001.

[5] ID Software. “Quake”. Available at http://www.quake.com,
2002.

[6] L. Gautier and C. Diot and J. Kurose. “End-to-End Transmis-
sion Control Mechanisms for Multiparty Interactive Applica-
tions on the Internet”. In Proceedings of IEEE INFOCOM,
April 1999.

[7] C. Diot and L. Gautier. “A Distributed Architecture for
MultiPlayer Interactive Applications on the Internet”. In IEEE
Network magazine, 13(4), August 1999.

[8] N. Baughman and B. Levine. “Cheat-Proof Playout for Central-
ized and Distributed Online Games”. In Proceedings of IEEE
INFOCOM, April 2001.

[9] L. Zou, M. H. Ammar, and C. Diot. “An Evaluation of Grouping
Techniques for State Dissemination in Networked Multi-User
Games”. In Proceedings of MASCOTS, August 2001.

[10] T. Riker. “BZFlag”. Available at http://www.bzflag.org, 2002.
[11] P. Bettner and M. Terrano. “1500 Archers on a 28.8 Pro-

gramming in Ages of Empires and Beyond”. Technical report,
Ensemble Studios, 2001.

[12] M. Mauve. “How to Keep a Dead Man from Shooting”.
In Proceedings of 7th International Workshop on Interactive
Distributed Multimedia Systems, October 2000.

[13] E. Cronin, B. Filstrup, and A. Kurc and S. Jamin. “An Efficient
Synchronization Mechanism for Mirrored Game Architectures”.
In Proceedings of ACM NETGAMES, April 2002.

