
CAPLets: Resource Aware, Capability-Based
Access Control for IoT
Fatih Bakir, Chandra Krintz, and Rich Wolski

University of California, Santa Barbara

Abstract—We present CAPLets, an authorization
mechanism that extends capability based security to
support fine grained access control for multi-scale (sen-
sors, edge, cloud) IoT deployments. To enable this,
CAPLets uses a strong cryptographic construction to
provide integrity while preserving computational ef-
ficiency for resource constrained systems. Moreover,
CAPLets augments capabilities with dynamic, user
defined constraints to describe arbitrary access con-
trol policies. We introduce an application specific,
turing complete virtual machine, CapVM, alongside
with eBPF and Wasm, to describe constraints. We
show that CAPLets is able to express permissions and
requirements at a fine grain, facilitating construction
of non-trivial access control policies. We empirically
evaluate the efficiency and flexibility of CAPLets ab-
stractions using resource constrained devices and end-
to-end IoT deployments, and compare it against related
mechanisms in wide use today. Our empirical results
show that CAPLets is an order of magnitude faster and
more energy efficient than current IoT authorization
systems.

I. Introduction
The Internet-of-Things (IoT) is an integration of sens-

ing, control, communications, and computing into or-
dinary physical objects in our environment. Developing
secure and efficient applications for such settings is chal-
lenging because they must operate across trust domains
comprising a vast diversity of computer architectures,
capabilities, operating systems and resource scales. This
heterogeneous and dynamically changing resource land-
scape requires applications to integrate simple battery-
powered and wall-powered microcontrollers, more capable
edge systems, and public clouds supporting hundreds to
thousands of different APIs and services.

Existing IoT programming systems either focus on a
specific IoT resource tier (i.e. the cloud), or attempt to
repurpose and amalgamate existing tools and protocols
not designed for the resource constraints, intermittent con-
nectivity, and failure frequency of IoT deployments [1], [2],
[3], [4], [5]. For example, most end-to-end IoT systems [6],
[7], [8], [9], [10], [3], [11] use a publish/subscribe (pub-sub)
model in which devices publish streams of data (often via
a nearby broker); when supported, actuation often uses a
separate protocol [12].

Similarly, for access control, many IoT systems use
Transport Layer Security (TLS) [13] protocols, based on
public-key cryptography [14], [10], [15]. These systems use
edge devices and microcontrollers to communicate with

servers and edge proxies via encrypted channels, often
using RSA certificates. Although TLS addresses many
security challenges, it also consumes significant resources
on resource restricted devices (memory, computation, net-
work, battery power, etc.) and depends on a number of
resource-intensive operations for its security. The latter
includes accurate and secure time keeping, awareness of
certificate revocations, and maintenance of root certifi-
cates, among others.
Due to the implementation complexity, resource con-

sumption, and configuration difficulty of TLS-based secu-
rity, many IoT devices have weak or no access control, and
are easily compromised [16], [17]. Moreover, the hetero-
geneity of device-maintenance interfaces and the complexi-
ties of remote device management often prevent users from
updating weak or faulty implementations when improved
software is available. As a result, many devices are placed
behind gateways or firewalls which proxy requests when
they are actually deployed [18], [19], rendering the resource
expense associated with TLS-based security on the device
needlessly redundant and costly.
Our goal, with this work, is to address these challenges

at the device level. A full CAPLets IoT deployment
uses TLS to protect client-to-client communications where
clients are hosted on relatively resource-rich platforms,
but removes the need for resource-restricted devices to
implement or proxy a TLS connection.
The primary problem with current cloud-based ap-

proaches is that they make resource-restricted devices act
as network-attached clients that access services hosted
on resource-rich platforms. Because these services use
technologies that support Internet web-services (e.g. in the
cloud) they define security protocols that do not account
for the paucity of on-device resources at the edge. As a
result, devices acting as clients must use (or proxy the
use of) the resource-intensive protocols mandated by the
services. That is, the services define the protocols that the
clients must use and, because they are often repurposed
cloud-based web services, these protocols impose heavy
resource loads on client devices.
Due to this model, current applications are dependent

on the availability of cloud services at all times for users
to access their own devices. For instance, a smart-light
needs to be connected to the cloud service even when it
is in close proximity to the user. This causes temporary
or permananent outages when Internet connectivity is

lost [20], [21] or the manufacturer no longer supports the
online service.

In this paper, we investigate the potential of inverting
this relationship so that devices become first-class – that
is, devices host services to which resource-rich clients (on
cloud servers or smartphones) make requests. Such an
approach requires the system software and its protocols
to support client and server hosting on any device in
an IoT deployment (from sensor to cloud). Unlike prior
work, which focuses on system portability for IoT [22],
[23], [24], we propose a unifying set of security protocols,
called CAPLets, that complement this previous work to
realize first-class devices.

To enable efficient access control in all IoT tiers includ-
ing low-end microcontrollers, CAPLets replaces asym-
metric digital signatures with fast symmetric MAC tags
based on Macaroons [25], introduces a cheap key exchange
mechanism, eliminating 1 TLS for client-server commu-
nications, and significantly reduces the storage footprint
associated with authorization and certificate management.
As a result, services can be hosted on sensors, on edge
systems, or in a cloud. Unique to our approach is a con-
straint mechanism that is programmable and sufficiently
flexible to represent diverse policies. As a summary of our
contributions, CAPLets
• defines a capability mechanism that is sufficiently

efficient for use by the least capable IoT devices (sen-
sors, microcontrollers, battery-powered single board
computers, etc.) as well as by more capable edge and
cloud systems;

• defines a derivation process that augments existing
mechanisms with semantic capability derivations to
enable superior flexibility of controlled sharing;

• expands what a capability token can contain through
the use of static and dynamic constraints to permit a
wider range of policies to be expressed and to provide
a protected metadata channel;

• uses metadata channels to offload policy implementa-
tion to trusted delegates across the deployment, e.g.
to authenticate users and issue capabilities that a
device can independently verify;

• defines an efficient and secure service request con-
struction mechanism that does not depend on en-
crypted channels;

• defines a secure key exchange protocol by exploiting
the cryptographic token construction; and

• supports efficient request validation, bootstrapping,
capability sharing, and revocation.

We demonstrate the claimed efficiencies with an em-
pirical evaluation of CAPLets that we conduct using
microbenchmarks and an implementation of CAPLets
for an end-to-end, first-class devices deployment, using

1CAPLets depends on TLS for client-client communications (e.g.
to transmit an identity token). However, it can replace TLS for client-
server interactions in an IoT application.

a portable IoT operating system. Our work shows that
CAPLets is an order of magnitude faster and more
energy efficient compared to existing state-of-the-art IoT
authorization systems.

II. Background and related work
Security is a challenge for end-to-end IoT systems be-

cause it requires distributed policy implementation gov-
erning a vast diversity of devices (in a multitude of trust
domains) that may have limited computing, storage, net-
work, and/or power capacities. In particular, TLS and
asymmetric cryptography computations and key storage
that are necessary to access most web services are costly
(in terms of execution time and energy expenditure) for
resource restricted devices. In addition, these public key
cryptography methods can only be used for authentication
in conjunction with some other mechanism for authorizing
the authenticated users (e.g. Access Control Lists or Role
Based Access Control). All such mechanisms require some
storage capacity on the device.
Capability systems are popular for controlling access

to distributed resources (e.g. web services [25], operating
system processes [26], and IoT [27]) because they are
inherently decentralized. Such systems use unforgeable
tokens of authority to grant client access to resources
and to facilitate sharing of access between clients. They
can also implement the Principle of Least Privilege [28]
(entities possess only the access rights that they actually
require), which is appealing in any security context.
Capabilities describe access rights associated with a

resource in a way that is forgery and tamper-proof, often
using a cryptographic signature. A concrete example of a
capability is a path and permission bits in a filesystem:
Capability = (/home/alice, {R,W,X}). A signed capabil-
ity, called a token, can be securely shared across a network.
To verify the token, the server for a protected resource,

upon receiving a request carrying the token (which the
server generated previously and signed with a secret key
known only to the server), regenerates the signature from
the capability body and compares it against the token
signature. If they match, the server “believes” the access
rights carried in the capability and executes the request
on the resource if the rights permit the access.
Capabilities can support privilege reductions, termed

derivations, without intervention by, or cooperation with,
the server. For example, Amoeba [26] implements a deriva-
tion mechanism that uses commutative hash functions on
access-right bitmaps to selectively reduce capability rights.
Much research has examined the use of capabilities as

the basis of IoT security [29], [30], [31], [32], [33], [34]
however relatively few investigations have focused on the
efficiencies necessary for microcontroller deployment. The
authors of [31] explore the use of ECC on a 32-bit micro-
controller. Our findings in this paper show that CAPLets
is two to three orders of magnitude more efficient.
Although focused primarily on cloud systems, Maca-

roons [25] provides an efficient distributed authorization

mechanism using cryptographically secure tokens. Both
Macaroons and CAPLets use HMAC based tags for effi-
cient generation and verification of tokens. Macaroons in-
troduces caveats to contextually attenuate (i.e. constrain)
tokens. CAPLets takes this design as its inspiration
for its constraints. Macaroons, however, does not run on
resource constrained devices and requires key exchange
and management (for third party caveats) to enable a
service to acquire proof of authorization from another ser-
vice (which CAPLets avoids). CAPLets is a significant
advance over Macaroons in that it
• provides a flexible, dynamic constraint mechanism

(Macaroons policies are specified at deployment and
do not change),

• accomodates arbitrary metadata channels,
• introduces frames to facilitate analysis and caching,
• has a more expressive, capability based construction,
• introduces a unified request mechanism,
• provides authenticated key exchange based on key

derivation from token tags for efficient encryption,
• has a zero copy serialization protocol, and it
• runs on the least capable of edge devices.
Vanadium [35] also uses secure tokens and inherits the

caveat design of [25]. Unlike CAPLets, however, it is
based on digital certificates and ECDSA signatures. Our
work shows that such use introduces significantly higher
overhead. {WAVE} [36] implements distributed autho-
rization for IoT. However, it heavily depends on public
key crypto and a distributed persistent storage (ULDM),
making it ill-suited for resource restricted devices. Active
certificates [37] presents a novel method for distributed
delegation by including code in offline tokens. However,
the implementation uses Public Key Cryptography and
Java, making it ill-suited to resource-restricted, device-
level deployment.

Other relevant work [18], [19] studies secure gate-
ways as a way of protecting resource restricted devices.
CAPLets is compatible with and complementary to these
approaches.

Cloud and web-based platforms [38], [39], [40] have yet
to address resource-restriction to enable device-level de-
ployment. An alternative system model, based on triggered
computation implementing a distributed event system, is
emerging as one that can support a portable, reactive,
robust, and power-efficient operating system. IFTTT [41]
is a proprietary commercial example while CSPOT [24]
and CloudPath [42] are academic works, and CSPOT
is open source. Because CSPOT also targets resource-
restricted microcontrollers, we were able modify it to
replace it’s minimal authorization logic with CAPLets.

III. Threat Model and Assumptions
CAPLets makes specific (and somewhat common) as-

sumptions about the network and physical security of the
devices. We list them here to set a common frame of
reference for the rest of the paper.

• Secrets held on devices cannot be remotely compro-
mised.

• Recovering the Message Authentication Code (MAC)
secret from a tag and a plaintext is infeasible.

• The randomness used for generating cryptographic
secrets is not guessable by external attackers.

• An attacker may control every part of the network,
including delaying, repeating, dropping, inspecting
and modifying packets at will.

IV. CAPLets
In this section, we describe core CAPLets abstrac-

tions. A capability, denoted CType(data) or just C when
their content is irrelevant, is a typed object expressing
a privilege. For instance, CDir(read, /var/log) specifies
"read access to /var/log" for the directory type. A frame,
denoted F , is a set of capabilities, which carry rights to
multiple objects as a single unit. A token, denoted T ,
is the unit of communication. It has a body, denoted
body(T), and a tag over that body. The tag is computed
with a Message Authentication Code (MAC) function.

CAPLets generates tags using a Hashed Message Au-
thentication Code (HMAC) [43], in particular HMAC-
SHA256. We use HMACs because of their efficiency char-
acteristics (we compare their performance against alterna-
tive approaches in Section V). With this construction it is
safe to transmit tokens back and forth over a network as
any modification to the body of a token is detectable, i.e.
tokens are unforgeable.
For each device, called an origin, we define a special

token R called the root token. R only contains a special
frame FR, called the root frame and FR in turn only has a
special capability, CR called the root capability. CR grants
absolute privilege to the device it is associated with.
The tag of the root token, tag(R), is computed as

MAC(Secret, FR). The Secret is a random secret gen-
erated on the device during bootstrapping (described
below). Currently, we use hardware with true random
number generators to generate this secret. Tag generation
for other tokens is also described below.
Tokens do not carry information regarding their origin

device. This means the holder of a token must know (or
discover through some external mechanism) the server
that originally generated the token, and can process the
token to grant access to protected resources to the bearer
carried therein. While traditional capability implemen-
tations include the responsibility of absolutely naming
objects [26], CAPLets refrains from doing so. The reasons
are two fold: (i) including the name (a DNS name, IP
address or a more complicated naming scheme) of the
server bloats the token sizes and (ii) in a distributed
network with several, often incompatible subnetworks,
naming exact servers is not a solved problem. For instance,
a global address for a server behind a NAT or in a non-IP
network such as Zigbee or Bluetooth does not exist.
Figure 1 shows an example of a CAPLets root token.

The tag (top bar) is generated from the frame body, using

Fig. 1. The root token for /home/alice directory. The bar shows the
token tag, which is computed as MAC(secret, FrameBody). The ?
denotes the capabilities in a frame.

a secret known only to the resource owner (e.g. a secret
stored on a device).
A. Authenticated modification

A token protects its body with the invariant that
MAC(Secret, body(T)) = tag(T), that is, the tag carried
within the token is equal to the computed tag. While
tokens with this exact form are used in practice (for
instance as JSON Web Tokens [44]), they preclude the
ability to perform offline policy delegations.

Past work on Macaroons [25] showed, however, that
it is possible to allow some controlled modification with
this cryptographic construction in the form of appending
to a token’s body. Basically, a token starts empty with
a nonce tag always available to the origin. Anyone can
append new, delimited data to the token and update
its tag with another MAC. Upon receiving an appended
token, an origin can confirm the integrity of the whole
by replaying the modifications, starting from the empty
token. Upon each append, the new tag is computed as
tag(tail :: head) = MAC(tag(tail), head). :: is the list
append operator. Note that this operation does not depend
on the secret held by the server and any party can append
data to a token without any involvement from the server.

In other words, every element in the token protects
the next one’s integrity. This mechanism is similar to
certificate verification in TLS with which a party can verify
a certificate’s integrity by following the signature chain
starting from a Certificate Authority (CA). The difference
here is that because only the server holds the origin secret,
it is the only entity that can verify an entire chain.

Note that this construction is oblivious to the contents
of the body. Macaroons [25] uses it to append caveats to
tokens. CAPLets uses this approach but extends it to
define and enforce semantic requirements associated with
each append.
B. Token derivation

Specifically, CAPLets constructs token bodies as a list
of frames, starting with FR. Only the last frame of a
token is used to describe its privileges. In other words,
the rights granted by a token are the capabilities in its
last frame. The last frame is called the leaf frame. The
other frames are present in the token for the purposes of
integrity verification and derivation checking and comprise
the derivation chain. Formally, body(T) = [FR, ..., Fleaf]
where [FR, ...] is the derivation chain.

We define a valid derivation to be one that reduces
privileges monotonically. For instance, C1 = "Read/write
Sensor1" is more privileged than C2 = "Read Sensor1".

A derivation from a frame with C2 to a frame with C1 is
deemed invalid, whereas the other way is valid. Note that
this decision is application dependent and an application
may define the C1 to C2 to be invalid as well.
A token with invalid derivations can pass the integrity

check described above. Therefore, after integrity verifica-
tion, CAPLets also checks that each derivation is valid
in a token.
The type of a capability is used for 2 purposes: serial-

ization and validation checking. The first is rather trivial:
the type of a capability is transferred as a header in
messages and during deserialization, the header is used
to reconstruct the correct object. The second is the basis
of derivation validation.
Whether a derivation is valid or not is a function of two

frames: V alidDerivation(Fold, Fnew). A token is valid if
all adjacent pairs in its body pass the validity check.

V alidDerivation(Fold, Fnew) =
∀Cnew ∈ Fnew ∃Cold ∈ Fold Cnew ⊆ Cold

(1)

In this equation, the ⊆ operator decides whether the new
capability is a subset of the old one. Therefore, the validity
check ensures that each subsequent frame in a token is a
subset of the previous one.
Whether a capability is a subset of another is an ap-

plication defined relation between the types of the given
capabilities with the special case ∀CC ⊆ CR. If the
relation between two capability types is not defined, it
defaults to false. The subset is a binary relation between
capabilities that forms a partial order. An example of the
subset relationship occurs between a directory capability
CD(DirPath) and a path capability CP (Path):

CP (Path) ⊆ CD(DirPath) =
StartsWith(Path,DirPath)

(2)

This particular relationship allows the users to legally
derive access rights to files in directories to which they
have access. For instance, if Alice holds CD(/home/alice),
she can legally derive CP (/home/alice/hello.txt).
This construction allows CAPLets applications to ex-

press flexible, natural derivations. It must be noted that
the party doing the derivation checking has the authority
to determine what is valid or invalid. However, sharing
these relationships among the server and the clients is still
beneficial to minimize non-malicious, invalid derivations.
The derivations of a token is the set of all possible tokens

that can be transitively derived from it and is denoted as
ST (for successors of T). Conversely, the tokens that can
transitively derive T is denoted PT (for predecessors of T).
From our previous definitions it follows that ∀TR ∈ PT .
Due to the cryptographic construction, only the party

who holds T ∈ PD can compute tag(D) given only
body(D) by taking tag(T) and replaying the derivations
from T ’s leaf to D’s leaf. This property is core to how a
server verifies the tag of a derived token. Upon receiving
a token T , the origin replays all frames in it over R

Fig. 2. A derived CAPLets token. The blue bar displays the frame
tag. The root frame, now in red stripes, is still present in the token,
but its contents are only used for validation purposes. ?’d lines denote
capabilities and lines with ? denote constraints.

and checks whether the tag supplied in T matches the
computed tag. If not, it rejects the token. After the tag
verification, the server checks derivation validity (and
rejects the token if invalid).

By maintaining the chain of derivations, tokens also
carry within them a form of sharing history. That is, by
looking at a token, a resource owner can trace how the
holder of this token acquired it. As we explain below,
combined with the use of identity tokens, this history
allows for a powerful yet simple auditing, debugging, and
revocation mechanism.

Figure 2 shows a derived token. The root token is at
the top (the stripes showing that while it’s contents are
visible, they are not usable). The derived frame in the
figure has two new capabilities and lacks the original one,
demonstrating the subset relationship.

CAPLets’ distinction between capabilities and con-
straints allows for efficient caching and analysis of per-
missions a token carries. For instance, a client can submit
a token to be used in a session, which the server could
verify ahead of time as much as it can (for instance time
dependent constraints cannot be verified ahead of time,
but endpoint constraints can). After that point, the client
can efficiently perform multiple requests with that token.

CAPLets uses a zero-copy network format similar to
[45], [46], improving overall verification performance.

C. Bootstrapping
To bootstrap authorization, the device generates a cryp-

tographically random secret, which it stores in internal
non-volatile memory. The internal secret is never shared
externally and short of physical attacks, is unrecoverable.
Using this secret with a MAC, CAPLets produces the
root token R. R is then transmitted securely to the
owner through the commissioning transport, typically a
wired connection. For wireless commissioning, a one time
secure channel is needed to transport the token. Post
commissioning, the device need not create or hand out
tokens (although it can).

D. Sharing
R is securely held by the resource owner, Alice. Alice

uses this root token to derive privilege-reduced request
capabilities for herself to use in accessing resources.

Alice can also share derivations of R with another
actor, Bob. To do so, she constructs a frame with only
the resources she intends to share with Bob. CAPLets
appends this frame to R and computes the new tag as
explained previously. She can safely pass this derived token
to Bob as the MAC is one-way, i.e. even though he can see
the contents R, Bob cannot recover tag(R). The transfer
of the token from Alice to Bob needs to occur over a secure
channel (e.g. using TLS) to prevent the token from being
seen by anyone other than Bob.
E. Constraints
The mechanism explained so far is limited in that an

owner of a token can only restrict it by removing a
permission from it. While sufficient for some purposes,
sophisticated authorization policies require the ability to
condition authorization on a set of circumstances that may
change after a resource is instantiated.
For example, when sharing a capability for a sensor,

the owner, Alice, may want to restrict the receiver, Bob,
such that he can only take readings when the device has
sufficient battery power. Such a restriction is difficult to
express in terms of monotonically decreasing access rights.
While a special case field of required battery level can be
added to every token, such an approach does not scale to
support a large number of restrictions.
As a generic solution for expressing arbitrary limitations

on capabilities, we introduce constraints. Constraints are
carried in frames alongside the capabilities and used to
decide whether or not the frame is valid. That is, if a
constraint is not satisfied, the frame is deemed invalid.
Constraints consist of executable code for a sandboxed

virtual machine (VM). CAPLets does not specify a VM:
it could be a fully generic VM like the Java Virtual
Machine (JVM), or a special purpose machine like eBPF
or CapVM as described in Section V. After validating a
token, a server then evaluates the constraints in the leaf
frame and if any constraint fails, it rejects the token.
During a derivation, an application can emit arbitrary

code for the VM and add it to the leaf frame. Code
contents are protected via token construction just like
capabilities.
With such a construction, CAPLets deployments can

be future-proof and enable the expression of truly flexible
authorization policies. For instance, with Macaroons [25],
the interpretation of caveats is baked in at deployment
time and they are fixed and unchangeable. As a result,
new policies that are needed after deployment cannot be
implemented. Concretely, for the above example, if the
Macaroons application did not include a "battery level
is above N%" caveat checker at build/deploy time, it is
impossible to specify such a requirement. With CAPLets,
a client application can specify it dynamically.
Constraints may depend on a variety of information

sources. During evaluation, a constraint has access to
the contents of the tokens provided by a client and key
context such as network endpoint information. They may

also access global information such as the current time or
battery level through the use of VM-calls. The set of global
state exposed to a constraint depends on the application.
For example, it is possible to authorize the constraints of
a token with other tokens for enhanced protection.

Constraints naturally integrate into the CAPLets
derivation mechanism. Since ordering between arbitrary
code is ill-defined, the subset relation between constraints
is defined to be equality. This means that each constraint
in a previous frame must appear verbatim in the next one.
Since all constraints must be met for a frame to be valid,
adding a new one can never escalate privileges.

Constraints may also express dependencies that span
multiple tokens. A token can be constrained in a way that
it is valid only if the request also presents a token with a
specific signature. Or it may require that a token contains
a specific capability to be valid. For example, an identity
constraint can be used to limit a token to be only valid
if it is being used by a specific user. We discuss identity
implementation using CAPLets in Section IV-H.

For widely used and common constraints, CAPLets
supports a static optimization where the code for a con-
straint can be baked into an application in an optimized
form and can be delegated to by regular constraints. We
call such constraints static constraints. For such cases, the
frame need not carry any code for the constraint and just
name the static constraint it depends on. Static constraints
only carry the data they need, and are very efficient both
in terms of network transfers and execution time, while
maintaining the flexibility of CAPLets.
For example, a token can be constrained to be valid only

when it is raining, as determined by reading an on-board
rain sensor. Another example is an end point constraint
which checks whether the request originates from a certain
end point. For a static rain constraint, the body of the
constraint is empty: its existence is enough to make a
decision. For the end point constraint, its body must carry
the specific end point to check at validation time.
F. Capability Revocation

CAPLets has two mechanisms for revocation with
different guarantees: eventual and immediate. Eventual
revocations are space efficient and CAPLets provides a
timeout constraint for its implementation. Tokens with a
timeout constraint are periodically refreshed by the issuer.
An issuer may revoke a token by choosing not to refresh
it at the next cycle. While this approach is good enough
for many applications, CAPLets also optionally supports
immediate revocations if needed, which requires storage at
the server (as described below).

When a token holder wishes to immediately revoke a
token she has shared, she sends a revocation request to the
origin. The server places the tag of the token on a blacklist.
Any request that contains the token with a tag in the
blacklist is rejected by the server. The check is applied on
every frame and therefore, revoking T implicitly revokes
∀DD ∈ ST as well. To prevent the unbounded growth

of the blacklist, each entry carries the expiry date of the
token along with the tag. Upon expiration, the entry is
removed from the blacklist since the expiry mechanism
will prevent the use of the token. In the unlikely event the
list grows to unacceptable levels, the owner may revoke R,
which revokes every token and clears the list.
Note that the device in this case need not refresh tokens

– it only maintains the blacklist – since the tokens may be
(and usually are) derived by the owner on a resource-rich
platform. That is, the owner may issue (and refresh) tokens
that are validatable by the device without communicating
with the device.

G. Request Construction & Validation
All other capability systems use the token only to

authorize a request delivered alongside the capability. The
server checks if the provided capability has permissions
to perform the request. Because the request is included
separately, it is possible (and often convenient or expedi-
ent) to transmit a capability with higher privilege than
the request requires. This is arguably a violation of the
Principle of Least Privilege [47].

CAPLets takes an alternative approach and unifies
service requests and capabilities. We exploit the fact
CAPLets capabilities are arbitrary objects, and encode
requests as special capabilities. Each service request is
expressed as its own capability type by placing it in a
leaf frame. For instance, a read request on a file can
be placed inside a leaf frame where the previous frame
includes read access rights for the file. In this case, the file
read permission is a superset of read request capability on
that file. CAPLets’ construction ensures the derivation
checks succeed only if the frame before the request frame
has sufficient access rights to perform the request. We
denote request capabilities as CReq.
A request capability must specify an operation precisely.

We enforce this by mandating a request capability not be
the superset of any other capability. In practice this means
that any frame containing a request capability cannot be
further derived. This ensures that once a request token
is crafted, it is immutable. It can be performed as it is
or discarded, but partial application is not allowed. This
construction ensures the integrity of requests even when
transmitted in plain text, allowing for enhanced efficiency
when confidentiality is not needed.
It is sometimes convenient to create requests that de-

pend on other tokens, for instance as proof of an earlier
action such as authentication. Tokens passed alongside a
request token for supporting purposes are called auxiliary
tokens. To prevent an actor from using the auxiliary tokens
separately with other, unintended, requests, CAPLets
requires that clients to place a signature constraint with
the signature of the request token in the leaf frames of
each auxiliary token. This constraint ensures that a token
is only valid if it is being used alongside a token with the
specified signature.

Fig. 3. A request token comprising implied rights carried by previous
frames. A request token may only have request specifications and
constraints in it’s last frame. Since the request is delivered as a
derivation, no further checks are necessary.

Upon receiving a request, a server performs three vali-
dation steps on all tokens:
Signature verification: The server reconstructs the final
tag by starting with the root tag and replaying derivations
in the chain. If the resulting tag does not match the tag
provided by the token, the request is rejected.
Derivation validation: Every link in the derivation
chain is validated for valid derivations as described in
IV-B. Every constraint in the previous frame must be
verbatim present in the next frame. If these conditions
are met in every link in the chain, the last frame is legally
derived by definition. If any invalid derivation is performed
at any step, the request is rejected.
Constraint validation: Constraints in all the leaf frames
are checked. If any of the constraints are unmet, the
request is rejected.
If the request is not rejected in any step, it is served.
H. Identities in CAPLets
To represent identities in CAPLets, we introduce

identity capabilities. An identity capability for a certain
identity, for instance Bob, is proof that the holder of
such a capability is indeed, Bob. The issuance of such
identity capabilities is not directly specified by CAPLets.
They can be directly issued by the owner of the device,
Alice, if she wishes to implement an authentication service
herself. Identity capabilities use the same mechanism as
regular capabilities, and thus support derivations. This
means that the issuance of identity capabilities can be
offloaded to a trusted identity provider, as with regular
capabilities. This provider can use existing authentication
services such as LDAP [48] and issue CAPLets identity
tokens for successful authentications. Such tokens should
have a timeout constraint to facilitate revocation. Since
the tokens are generated by a computationally powerful
and non-power-constrained machine, users can routinely
refresh them.

With this formulation, the user Bob can acquire a token,
TBob, that proves to the device that he is Bob. Note that
regardless of how Bob receives it, TBob ∈ SR and it can be

verified with the regular derivation process, precluding the
need for a complex public key management for the server.
Either the owner issued the token directly, or she shared an
intermediary identity root token with an identity provider,
which then derived an identity token for Bob from it.
An identity constraint limits a token to be only valid

if presented alongside a specific identity capability. When
Alice wishes to limit a token to be only used by Bob, she
places an identity constraint on the token and shares it
with Bob. When performing a request with that token,
Bob includes his identity token, which the server checks
using a constraint validator. Without the identity token,
the access right token will not be validated. Figure 4
demonstrates an end to end interaction with an external
identity provider.

ID

Bob

5

Owner

2

3

4

Device

6 1

Fig. 4. 1. Device delivers the root token to the owner during
provisioning. 2. The owner registers the device with an identity
provider service. 3. Owner shares a Bob-id-constrained token with
Bob. 4-5. Bob receives a Bob-id token to be used with the device. 6.
Bob delivers a request token alongside his id token. The thick edge
denotes a client-server communication and is a CAPLets channel.
The thin edges use a TLS based protocol, such as HTTPS or SSH.

An identity token is only ever used as an auxiliary
to another request token and is protected by the signa-
ture constraint explained in Section IV-G. Note that the
body of the identity capability and constraint types are
dependent on the desired identification mechanism. The
possibilities range from a single integer to variable length
strings encoding complex identities. Since an identity to-
ken generated for a specific server will not be valid for a
different server due to signature mismatches, even a single
integer provides security.
I. CAPLets Key Exchange
So far we have focused on authorization. While

CAPLets can securely perform request authorization
without an encrypted channel due to its immutable request
construction, the bodies of requests and responses are
visible to attackers. Moreover, responses are not authen-
ticated. The conventional approach to this problem is to
employ TLS channels [3], [10], [25], [35]. However, TLS
based encryption has many drawbacks including certificate
management on devices and, as we quantify in our evalu-
ation, requiring slow and power hungry operations. While
TLS might be as efficient as possible for the guarantees
it makes, we believe that not all such guarantees are
as desirable in an IoT context (versus an Internet/cloud
context). In this section, we describe how we exploit the

cryptographic construction to provide a limited but effi-
cient form of encrypted channel among CAPLets parties.
We provide a formal proof of the security of our algoritm
against passive, replay, and man in the middle attacks as
an Appendix.

At the core of our algorithm is the observation that
tag(T) forms a shared secret among the users who hold
any token in T ∪ PT . That is, a party can recover the tag
from a body if and only if they hold a token in this set.

As described above, we use this property to ensure token
integrity. However, it is also possible to use it to derive
a secure symmetric key among anyone within this set,
particularly, between the server and any user, since the
server holds R, the root token.
For this purpose, we introduce a new leaf capability

type: an encryption capability, denoted as E. An encryp-
tion capability E has the following properties: ∀CE ⊂ C
and ∀CC 6⊂ E. This means that an encryption object can
be derived from any capability and no other capability can
be derived from an encryption object.

When a client wishes to set up an encrypted channel
with anyone holding T ∪ PT , they derive an encryption
token TE from T that has only the encryption capability in
the leaf frame and transmits the token body without
the tag to the server. Upon receiving an encryption token,
the server will recover the shared secret tag(TE). At this
point, both parties can generate matching keys kTE

for
encryption through a Key Derivation Function (KDF).
Both parties then challenge the other side to compute
MAC(tag(TE), N{C,D}), N{C,D} is chosen at random by
each party respectively.

The challenge uses the same construction we use to
compute derived tags and may seem susceptible to an
attack where an attacker asks a party to compute the
tag of a STE

. For this reason, we have defined TE to be
non-deriveable, i.e. STE

= ∅. While the cryptographic
construction allows such a token, the logical construction
prevents its use. This is a case where past approaches
to capability construction are insufficient to accomodate
arbitrary metadata channels.

Instead of using tag(TE) directly to derive encryption
keys, an authenticated Ephemeral Diffie-Hellman (DHE)
key exchange can be employed to enhance this algorithm
with Perfect Forward Secrecy (PFS). In DHE key ex-
changes, both parties generate a temporary public and
private key pair and share the public parts over the
network. Upon receiving the public key of the other party
they combine their private key and the public key of
the other party to agree on the same key. Since any
potential attacker only sees the public parts, they cannot
compute the shared key. However, unauthenticated DHE
is susceptible to trivial Man in the Middle (MitM) attacks.
To prevent this, the DH public keys are authenticated. For
instance, if both parties had long term public keys, they
could sign their messages so that the other end can confirm
with the long term public key.

Client Device

body(TE) with NC
Compute tag(TE)

MAC(tag(TE), NC)||ND
Pick random ND

MAC(tag(TE), ND)
Verify MAC

MkTE
||MAC

Fig. 5. CAPLets key exchange: tag(TE) is not recoverable by
an attacker and forms a shared secret. Both parties can ensure
the other end knows the secret by sending each other challenges.
Once authentication is done, the session key kTE

is computed as
KDF (tag(TE)). Mk means the encryption of M with key k with
some symmetric cipher. The MAC is computed over Mk.

Client Device

body(TE) with NC
Compute tag(TE)

QD||MAC(tag(TE), QD)
QC ||MAC(tag(TE), QC)

Verify MAC

Mk||MAC

Fig. 6. Perfect-forward-secrecy secure CAPLets key exchange:
tag(TE) is not recoverable by an attacker and forms a shared
secret. Both parties generate ephemeral public-private key pairs
(QC , dC), (QD, dD) and share tagged public keys. Parties authenti-
cate each other by verifying the received MAC. After authentication,
session key k is computed as dC ∗QD and dD ∗QC for the client and
device, respectively. Note that the session key is not derived from
tag(TE). Mk is the encryption of message M with key k via some
symmetric cipher. The MAC is computed over Mk.

In the case of TLS, a digital signature algorithm such
as RSA or ECDSA (Elliptic Curve Digital Signature Al-
gorithm) must be used for this purpose. However, digital
signatures are compute intensive and consume significant
energy. In CAPLets, the parties instead use the shared
secret tag(TE) with an HMAC to authenticate their DH
public keys (QC and QD in Figure 6).
For CAPLets, PFS means that if tag(TE) is compro-

mised at some future time, an attacker cannot decrypt any
past communication even if they stored all the packets
between the parties. However, as we will demonstrate
in our evaluation, PFS consumes an order of magnitude
more energy than the rest of the entire communication. In
practice, IoT communication often loses value with time,
and by the time an attacker recovers a tag and decrpyts
past data points, the data may already be obsolete. When
PFS is necessary, the CAPLets implementation is still
more effficient than TLS due to its ability to use MACs
instead of digital signatures.

CC3220SF nRF52840 ESP8266
Processor 80 MHz

Cortex-M4
64 MHz
Cortex-M4

80 MHz
Xtensa

Memory 256KB 256KB 80KB
Crypt HW Yes Yes No
Network WiFi BLE WiFi
Coremark 87 212 191

TABLE I
32-bit devices used in the experiments.

Once the key exchange is finished, the application is
free to use the key with any suitable symmetric cipher.
Our prototype uses AES-CTR and HMAC-SHA256 in a
correct encrypt-then-MAC construction.

As mentioned above, anyone holding a token in PTE
can

actively intercept this key exchange. Since tag(TE) is the
only shared knowledge among the device and a user, this
is impossible to prevent (even with TLS, certificates would
have to be pre-exchanged, i.e. another shared knowledge).
However, |PTE

| can be minimized, for instance by the
owner issuing special purpose tokens to users that are only
used to derive encryption tokens. In that case, |PTE

| = 1,
with the device owner being the only other party who can
listen to the conversations. We view this last point as a
desirable property as a device owner should be able to
monitor communication to/from the devices they own.

V. Experimental Evaluation
In this section, we evaluate CAPLets using an end-to-

end experiment that couples an IoT device at the edge
with the cloud. We compare CAPLets against two ma-
ture and commercially available systems for implementing
IoT applications using cloud computing. We also analyze
the performance of CAPLets using a set of microbench-
marks to help illuminate its efficiencies.

A. Devices, Software, and Setup
Table I shows the resource constrained hardware plat-

forms that we consider as end devices in this study. We
consider three 32-bit microcontrollers, each with different
resource configurations (processor speed, memory size,
and network type). Two of the three devices have hard-
ware that performs cryptographic operations efficiently
(demarked Crypt HW in the table). Coremark [49] refers
to the approximate compute power of each processor.

We execute CAPLets on these devices on bare metal,
using cloud SDKs and FreeRTOS from Amazon Web Ser-
vices (AWS) and Microsoft Azure, and using CSPOT [24]
– an operating system and runtime designed for cloud and
IoT applications. For all experiments, we optimize for code
size and use the same drivers across devices.

Our bare metal environment consists of a minimal
implementation designed to achieve and measure the
maximum efficiency of the methodology in isolation. As
Macaroons [25] has no implementation that can run on a
microcontroller, we benchmarked it and CAPLets on an
x86 PC.

We conduct experiments using two deployments:

Edge: The device communicates with an edge system (i.e.
an Intel NUC [50]) on the same WLAN network. For AWS
and Azure experiments, the device communicates with a
Greengrass or IoT Edge virtual machine instance on the
NUC over MQTT [6]. CAPLets communicates with the
instance via TCP.
Cloud: The device communicates with resources hosted
in a public cloud (connected via a fast academic network
located in California). For AWS and Azure, the device
communicates with an IoT Core or IoT Hub instance,
respectively, over MQTT. These instances are located in
Oregon and California, respectively. CAPLets uses an
AWS EC2 instance in Oregon.
We configure AWS and Azure software (and reprogram

the device) to use the different communication end points
(edge and cloud). For CAPLets, neither the software on
the device nor on the edge had to be modified since the
device is oblivious to the origin and the same authorization
mechanism works regardless of the client location (i.e. it
uses our first-class-devices model).
We measure energy consumption by sampling the mo-

mentary power use of the processors. We use an INA219
sensor which we set to 2KHz (the maximum sampling rate
the sensor supports) and the highest resolution.
B. End-to-end Evaluation
As an end-to-end experiment, we measure the time and

energy costs of a sensor capturing and communicating a
sample to a user. We implement this application using the
services and software provided by the leading IoT service
providers, AWS and Azure.
Specifically, we use Amazon FreeRTOS on the device

side, AWS Greengrass on the edge, and AWS IoT Core on
the cloud for AWS. For Azure, we use FreeRTOS with the
Azure SDK, IoT Edge, and IoT Hub for device, edge, and
cloud, respectively. Communication is handled by AWS
or Azure IoT SDK libraries, which use an MQTT [6]
implementation of a publish-subscribe protocol between
the end device and edge or cloud. The providers issue each
device a private key and certificate to communicate with
the services. We inject the key into our CC3220SF device
at firmware build time. When possible, CAPLets and the
SDKs perform the cryptographic operations in hardware.
We also evaluate an implementation of the application

for CSPOT [24] – an experimental and open source
operating system designed specifically for coupled IoT-
and-cloud applications. CSPOT is useful to this study
because it is a complete system capable of implementing
device-level services directly, without a proxy, as well as
services hosted by edge and cloud resources.
AWS and Azure implement proxy-based approaches in

which an edge device or a cloud resource (but not a
resource-restricted device such as a microcontroller) store
access control lists for all users and devices. The resource
also performs authentication.
In AWS and Azure, the device wakes up every 5 minutes,

collects a sample, associates with the WiFi network, es-

Operation Time ms Enrgy mJ Code KB
No Auth
Edge 95 (20) 21 (4) 45
CAPLets
Edge (bare metal) 99 (28) 22 (6) 48
No Auth
Edge + CSPOT 119 (12) 22 (2) 49
CAPLets
Edge + CSPOT 119 (16) 24 (3) 51
AWS
Greengrass 825 (231) 148 (49) 75
Azure 1715
IoT Edge (119) 251 (22) 75
CAPLets
Cloud 121 (28) 26 (5) 48
CAPLets
Cloud+CSPOT 165 (25) 32 (6) 51
AWS 1696
IoT Core (908) 314 (90) 230
Azure 3168
IoT Hub (244) 457 (32) 130

TABLE II
End-to-end application performance. All execution

measurements and standard deviations (in parentheses) are
over 100 consecutive executions. We consider an edge (top

table) and cloud deployment (bottom table).

tablishes a secure connection to the respective server over
TLS (authorization is implicit in the establishment of this
channel), sends the sample over MQTT and goes back to
deep sleep. When users wishes to view the samples, they
visit the cloud/edge service and read the samples.

For CAPLets, the device wakes up every 5 minutes,
collects a sample, records it and goes back to deep sleep.
When a user wishes to view the samples, they initiate
a connection to the device. As we employ 802.11 Long
Sleep Interval (LSI) feature, the device is soon woken up
by the network processor, the communication succeeds,
the user authorizes herself to the device, and receives the
samples. This means that for uninteresting samples, i.e.
samples that the user never reads, CAPLets conserves
battery power. LSI allows a WiFi station to stay associated
with the access point during prolonged sleeps. Instead of
dropping received packets, the access point buffers them
until the next beacon frame sent out frequently (at least
once every few seconds). The beacon frames are handled
by the low level network hardware and the device does
not wake up unless there is a packet for it. Therefore, a
CAPLets user will not wait for 5 minutes before they can
read existing samples, but at most a few seconds.

We measure end-to-end performance and energy use
from the sensor server (end device) perspective. We exe-
cute the application 100 times for each deployment (Azure,
AWS, CAPLets, and CAPLets with CSPOT using
edge and cloud configurations). We compute the average
and standard deviation for awake time in milliseconds and
energy use in millijoules. Awake time is the time it takes for
the processor to wake from deep sleep and associate with
WiFi network to handle one sensor sample and go back

to sleep. We also measure application code size. Table II
shows the results.
We include No Auth experiments for completeness

which is CAPLets request handling with security checks
disabled. These results show that the CAPLets security
checks only account for about 4% of the overall processing
time as can be seen by comparing the No Auth row with
CAPLets Edge. CAPLets code size with or without
CSPOT is 4 and 2 times smaller than that of Amazon
FreeRTOS with both AWS and Azure SDKs, making
space for more features on the end device. The results for
CSPOT show that CAPLets, when integrated with a full
system that spans device, edge, and cloud tiers in an IoT
deployment, adds no discernable overhead.
The latency improvement should not be considered only

in the context of user-perceived latency, but also in the
context of battery life. As the CAPLets application
serves the request and goes back to deep sleep, TLS based
versions are still busy performing the handshake. As this
operation is performed for every sample for the cloud
systems, it inevitably will consume its battery earlier,
resulting in unavailability.
For the cloud deployment, AWS and Azure both require

the devices to be awake for an order of magnitude longer
per request than using CAPLets. Part of the disparity
stems from the fact that our approach minimizes the
responsibilities the end device has to perform per sample.
Consider the steps taken for each data point on the AWS
set up: (i) perform a DNS look up to determine the remote
end point in AWS, (ii) perform time synchronization for
certificate expiry verification (iii) verify the authenticity
of the remote end point by walking a certificate chain (iv)
establish a TLS session, (v) establish an MQTT session,
and (vi) transmit the sample.
Although some steps can be cached, and are in these

experiments, they must execute periodically on the end
device. Except for MQTT, no protocol involved in these
steps was designed for a memory, processor, and power
constrained microcontroller. Our approach offloads costly
operations to the clients. For instance, instead of the
device performing a DNS lookup to locate the server, the
client performs a DNS lookup to locate the device.
C. Microbenchmark Evaluation
In this section, we conduct a broad range of microbench-

mark experiments to expose the performance characteris-
tics of CAPLets. In particular, we evaluate the costs of
cryptographic primitives that are performed per request
for CAPLets versus competitive approaches.
In its core CAPLets depends on 2 cryptographic prim-

itives: HMAC-SHA256 for token construction and message
authentication and AES-CTR for securing the communi-
cation. If PFS key exchange is used, it also uses ECDHE
for temporary session key exchange.
The primary competitors of CAPLets are TLS-based

cloud services and Vanadium [35]. Both these approaches
use asymmetric cryptography to authenticate parties. For

Operation CC3220SF nRF52840 ESP8266
ECDHE (SW) 13679.07 1596.87 116592.71
ECDHE (HW) N/A 537.45 N/A
AES128-CTR (SW) 73.95 9.76 96.72
AES128-CTR (HW) 19.70 1.73 N/A
HMAC-SHA256 (SW) 75.92 8.42 93.32
HMAC-SHA256 (HW) 10.65 4.94 N/A
ECDSA Sign (SW) 15592.68 2730.87 122617.24
ECDSA Sign (HW) 15337.49 456.05 N/A
ECDSA Verify (SW) 16914.24 3007.92 138659.75
ECDSA Verify (HW) 17023.39 457.65 N/A

TABLE III
Average energy consumption for microbenchmarks over 100

runs. The units are microjoules.

Handshake Energy Use
TLS PFS 1451.16
CAPLets PFS 547.33
CAPLets Non-PFS 9.88

TABLE IV
Energy consumption for the handshakes of TLS and

CAPLets on nRF52840. The units are microjoules.

IoT systems, Elliptic Curves are preferred [51], [52] due
to their smaller key sizes for equivalent security [53]
and better performance characteristics when compared to
RSA [54]. Therefore, we only consider cipher suites with
ECDSA.

For the ECDHE experiments, we use Curve25519 for
its efficient implementation [55]. For the ECDSA exper-
iments, we use the p256 [56] curve. These experiments
demonstrate the cost of using long term public keys for
parties to authenticate themselves. These operations are
performed when a device acts as a client for cloud or edge
service, as in AWS IoT Core and Greengrass.

Table III presents the average energy consumption
in microjoules for each microbenchmark for the three
hardware platforms. Note that timings for this set of
microbenchmarks are comparatively similar showing the
same ratios of performance in comparison (i.e. CAPLets
is one to two orders of magnitude faster). We omit the
timing comparison due to space constraints.

TLS based protocols sign ECDHE messages with
ECDSA in the handshake, so their cost is ECDHE +
ECDSA Sign + ECDSA Verify. With CAPLets, the cost
is ECDHE + 2 * HMACs. Our results show that an HMAC
uses 2 to 3 orders of magnitude less energy than either
ECDSA operation. After key exchange, both TLS and
CAPLets switch to an efficient, symmetric cipher.
Our efficiency gains stem from the fact that over a

connection, a TLS protocol uses every operation in Ta-
ble III. CAPLets on the other hand eliminates the use
of the bottom cluster, and uses ECDHE only for PFS.
Table IV shows that with PFS, a CAPLets handshake
consumes about 3 times less energy compared to TLS. If
PFS is not needed, CAPLets consumes at least 2 orders
of magnitude less energy.

Note that the hardware-based ECDSA implementation

1 2 3 4 52.0000

4.0000

6.0000

8.0000

10.0000

Number of frames/caveats

Ve
rifi

ca
tio

n
tim

e
(m

ic
ro
se
co
nd

s) CAPLets
Macaroons

Fig. 7. Time it takes for CAPLets and Macaroons to verify a token.

on the CC3220SF performs on-par with or worse than the
software implementation. The ECDSA "acceleration" takes
place on the network processor of the CC3220SF, which
has a binary-blob firmware, preventing us from investigat-
ing further. This observation, however, is consistent with
existing literature [57]. Thus we consider it anomalous and
likely due to a firmware bug or misconfiguration specific
to ECDSA on the CC3220SF.
Finally, we benchmark CAPLets and Macaroons verifi-

cation operations for different frame counts (using frames
in CAPLets and and caveats in Macaroons). We show
the results in Figure 7. Surprisingly, CAPLets performs
slightly but consistently better than Macaroons even
though the cryptographic construction is the same. To
ensure there is no difference in cryptographic implementa-
tion, we modified our code to use the HMAC implemen-
tation used by Macaroons. We find that the performance
difference is due to the use of zero copy deserialization
in CAPLets. Once Macaroons receives a packet over
the network, it allocates memory for each caveat and
deserializes its format into the buffers, which take linear
time. CAPLets, alternatively, operates on the received
buffer directly with no deserialization step.

D. Evaluating Constraints
We next evaluate the performance of dynamic con-

straints (cf Section IV-E). We consider three virtual ma-
chines: (i) eBPF [58], which is used in the Linux kernel for
policy control; (ii) a popular VM called WebAssembly [59]
(Wasm); and a low-level VM that we developed, called
CapVM, that is specifically designed and optimized for
CAPLets.
eBPF is a VM originally designed to filter network pack-

ets without involving the user space. Since the programs
run in the kernel space, the runtime is well-isolated and
its programs are limited in many ways (execution limits,
5 parameter limit for functions, lack of a linker etc).

Wasm is a general purpose VM designed for efficient
execution in web browsers. It defines a stack machine and
a memory-safe execution environment so that “unsafe”
languages such as C or C++ can use it as a compilation
target for execution in a browser. In this study, we use
state-of-the-art eBPF and Wasm interpreters [60] and [61].

Our goal with the CapVM bytecode design is compact-
ness and direct interpretability on embedded systems. Our
design uses a register based ISA and provides complex
instructions to access system resources and validation
context, in addition to those for arithmetic, logical, and
control operations. Its bytecode uses variable size instruc-
tions for maximum code compactness with configurable
fixed size opcodes for efficient decoding. The ISA is un-
typed and does not perform any dynamic type or memory
safety checks. For sandboxing, all the memory accesses
are confined to the fixed, linear memory of the VM, so
any unsafe user code is contained within the program and
cannot affect the rest of the system. Any fault during the
execution results in the current request being rejected.
CapVM will be released as open source if/when this paper
is published.

To evaluate the performance of this bytecode and its
interpretation, we use the CC3220SF device. We consider
a simple timeout constraint for this study. The constraint,
written in C++, renders a token invalid after a certain
amount of time has passed. We compile the code to
eBPF and Wasm using clang [62] with size optimizations.
Because no higher level language yet exists that can emit
code for CapVM, we write the constraint code by hand,
directly in the CapVM bytecode language. We impose an
executed instructions limit to all VMs to prevent policies
from running indefinitely. In case an execution exceeds the
limit, the constraint will be rejected.

We show the measurements from these two implemen-
tations of the bytecode constraint in Table V-D. We
evaluate VM Code Size (row 1), Bytecode Size (row 2),
Validation Memory size (row 3), and Validation Time (row
4). Columns two to four show the results for the various
alternatives. The final column (for reference) shows the
metrics when we implement the constraint in native code.

This experiment shows some interesing results. CapVM
is an order of magnitude faster and consumes around 1%
the energy of Wasm. eBPF, on the other hand, has similar
performance and energy use characteristics. However, its
bytecode is large compared to CapVM, and double that
of Wasm. Code sizes (of their interpreters) of CapVM and
eBPF are similar and add between 1 and 7 kB to the
static version. Wasm, on the other hand, takes up about
55 kB of space due to its optimization pipeline. Our results
show that this VM’s focus on high performance hurts its
memory use and performance significantly. Since policies
are one off executions rather than long running tasks, we
believe Wasm is inappropriate for such use.

The large bytecode difference between CapVM and
eBPF can be explained by eBPF still being a general pur-

CapVM eBPF Wasm Static
Code Size 10.5 kB 16 kB 65 kB 9.5 kB
Bytecode 23 Bytes 400 Bytes 193 Bytes N/A
Memory 216 Bytes 512 Bytes 30510

Bytes
16 Bytes

Time 144 µs 248 µs 10560 µs 11 µs
Energy 16 µJ 20 µJ 1125 µJ 2.5 µJ

TABLE V
Performance of bytecode constraint implementations on

Validation operation: CapVM, eBPF and Wasm. Code Size is
for each VM implementation with the constraint; Bytecode
size is the size of the rendered constraint. Static shows the

size of a direct C++ compilation of the constraint.

pose VM while CapVM is designed specifically for the in-
terpretation of constraint checkers in resource constrained
devices. For instance, CapVM provides instructions to
navigate a token, whereas eBPF must emit code to do
the same. Finally, eBPF uses a fixed, 8 byte instruction
encoding, bloating programs.
In conclusion, both eBPF and CapVM show sufficient

performance, energy and memory use characteristics to
implement CAPLets constraints. Having to generate
CapVM assembly manually is tedious, and is, at present,
a disadvantage. However, the smaller byte code size may
warrant the inconvenience. Further, eBPF imposes some
strict restrictions: functions can have up to 5 arguments,
any more and the function does not compile. There also is
no standard linker for it, so programs must be written in a
single translation unit. Wasm has no such limitations, but
its state-of-the art interpreter is large and less performant
in terms of speed, energy, and size.

VI. Conclusion
In this paper, we present CAPLets, an efficient, secure,

and flexible distributed access control mechanism that
provides a uniform authorization model for a broad spec-
trum of resource scales and non-trivial policies. CAPLets
is uniquely optimized for IoT deployments with resource
restricted devices, such as microcontrollers, as the main
actors. In this setting, the optimizations it provides are
substantial. We believe this consideration is key to facili-
tating greater and more efficient security mechanisms for
IoT settings.
We design CAPLets to execute efficiently on the least-

capable devices in these deployments (i.e. microcontroller-
s/sensors with little memory and processing power, bat-
teries, and duty cycles), while being able to scale up for
use on the most capable (cloud systems). We also define
new abstractions for CAPLets that can be used to build
a wide range of efficient security measures for common
attack scenarios and to facilitate encrypted channels. We
empirically evaluate the performance of CAPLets and
compare it against state-of-the-art authorization mecha-
nisms in use today. We find that CAPLets is an order
of magnitude faster and more energy efficient than this
prior work for both resource constrained devices and end-
to-end IoT (i.e. sensor-edge-cloud) deployments. We also
show that CAPLets performs similarly or better than

Macaroons [25], while qualitatively improving portability
and flexibility and introducing new features, including
secure key exchange without the use of TLS.

References
[1] “AWS Lambda IoT Reference Architecture,” http://docs.

aws.amazon.com/lambda/latest/dg/lambda-introduction.html
[Online; accessed 1-Nov-2016].

[2] Microsoft, “Iot edge: Microsoft azure.” [Online]. Available:
https://azure.microsoft.com/en-us/services/iot-edge/

[3] “GreenGrass and IoT Core - Amazon Web Services,” https://
aws.amazon.com/iot-core,greengrass/, [Online; accessed 2-Mar-
2019].

[4] Microsoft, “Iot hub: Microsoft azure.” [Online]. Available:
https://azure.microsoft.com/en-us/services/iot-hub/

[5] N. Berdy, “How to use Azure Functions with IoT Hub message
routing,” 2017, "https://azure.microsoft.com/en-us/blog/how-
to-use-azure-functions-with-iot-hub-message-routing/".

[6] A. Banks and R. Gupta, “Mqtt v3.1.1 protocol specification,”
2014.

[7] A. Stanford-Clark and H. Truong, “Mqtt for sensor networks
(mqtt-sn) protocol specification,” 2013.

[8] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Wheres
the bear?–automating wildlife image processing using iot and
edge cloud systems,” in ACM Conference on IoT Design and
Implementation, 2017.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
Case for VM-based Cloudlets in Mobile Computing,” IEEE
Pervasive Computing, vol. 8, no. 4, 2009.

[10] “Azure Internet of Things,” https://www.microsoft.com/en-us/
cloud-platform/internet-of-things-azure-iot-suite, [Online; ac-
cessed 22-Aug-2016].

[11] “Fog Data Services - Cisco,” http://www.cisco.com/c/en/us/
products/cloud-systems-management/fog-data-services/index.
html, [Online; accessed 22-Aug-2016].

[12] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability
in internet of things: Taxonomies and open challenges,” Mobile
Network Applications, vol. 24, 2019.

[13] E. Rescorla, “The transport layer security (tls) protocol version
1.3,” Internet Requests for Comments, IETF, RFC 8446, August
2018.

[14] “Internet of Things - Amazon Web Services,” https://aws.
amazon.com/iot/, [Online; accessed 22-Aug-2016].

[15] “Internet of Things Solutions - Google Cloud Platform,” https:
//cloud.google.com/solutions/iot/, [Online; accessed 22-Aug-
2016].

[16] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi,
M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher,
C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, “Understand-
ing the mirai botnet,” in USENIX Security Symposium, Aug.
2017.

[17] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu, “Security
vulnerabilities of internet of things: A case study of the smart
plug system,” IEEE Internet of Things Journal, vol. 4, no. 6,
Dec 2017.

[18] R. Ko and J. Mickens, “Deadbolt: Securing iot deployments,” in
Proceedings of the Applied Networking Research Workshop on,
2018, pp. 50–57.

[19] R. Trimananda, A. Younis, B. Wang, B. Xu, B. Demsky, and
G. Xu, “Vigilia: Securing smart home edge computing,” in 2018
IEEE/ACM Symposium on Edge Computing (SEC), 2018, pp.
74–89.

[20] M. Bergen, “Google outage reignites worries about
smart home without backups.” [Online]. Available:
https://www.bloomberg.com/news/newsletters/2020-12-16/
google-outage-reignites-worries-about-smart-home-without-backups

[21] iRobot, “An amazon aws outage is currently impacting our
irobot home app...” [Online]. Available: https://twitter.com/
iRobot/status/1331667670383685635

[22] X. Shelby, K. Hartke, and C. Borman, “The Constrained Appli-
cation Protocol (CoAP),” IETF, RFC 7252, 2014.

[23] V. Eswara, G. Srivastava, and S. Biswas, “Riotnet: Reactive iot
control network,” in IEEE International Conference on Internet
of Things, June 2017.

[24] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin,
“Cspot: Portable, multi-scale functions-as-a-service for iot,”
in Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, ser. SEC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 236–249. [Online]. Available:
https://doi.org/10.1145/3318216.3363314

[25] A. Birgisson, J. G. Politz, Úlfar Erlingsson, A. Taly, M. Vrable,
and M. Lentczner, “Macaroons: Cookies with contextual caveats
for decentralized authorization in the cloud,” in Network and
Distributed System Security Symposium, 2014.

[26] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse,
and H. van Staveren, “Amoeba – A distributed Operating
System for the 1990’s,” IEEE Computer, vol. 23, no. 5, May
1990.

[27] S. Gusmeroli, S. Piccione, and D. Rotondi, “A Capability-based
Security Approach to Manage Access Control in the Internet
of Things,” Mathematical and Computer Modelling, vol. 58, no.
5-6, 2013.

[28] J. H. Saltzer, “Protection and the control of information sharing
in multics,” Communications of The ACM, vol. 17, no. 7, pp.
388–402, 1974.

[29] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based
security approach to manage access control in the internet of
things,” Mathematical and Computer Modelling, vol. 58, no. 58,
pp. 1189–1205, 2013.

[30] P. N. Mahalle, B. Anggorojati, N. R. Prasad, and R. Prasad,
“Identity authentication and capability based access control
(iacac) for the internet of things,” Journal of Cyber Security
and Mobility, vol. 1, no. 4, pp. 309–348, 2012.

[31] J. L. Hernandez-Ramos, A. J. Jara, L. Marin, and A. F. S.
Gomez, “Dcapbac: embedding authorization logic into smart
things through ecc optimizations,” International Journal of
Computer Mathematics, vol. 93, no. 2, pp. 345–366, 2016.

[32] S. Gusmeroli, S. Piccione, and D. Rotondi, “Iot access control
issues: A capability based approach,” in 2012 Sixth Interna-
tional Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing, 2012, pp. 787–792.

[33] R. Xu, Y. Chen, E. Blasch, and G. Chen, “A federated
capability-based access control mechanism for internet of things
(iots),” in Sensors and Systems for Space Applications XI, vol.
10641, 2018.

[34] ——, “Blendcac: A blockchain-enabled decentralized capability-
based access control for iots,” in 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), 2018, pp. 1027–1034.

[35] A. Erbsen, A. Shankar, and A. Taly, “Distributed authorization
in vanadium,” arXiv preprint arXiv:1607.02192, 2016.

[36] M. P. Andersen, S. Kumar, M. AbdelBaky, G. Fierro, J. Kolb,
H.-S. Kim, D. E. Culler, and R. A. Popa, “WAVE: A decen-
tralized authorization framework with transitive delegation,”
in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 1375–1392.

[37] N. Borisov and E. A. Brewer, “Active certificates: A framework
for delegation,” in NDSS, 2002.

[38] S. Authors, “Spring framework.” [Online]. Available: https:
//spring.io/projects/spring-framework

[39] N. Authors, “Node.js web application framework.” [Online].
Available: https://expressjs.com/

[40] “Google app engine,” "http://code.google.com/appengine/".
[41] I. Authors, “Ifttt, if this then that,” accessed 22-May-2020.

[Online]. Available: https://ifttt.com/
[42] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, and

E. de Lara, “Cloudpath: a multi-tier cloud computing frame-
work,” in Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, 2017, p. 20.

[43] H. Krawczyk, R. Canetti, and M. Bellare, “Hmac: Keyed-
hashing for message authentication,” 1997, [Online; accessed 26-
Apr-2019] https://tools.ietf.org/html/rfc2104.

http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
https://azure.microsoft.com/en-us/services/iot-edge/
https://aws.amazon.com/iot-core,greengrass/
https://aws.amazon.com/iot-core,greengrass/
https://azure.microsoft.com/en-us/services/iot-hub/
"
https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
http://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html
https://aws.amazon.com/iot/
https://aws.amazon.com/iot/
https://cloud.google.com/solutions/iot/
https://cloud.google.com/solutions/iot/
https://www.bloomberg.com/news/newsletters/2020-12-16/google-outage-reignites-worries-about-smart-home-without-backups
https://www.bloomberg.com/news/newsletters/2020-12-16/google-outage-reignites-worries-about-smart-home-without-backups
https://twitter.com/iRobot/status/1331667670383685635
https://twitter.com/iRobot/status/1331667670383685635
https://doi.org/10.1145/3318216.3363314
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework
https://expressjs.com/
"
https://ifttt.com/
https://tools.ietf.org/html/rfc2104

[44] “Json web token (jwt).” [Online]. Available: https://tools.ietf.
org/html/rfc7519

[45] Google, “Flatbuffers,” https://google.github.io/flatbuffers/,
2021.

[46] Sandstorm.io, “Cap’n proto,” https://capnproto.org/, 2021.
[47] J. H. Saltzer and M. D. Schroeder, “The protection of informa-

tion in computer systems,” Proceedings of The IEEE, vol. 63,
no. 9, pp. 1278–1308, 1975.

[48] “OpenLDAP,” "http://www.openldap.org/".
[49] EEMBC, “Coremark, an eembc benchmark,” https://www.

eembc.org/coremark/, 2021.
[50] “Intel NUC,” https://en.wikipedia.org/wiki/Next_Unit_of_

Computing [Online; accessed 1-Feb-2018].
[51] P. N. Mahalle, B. Anggorojati, N. R. Prasad, R. Prasad et al.,

“Identity authentication and capability based access control
(iacac) for the internet of things,” Journal of Cyber Security
and Mobility, vol. 1, no. 4, pp. 309–348, 2013.

[52] F. Bakir, R. Wolski, C. Krintz, and G. S. Ramachandran,
“Devices-as-services: Rethinking scalable service architectures
for the internet of things,” in 2nd USENIX Workshop on
Hot Topics in Edge Computing (HotEdge 19). Renton, WA:
USENIX Association, Jul. 2019. [Online]. Available: https:
//www.usenix.org/conference/hotedge19/presentation/bakir

[53] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid,
“Recommendation for key management – part 1: General
(revision 4),” NIST Special Publication Revision, 01 2016.
[Online]. Available: https://csrc.nist.gov/publications/detail/
sp/800-57-part-1/rev-4/final

[54] J. Jonsson and B. Kaliski, “Rfc3447: Public-key cryptography
standards (pkcs) #1: Rsa cryptography specifications version
2.1,” Network Working Group, The Internet Society, Tech. Rep.,
2003.

[55] D. J. Bernstein, “Curve25519: new diffie-hellman speed
records,” in International Workshop on Public Key Cryptogra-
phy. Springer, 2006, pp. 207–228.

[56] C. F. Kerry and C. R. Director, “Fips pub 186-4 federal
information processing standards publication digital signature
standard (dss),” 2013. [Online]. Available: https://csrc.nist.
gov/publications/detail/fips/186/4/final

[57] B. Pearson, L. Luo, Y. Zhang, R. Dey, Z. Ling, M. Bassiouni,
and X. Fu, “On misconception of hardware and cost in iot
security and privacy,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), May 2019, pp. 1–7.

[58] L. K. Authors, “Bpf documentation,” https://www.kernel.org/
doc/html/latest/bpf/index.html, 2021.

[59] WebAssembly Specification, WebAssembly Community Group,
2020, version 1.

[60] uBPF Authors, “ubpf,” https://github.com/iovisor/ubpf, 2021.
[61] W. Authors, “Wasm3,” https://github.com/wasm3/wasm3,

2020.
[62] C. Lattner and V. Adve, “LLVM: A compilation framework for

lifelong program analysis and transformation,” in International
Symposium on Code Generation and Optimization (CGO), San
Jose, CA, USA, Mar 2004, pp. 75–88.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://google.github.io/flatbuffers/
https://capnproto.org/
"
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://en.wikipedia.org/wiki/Next_Unit_of_Computing
https://en.wikipedia.org/wiki/Next_Unit_of_Computing
https://www.usenix.org/conference/hotedge19/presentation/bakir
https://www.usenix.org/conference/hotedge19/presentation/bakir
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.kernel.org/doc/html/latest/bpf/index.html
https://github.com/iovisor/ubpf
https://github.com/wasm3/wasm3

Appendix A
Security discussion of CAPLets key exchange
In this appendix, we formally prove the security of our

key exchange algoritm against passive, replay and man
in the middle attacks. We begin by presenting our threat
model. In our scenario, we consider the 2 legitimate parties
A, a client, B, a server. We also consider an attacker C,
who has full control over the network between A and B,
and can manipulate, replay, drop, delay and inject packets
at will.

CAPLets only protects client-server communications.
As such, clients do not accept connections from servers or
other clients, and only A can initiate a connection with
B. Any prior, indirect, communication from B to A for
token dissemination happened over a secure channel, e.g.
using a TLS based protocol. C is assumed to have access
to all network packets, including plain-text handshake and
cipher-text messages between A and B either over TLS or
the CAPLets protocol.
For a successful attack in CAPLets, C must recover or

choose the shared tag known both to A and B. Compared
to TLS, our handshake is much simpler and has very few
messages and operations. To prove our algorithm correct,
we must show that under our threat model, an attacker
may not influence the parties to choose an encryption key
under the control of the attacker by modifying and/or
replaying packets.

There are 3 handshake messages: X. Client hello from
A to B, containing body(TE), containing a fresh NA.
Y. Server hello from B to A, containing

MAC(tag(TE), NA)||NB , where NB is a fresh nonce.
Z. Client done from A to B, containing

MAC(tag(TE), NB).
We formally define our axioms as:
1) B is in posession of root token R
2) B is a server
3) A is in posession of T
4) T is derived from R, T ∈ SR
5) C is in posession of τ
6) τ is derived from R, τ ∈ SR
7) τ is not T , τ 6= T
8) T is not derived from τ , τ /∈ PT
9) NA and NB are fresh, i.e. were never used before

10) The MAC function is strong

Lemma A.1. C cannot recover tag(TE) given message X.

Proof. Assume C can recover tag(TE) given τ and
body(TE). This implies TE ∈ Sτ . However, since TE in
ST , this implies τ = T ∨ τ ∈ PT , contradicting axioms 7
and 8. �

Lemma A.2. C cannot recover tag(TE) given messages
X, Y and Z.

Proof. Assume there exists an inverse MAC function
such that MAC(MAC−1(tag, body), body) = tag), thus

recovering the secret of the MAC function given a body
and the corresponding tag. C can recover tag(TE) =
MAC−1(MAC(tag(TE), Nx), Nx) where x ∈ {A,B}.
However, the existence of MAC−1 contradicts axiom
10. �

Remark. It follows from Lemmas A.1 and A.2, this algo-
rithm is secure against passive attacks.

Lemma A.3. C cannot reliably replay previous commu-
nications without detection by A or B.

Proof. Assume C can replay packets that with high proba-
bility pass the challenge on either side. Implying there ex-
ists a communication with parameters TE ′, NA′, NB ′ such
that MAC(tag(TE), Nx) = MAC(tag(TE ′), Nx′) where
x ∈ A,B. Note that TE contains NA.
There are two possibilities:
1) tag(TE) 6= tag(TE ′) ∨ Nx 6= Nx

′: as
p(MAC(tag(TE), Nx) = MAC(tag(TE ′), Nx′)) ≈ 1
(probability of another communication having the
same challenges as the current one is very high),
this contradicts axiom 10 as collisions with a strong
MAC function are rare.

2) tag(TE) = tag(TE ′) ∧ Nx = Nx
′: implies reuse of

nonces contradicting axiom 9.
�

Lemma A.4. C cannot tamper with packets without de-
tection by A or B.

Proof. Assume C can produce packets such that
MAC(tag(TE), Nx) = MAC(tag(U),M) ∧ Nx 6= M
where x ∈ A,B. As such, C can change Nx to M to
trick A or B into accepting a different nonce. This would
be possible if tag(TE) = tag(U), however, since tags are
computed with the MAC function, TE 6= U contradicts
axiom 10. And TE = U contradicts lemma A.1. �

Lemma A.5. C cannot trick A and B to use different keys
for the same communication by intercepting and replaying
communications over 2 different channels

Proof. Assume C can perform a valid handshake for chan-
nel A->C where A thinks it is A->B. Since A sets up
the communication, it selects tag(TE) even before the
communication, so C cannot convince A to use a different
secret. To convince A that it is talking with B, C would
have to produce MAC(tag(TE), NA). If C was able to
produce tag(TE), it would be a contradition to lemma A.1.
Without producing tag(TE), C cannot decrypt packets
later even if it can produce a valid message passing the
challenge, which would actually contradict lemma A.4. �

Remark. It follows from lemmas A.3, A.4 and A.5 that
this algorithm is resistant to replay and man in the middle
attacks.

	Introduction
	Background and related work
	Threat Model and Assumptions
	CAPLets
	Authenticated modification
	Token derivation
	Bootstrapping
	Sharing
	Constraints
	Capability Revocation
	Request Construction & Validation
	Identities in CAPLets
	CAPLets Key Exchange

	Experimental Evaluation
	Devices, Software, and Setup
	End-to-end Evaluation
	Microbenchmark Evaluation
	Evaluating Constraints

	Conclusion
	References
	Appendix A: Security discussion of CAPLets key exchange

