
Big Data Framework Interference In Restricted
Private Cloud Settings

Stratos Dimopoulos, Chandra Krintz, Rich Wolski
Dept. of Computer Science, Univ. of California, Santa Barbara

{stratos, ckrintz, rich}@cs.ucsb.edu - Contact: stratos@cs.ucsb.edu

Abstract—In this paper, we characterize the behavior of “big”
and “fast” data analysis frameworks, in multi-tenant, shared
settings for which computing resources (CPU and memory)
are limited, an increasingly common scenario used to increase
utilization and lower cost. We study how popular analytics
frameworks behave and interfere with each other under such
constraints. We empirically evaluate Hadoop, Spark, and Storm
multi-tenant workloads managed by Mesos. Our results show
that in constrained environments, there is significant performance
interference that manifests in failed fair sharing, performance
variability, and deadlock of resources.

Keywords—Big Data Infrastructures and Frameworks, Private
Cloud Multi-tenancy, Performance Interference

I. INTRODUCTION

Recent technological advances have spurred production and
collection of vast amounts of data about individuals, systems,
and the environment. As a result, there is significant demand
by software engineers, data scientists, and analysts with a
variety of backgrounds and expertise, for extracting actionable
insights from this data. Such data has the potential for facil-
itating beneficial decision support for nearly every aspect of
our society and economy, including social networking, health
care, business operations, the automotive industry, agriculture,
Information Technology, education, and many others.

To service this need, a number of open source technologies
have emerged that make effective, large-scale data analytics
accessible to the masses. These include “big data” and “fast
data” analysis systems such as Hadoop, Spark, and Storm
from the Apache foundation, which are used by analysts to
implement a variety of applications for query support, data
mining, machine learning, real-time stream analysis, statistical
analysis, and image processing [3, 13]. As complex software
systems, with many installation, configuration, and tuning
parameters, these frameworks are often deployed under the
control of a distributed resource management system [16, 4]
to decouple resource management from job scheduling and
monitoring, and to facilitate resource sharing between multiple
frameworks.

Each of these analytics frameworks tends to work best
(e.g. most scalable, with the lowest turn-around time, etc.)
for different classes of applications, data sets, and data types.
For this reason, users are increasingly tempted to use multiple
frameworks, each implementing a different aspect of their
analysis needs. This new form of multi-tenancy (i.e. multi-
analytics) gives users the most choice in terms of extracting
potential insights, enables them to fully utilize their compute
resources and, when using public clouds, manage their fee-for-
use monetary costs.

Multi-analytics frameworks have also become part of the
software infrastructure available in many private data centers
and, as such, must function when deployed on a private
cloud. With private clouds, resources are restricted by physical
limitations. As a result, these technologies are commonly
employed in shared settings in which more resources (CPU,
memory, local disk) cannot simply be added on-demand in
exchange for an additional charge (as they can in a public
cloud setting).

Because of this trend, in this paper, we investigate and
characterize the performance and behavior of big/fast data
systems in shared (multi-tenant), moderately resource con-
strained, private cloud settings. While these technologies are
typically designed for very large scale deployments such as
those maintained by Google, Facebook, and Twitter they are
also common and useful at smaller scales [1, 11, 10].

We empirically evaluate the use of Hadoop, Spark, and
Storm frameworks in combination, with Mesos [4] to mediate
resource demands and to manage sharing across these big
data tenants. Our goal is to understand how these frameworks
interfere with each other in terms of performance when under
resource pressure, and how Mesos behaves and achieves fair
sharing [2] when when demand for resources exceeds resource
availability.

From our experiments and analyses, we find that even
though Spark outperforms Hadoop when executed in isolation
for a set of popular benchmarks, in a multi-tenant system, their
performance varies significantly depending on their respective
scheduling policies and the timing of Mesos resource offers.
Moreover, for some combinations of frameworks, Mesos is
unable to provide fair sharing of resources and/or avoid dead-
locks. In addition, we quantify the framework startup overhead
and the degree to which it affects short-running jobs.

II. BACKGROUND

In private cloud settings, where users must contend for a
fixed set of data center resources, users commonly employ the
same resources to execute multiple analytics systems to make
the most of the limited set of resources to which they have been
granted access. To understand how these frameworks interfere
in such settings, we investigate the use of Mesos to manage
them and to facilitate fair sharing. Mesos is a cluster manager
that can support a variety of distributed systems including
Hadoop, Spark, Storm, Kafka, and others [4]. The goal of our
work is to investigate the performance implications associated
with Mesos management of multi-tenancy for medium and
small scale data analytics on private clouds.



Fig. 1: Mesos Architecture.

Mesos provides two-level, offer-based, resource scheduling
for frameworks as depicted in Figure 1. The Mesos Master is
a daemon process that manages a distributed set of Mesos
Slaves. The Master also makes offers containing available
Slave resources (e.g. CPUs, memory) to registered frameworks.
Frameworks accept or reject offers based on their own, local
scheduling policies and control execution of their own tasks
on Mesos Slaves that correspond to the offers they accept.

When a framework accepts an offer, it passes a description
of its tasks and the resources it will consume to the Mesos
Master. The Master (acting as a single contact point for all
framework schedulers) passes task descriptions to the Mesos
Slaves. Resources are allocated on the selected Slaves via a
Linux container (the Mesos executor). Offers correspond to
generic Mesos tasks, each of which consumes the CPU and
memory allocation specified in the offer. Each framework uses
a Mesos Task to launch one or more framework-specific tasks,
which use the resources in the accepted offer to execute an
analytics application.

Each framework can choose to employ a single Mesos
task for each framework task, or use a single Mesos task
to run multiple framework tasks. We will refer to the former
as “fine-grained mode” (FG mode) and the later as “coarse-
grained mode” (CG mode). CG mode amortizes the cost of
starting a Mesos Task across multiple framework tasks. FG
mode facilitates finer-grained sharing of physical resources.

The Mesos Master is configured so that it executes on
its own physical node and with high availability via shadow
Masters. The Master makes offers to frameworks using a
pluggable resource allocation policy (e.g. fair sharing, priority,
or other). The default policy is Dominant Resource Fairness
(DRF) [2]. DRF attempts to fairly allocate combinations of
resources by prioritizing the framework with the minimum
dominant share of resources.

The dominant resource of a framework is the resource for
which the framework holds the largest fraction of the total
amount of that resource in the system. For example, if a
framework has been allocated 2 CPUs out of 10 and 512MB
out of 1GB of memory, its dominant resource is memory
(2/10 CPUs < 512/1024 memory). The dominant share of
a framework is the fraction of the dominant resource that it
has been allocated (512/1024 or 1/2 in this example). The
Mesos Master makes offers to the framework with the smallest
dominant share of resources, which results in a fair share policy

with a set of attractive properties (share guarantee, strategy-
proofness, Pareto efficiency, and others) [2]. We employ the
default DRF scheduler in Mesos for this study. We use Mesos
to manage the Hadoop, Spark, and Storm data analytics frame-
works from the Apache Foundation in a multitenent setting.

Each framework creates one Mesos executor and one or
more Mesos Tasks on each Slave in an accepted Mesos offer.
In CG mode, frameworks release resources back to Mesos
when all tasks complete or when the application is terminated.
In FG mode, frameworks execute one application task per
Mesos task. When a framework task completes, the framework
scheduler releases the resources associated with the task back
to Mesos. The framework then waits until it receives a new
offer with sufficient resources from Mesos to execute its next
application task. Spark supports both FG and CG modes;
Hadoop and Storm implement the CG mode only.

III. EXPERIMENTAL METHODOLOGY

We next describe the experimental setup that we use for this
study. We detail our hardware and software stack, overview
our applications and data sets, and present the framework
configurations that we consider.

Our private cloud is a resource-constrained, Eucalyptus [9]
v3.4.1 private cluster with nine virtual servers (nodes) and a
Gigabit Ethernet switch. We use three nodes for Mesos Masters
that run in high availability mode (similar to typical fault-
tolerant settings of most real systems) and six for Mesos Slaves
in each cloud. The Slave nodes each have 2x2.5GHz CPUs,
4GB of RAM, and 60GB disk space.

Our nodes run Ubuntu v12.04 Linux with Java 1.7, Mesos
0.21.1 which uses Linux containers by default for isolation, the
CDH 5.1.2 MRv1 Hadoop stack (HDFS, Zookeeper, MapRe-
duce, etc.), Spark v1.2.1, and Storm v0.9.2. We configure
Mesos Masters (3), HDFS Namenodes, and Hadoop JobTrack-
ers to run with High Availability via three Zookeeper nodes
co-located with the Mesos Masters. HDFS uses a replication
factor of three and 128MB block size.

Our batch processing workloads and data sets come from
the BigDataBench and the Mahout projects [17]. We have
made minor modifications to update the algorithms to have
similar implementations across frameworks (e.g. when they
read/write data, perform sorts, etc.). These modifications are
available at [8]. In this study, we employ WordCount, Grep,
and Naive Bayes applications for Hadoop and Spark and a
WordCount streaming topology for Storm. WordCount com-
putes the number of occurrences of each word in a given input
data set, Grep produces a count of the number of times a
specified string occurs in a given input data set, and Naive
Bayes performs text classification using a trained model to
classify sentences of an input data set into categories.

We execute each application 10 times after three warmup
runs to eliminate variation due to dynamic compilation by the
Java Virtual Machine and disk caching artifacts. We report
the average and standard deviation of the 10 runs. We keep
the data in place in HDFS across the system for all runs
and frameworks to avoid variation due to changes in data
locality. We measure performance and interrogate the behavior
of the applications using a number of different tools including



Available Min Required
Slave Total Hadoop Spark Storm

CPU 2 12 1 2 2
Mem (MB) 2931 17586 980 896 2000

Max Used
per Slave Total

Hadoop Spark Storm Hadoop Spark Storm
CPU 2 2 2 12 12 6

Mem (MB) 2816 896 2000 16896 5376 6000

TABLE I: CPU and Memory availability, minimum framework
requirements to run 1 Mesos Task and maximum utilized
resources per slave and in total.

Ganglia [7], ifstat, iostat, and vmstat available in Linux, and
log files available from the individual frameworks.

Table I shows the available resources in our private cloud
deployment, the minimum required resources that should be
available on a slave for a framework to run at least one task on
Mesos, and the maximum resources that can be utilized when
the framework is the only tenant. We configure the Hadoop
TaskTracker with 0.5 CPUs and 512MB of memory and each
slot with 0.5 CPUs, 768MB of memory, and 1GB of disk space.
We set the minimum and maximum map/reduce slots to 0 and
50, respectively. We configure Spark tasks to use 1 CPU and
512MB of memory, which also requires an additional 1 CPU
and 384MB of memory for each Mesos executor container.
We enable compression for event logs in Spark and use the
default MEMORY ONLY caching policy. Finally, we configure
Storm to use 1 CPU and 1GB memory for the Mesos executor
(a Storm Supervisor) and 1 CPU and 1GB memory for each
Storm worker.

This configuration allows Hadoop to run 3 tasks per Mesos
executor. Hadoop spawns one Mesos executor per Mesos
Slave and Hadoop tasks can be employed as either mapper or
reducer slots. Spark in FG mode runs 1 Mesos/Spark task per
executor. In CG mode, Spark allocates its resources to a single
Mesos task per executor that runs all Spark tasks within it. In
both modes, Spark runs one executor per Mesos Slave. We
configure the Storm topology to use 3 workers. We run one
worker per Supervisor (Mesos executor) so three Slaves are
needed in total. We consider three different input sizes for the
applications to test for small, medium and long running jobs.
As the number of tasks per job is determined by the HDFS
block size (which is 128MB), the 1GB input size corresponds
to 8 tasks, the 5GB input size to 40 tasks and, the 15GB input
size to 120 tasks.

IV. RESULTS

We use this experimental setup to first measure the perfor-
mance of Hadoop and Spark when they run in isolation (single
tenancy) on our Mesos-managed private cloud. Throughout the
remainder of this paper, we refer to Spark when configured to
use FG mode as SparkFG and when configured to use CG
mode as SparkCG.

Figure 2 presents the execution time for the three appli-
cations for different data set sizes (1GB, 5GB, and 15GB).
These results serve as a reference for the performance of the
applications when there is no resource contention (no sharing)
across frameworks in our configuration.

Fig. 2: Single Tenant Performance: Benchmark execution time
in seconds for Hadoop and Spark on Mesos for different input
sizes.

Fig. 3: Multi-tenant Performance: Benchmark execution time
in seconds for Hadoop and SparkCG using different input
sizes, with SparkCG receiving its offers first.

The performance differences across frameworks are similar
to those reported in other studies, in which Spark outperforms
Hadoop (by more than 2x in our case) [12, 6]. One interesting
aspect of this data is the performance difference between
SparkCG and SparkFG. SparkCG outperforms SparkFG in all
cases and more than 1.5x in some cases. The reason for this
is that SparkFG starts a Mesos Task for each new Spark task
to facilitate sharing. Because SparkFG is unable to amortize
the overhead of starting Mesos Tasks across Spark tasks as
is done for coarse grained frameworks, overall performance is
significantly degraded. SparkCG outperforms SparkFG in all
cases and Hadoop outperforms SparkFG in multiple cases.

A. Multi-tenant Performance

We next evaluate the performance impact of multi-tenancy
in a resource constrained setting. For this study, we execute
the same application in Hadoop and SparkCG and start them
together on Mesos. In this configuration, Hadoop and SparkCG
share the available Mesos Slaves and access the same data sets
stored on HDFS. Figure 3 shows the application execution
time in seconds (using different input sizes) over Hadoop and
SparkCG in this multi-tenant scenario. As in the previous set
of results, SparkCG outperforms Hadoop for all benchmarks
and input sizes.



Fig. 4: Multi-tenant Performance: Benchmark execution time
in seconds for Hadoop and SparkCG using different input
sizes, with Hadoop receiving its offers first.

We observe in the logs from these experiments that Spark-
CG is able to setup its application faster than Hadoop is able
to. As a result, SparkCG wins the race to acquire resources
from Mesos first. To evaluate the impact of such sequencing,
we next investigate what happens when Hadoop receives its
offers from Mesos ahead of SparkCG. To control the timing
of offers in this way, we delay the Spark job submission by
10 seconds. We present these results in Figure 4. In this case,
SparkCG outperforms Hadoop for only the 1GB input size.

The data shows in this case that even though Spark is
more than 355 seconds faster than Hadoop in single-tenant
mode, it is more than 600 seconds slower than Hadoop when
the Hadoop job starts ahead of the Spark job. Whichever
framework starts first, executes with time similar to that of
the single tenancy deployment. This behavior results from the
way that Mesos allocates resources. Mesos offers all of the
available resources to the first framework that registers with it,
since it is unable to know whether or not there will be a future
framework to register. Mesos is unable to change its system-
wide allocation decisions when a new framework arrives,
since it does not implement resource revocation. SparkCG and
Hadoop will block all other frameworks until they complete
execution of a job. In Hadoop, such starvation can extend
beyond a single job, since Hadoop jobs are submitted on the
same Hadoop JobTracker instance. That is, a Hadoop instance
will retain Mesos resources until its job queue (potentially
holding multiple jobs) empties.

These experiments show that when an application requires
resources that exceed those available in the cloud (input sizes
5GB and above in our experiments), and when frameworks use
CG mode, Mesos fails to share cloud resources fairly among
multiple tenants. In such cases, Mesos serializes application
execution limiting both parallelism and utilization significantly.
Moreover, application performance in such cases becomes
dependent upon framework registration order and as a result
is highly variable and unpredictable.

B. Fine-Grained Resource Sharing

We next investigate the operation of the Mesos scheduler
for frameworks that employ fine grained scheduling. For such
frameworks (SparkFG in our study), the framework scheduler

can release and acquire resources throughout the lifetime of an
application. For these experiments, we measure the impact of
interference between Hadoop and SparkFG. As in the previous
section, we consider the case when Hadoop starts first and
when SparkFG starts first.

We find (as expected) that when Hadoop receives offers
from Mesos first, it acquires all of the available resources,
blocks SparkFG from executing, and outperforms SparkFG.
Similarly, when SparkFG receives its offers ahead of Hadoop,
we expect it to block Hadoop. However, from the performance
comparison, this starvation does not occur. That is, Hadoop
outperforms SparkFG even when SparkFG starts first and can
acquire all of the available resources. (We omit the figure with
execution times for each framework due to space limitations
from these text and we provide it on [14])

We further investigate this behavior in Figure 5. In this set
of graphs, we present a timeline of multi-tenant activities over
the lifetime of two WordCount/5GB applications (one over
Hadoop, the other over SparkFG). In the top graph, we present
the number of Mesos Tasks allocated by each framework.
Mesos Tasks encapsulate the execution of one (SparkFG) or
many (Hadoop) framework tasks. The middle graph shows the
memory consumption by each framework and the bottom graph
shows the CPU resources consumed by each framework.

In this experiment, SparkFG receives first the offers from
Mesos and acquires all the available resources of the cloud
(all resources across the six Mesos Slaves are allocated to
SparkFG). SparkFG uses these resources to execute the appli-
cation and Hadoop is blocked waiting on SparkFG to finish.
Because SparkFG employs a fine grained resource use policy, it
releases the resources allocated to it for a framework task back
to Mesos when each task completes. Doing so enables Mesos
to employ its fair sharing resource allocation policy (DRF) and
allocate these released resources to other frameworks (Hadoop
in this case) – and the system achieves true multi-tenancy.

However, such sharing is short lived. As we can observe in
the graphs, over time as SparkFG Mesos Tasks are released,
they are allocated to Hadoop until only Hadoop is executing
(SparkFG is eventually starved). The reason for this is that even
though SparkFG releases its task resources back to Mesos, it
does not release all of its resources back, in particular, it does
not release the resources allocated to it for its Mesos executors
(one per Mesos Slave).

In our configuration, SparkFG executors require 768MB
of memory and 1CPU per Slave. Mesos DRF considers these
resources part of the SparkFG dominant share and thus gives
Hadoop preference until all resources in the system are once
again consumed. This results in SparkFG holding onto memory
and CPU (for its Mesos executors) that it is unable to use
because there are insufficient resources for its tasks to execute
but for which Mesos is charging under DRF. Thus, SparkFG
induces a deadlock and all resources being held by SparkFG
executors in the system are wasted (system resources are un-
derutilized until Hadoop completes and releases its resources).

In our experiments, we find that this scenario occurs for all
but the shortest lived jobs (1GB input sizes). The 1GB jobs
include only 8 tasks and so SparkFG will execute 6 out of
its 8 task after getting all the resources on the first round of
offers. Moreover, Hadoop does not require all the Slaves to



(a) Number of active (staging or running) Mesos Tasks

(b) Memory allocation per framework

(c) CPU cores allocation per framework

Fig. 5: Multi-tenancy and Resource Utilization: The timelines
show active Mesos Tasks, memory, and CPU allocation in
Mesos.

run 8 tasks for this job as explained on Section III leaving
sufficient space to Spark to continue executing the remaining
two tasks uninterrupted.

Deadlock in Mesos in resource constrained settings is not
limited to the SparkFG scheduler. The fundamental reason
behind this type of deadlock is a combination of (i) frameworks
“hanging on” to resources and, (ii) the way Mesos accounts
for resource use under its DRF policy. In particular, any
framework scheduler that retains resources across tasks, e.g.
to amortize the startup overhead of the support services (like
Spark executors), will be charged for them by DRF, and
thus may deadlock. Moreover, any Mesos system for which
resource demand exceeds capacity can deadlock if there is at

least one framework with a fine grained scheduler and at least
one framework with a coarse grained scheduler.

C. Batch and Streaming Tenant Interference

We next evaluate the impact of performance interference
in Mesos under resource constraints, for batch and stream-
ing analytics frameworks. This combination of frameworks
is increasingly common given the popularity of the lambda
architecture [5] in which organizations combine batch process-
ing to compute views from a constantly growing dataset and
stream processing to compensate for the high latency between
subsequent iterations of batch jobs and to complement the
batch results with newly arrived unprocessed data.

For this experiment, we execute a streaming application
using a Storm topology continuously, while we introduce batch
applications. Our measurements show (Detailed performance
graphs can be found on [14]) that across frameworks and input
sizes, the performance degradation introduced by the Storm
tenant varies between 25% to 80% across frameworks and
inputs, and is insignificant for the 1GB input.

The reason for this variation is that Storm accepts offers
from Mesos for three Mesos Slaves to run its job. This leaves
three Slaves for Hadoop, SparkFG, and SparkCG to share.
The degradation is limited because fewer Slaves impose less
startup overhead on the framework executors per Slave. The
overhead of staging new Mesos Tasks and spawning executors
is so significant that it is not amortized by the additional
parallelization that results from additional Mesos Slaves.

When we submit batch and streaming jobs simultaneously
to Mesos, we find no perceivable interference from batch
systems on Storm throughput and latency when storm receives
its offers ahead of those for the batch frameworks. When Storm
receives its offers after a batch framework, it blocks in the
same way that fine grain frameworks do (as we describe the
previous section) and fair sharing is violated.

D. Startup Overhead of Mesos Tasks

We next investigate Mesos Task startup overhead for the
batch frameworks under study. We define the startup delay of
a Mesos Task as the elapsed time between when a framework
issues the command to start running an application and when
the Mesos Task appears as running in the Mesos user interface.
As part of startup, the frameworks interact with Mesos via
messaging and access HDFS to retrieve their executor code.
This time includes that for setting up a Hadoop or Spark job,
for launching the Mesos executor (and respective framework
implementation, e.g. TaskTracker, Executor), and launching the
first framework task.

We find that as new tasks are launched (each on a new
Mesos Slave), the startup delay increases and each successive
Slave takes longer to complete the startup process as a result of
network and disk contention. Slaves that start earlier complete
the startup process earlier and initiate application execution
(execution of tasks). Task execution consumes significant net-
work and disk resources (for HDFS access) which slows down
the startup process of later Slaves. We also find that this inter-
ference grows with the size of application input. (We provide
the performance graph on [14]) Our measurements indicate
that this overhead contributes to a significant degradation in the



performance of short running jobs. We observe a slow down
of 30% for Hadoop and 55% for SparkFG for 1GB inputs
across benchmarks. Given that short running jobs account for
an increasingly large portion of big data workloads today [1,
11, 10], such overheads can cause significant under-utilization
and widely varying application performance in constrained
settings.

V. RELATED WORK

Cluster managers like Mesos [4] and YARN [15] enable
the sharing of cloud and cluster resources by multiple, data
processing frameworks. YARN uses a classic resource request
model in which each framework asks for the resources it needs
to run its jobs. Mesos as described herein, implements an
offer-based model in which frameworks can accept or reject
offers for resources based on whether the offers satisfy the
resource requirements of the application. Our work focuses on
fair-sharing and deadlock issues that occur on Mesos due to
lack of admission control and resource revocation. However,
Mesos is not the only cluster manager that suffers from such
problems. Other work [18] shows that, when the amount of
required resources exceeds that which is available, deadlocks
also occur on YARN. Our work differs from the numerous
papers that characterize the performance of Hadoop and Spark
applications on large-scale resources. To our knowledge, ours
is the first paper to expose the performance implications of
multi-tenant interference in resource constrained settings and
for a variety of job types and frameworks.

Recently, new big data workflow managers that support
multiple execution engines have emerged. Musketeer [3] dy-
namically maps a workflow description to a variety of execu-
tion engines, including Hadoop and Spark to select the best
performing engine for the particular workflow. Similarly, [13]
optimizes end-to-end data flows, by specializing and partition-
ing the original flow graph into sub flows that are executed over
different engines. The advent of these higher-level managers
calls for an increase in the combined use of data processing
systems in the near future. Our work focuses on understanding
system design limitations that will emerge under these new
conditions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we characterize the behavior of “big data”
analytics frameworks in shared settings for which computing
resources (CPU and memory) are limited. Such settings are
increasingly common in both public and private cloud systems
in which cost and physical limitations constrain the number
and size of resources that are made available to applications.
In this paper, we investigate the performance and behavior
of distributed batch and stream processing systems that share
resource constrained, private clouds managed by Mesos.

We find that in such settings, the absence of an ef-
fective resource revocation mechanism supported by Mesos
and the corresponding data processing systems running on
top of it, leads to violation of fair sharing. In addition, the
naive allocation mechanism of Mesos benefits significantly
the framework that submits its application first. As a result
coarse-grained framework schedulers cause resource starvation
for later tenants. Moreover, when systems (either batch or
streaming) with different scheduling granularities (fine-grained

or coarse-grained) co-exist on the same Mesos-managed cloud,
resource underutilization and resource deadlocks can occur.
Finally, the overhead introduced during application startup on
Mesos affects all frameworks and significantly degrades the
performance of short running applications.

This work is supported in part by NSF (CCF-1539586,
CNS-0905237), NIH (1R01EB014877-01), the Naval Engi-
neering Education Consortium (NEEC-n00174-16-C-0020),
the California Energy Commission (PON-14-304), and Sedg-
wick Reserve.

REFERENCES

[1] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical
processing in big data systems: A cross-industry study of
mapreduce workloads. In: Proceedings of the VLDB Endow-
ment 5.12 (2012), pp. 1802–1813.

[2] A. Ghodsi et al. Dominant Resource Fairness: Fair Allocation
of Multiple Resource Types. In: NSDI. 2011.

[3] I. Gog et al. Musketeer: all for one, one for all in data
processing systems. In: Proceedings of the Tenth European
Conference on Computer Systems. ACM. 2015, p. 2.

[4] B. Hindman et al. Mesos: A Platform for Fine-Grained Re-
source Sharing in the Data Center. In: NSDI. Vol. 11. 2011,
pp. 22–22.

[5] Lambda Architecture. http://lambda-architecture.net/.
[6] F. Liang et al. “Performance benefits of DataMPI: a case study

with BigDataBench”. In: Big Data Benchmarks, Performance
Optimization, and Emerging Hardware. Springer, 2014.

[7] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia
distributed monitoring system: design, implementation, and
experience. In: Parallel Computing 30.7 (2004), pp. 817–840.

[8] Modifications of Benchmarking Code. https : / / github . com /
MAYHEM-Lab/benchmarking-code.

[9] D. Nurmi et al. The eucalyptus open-source cloud-computing
system. In: CCGRID. IEEE. 2009.

[10] K. Ren et al. Hadoop’s Adolescence; A Comparative Work-
loads Analysis from Three Research Clusters. In: SC Com-
panion. 2012, p. 1452.

[11] Z. Ren et al. Workload characterization on a production
Hadoop cluster: A case study on Taobao. In: Workload Char-
acterization (IISWC), 2012 IEEE International Symposium on.
IEEE. 2012, pp. 3–13.

[12] J. Shi et al. Clash of the titans: MapReduce vs. Spark for large
scale data analytics. In: Proceedings of the VLDB Endowment
8.13 (2015), pp. 2110–2121.

[13] A. Simitsis et al. Optimizing analytic data flows for multiple
execution engines. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. ACM.
2012, pp. 829–840.

[14] Performance Interference of Multi-tenant, Big Data Frame-
works in Resource Constrained Private Clouds. http://www.
cs.ucsb.edu/research/tech-reports/2016-08.

[15] A. Toshniwal et al. Storm@ twitter. In: Proceedings of the
2014 ACM SIGMOD international conference on Management
of data. ACM. 2014, pp. 147–156.

[16] V. K. Vavilapalli et al. Apache hadoop yarn: Yet another
resource negotiator. In: Proceedings of the 4th annual Sym-
posium on Cloud Computing. ACM. 2013, p. 5.

[17] L. Wang et al. Bigdatabench: A big data benchmark suite from
internet services. In: High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on. IEEE.
2014, pp. 488–499.

[18] Y. Yao et al. Admission control in YARN clusters based on dy-
namic resource reservation. In: 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM). IEEE.
2015, pp. 838–841.


