Service-Level Agreement Durability for Web Service Response Time

Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski
Department of Computer Science
Univ. of California, Santa Barbara

Abstract—Cloud computing is an attractive model for de-
ploying web services in a highly scalable manner. Users access
such cloud-hosted services via their web-facing application
programming interfaces (APIs). Prior work has shown that
it is possible to use a combined approach of static analysis
and cloud platform monitoring to predict the response time
upper bounds of such web APIs. This technique can be
employed to automatically generate service level agreements
(SLAs) concerning the performance of cloud-hosted web APIs.

In this work, we explore the validity period of auto-generated
SLAs in cloud settings. We discuss a simple model by which
API consumers can establish a response time SLA with the
cloud platform, and renegotiate it when/if the SLA becomes
invalid due to the dynamic nature of the cloud. Using empirical
methods and simulations on a real world public cloud platform,
we show that it is possible to auto-generate highly durable re-
sponse time SLAs for cloud-hosted web APIs, thereby keeping
the number of SLA invalidations and renegotiations very low,
over long periods.

Keywords-Web APIs; Performance; Service Level Agree-
ments; Cloud Computing;

I. INTRODUCTION

Today, web services are an essential technology for im-
plementing complex distributed applications. They promote
modularity and software reuse, while leveraging the scalabil-
ity features and maintenance provided by others. For these
reasons developers increasingly integrate remote, Internet-
accessible web services via web application programming
interfaces (web APIs) into their web, cloud, and mobile
applications. The benefits to programmer productivity that
such development practices permit have resulted in a vast
number and diversity of available web APIs [1].

Unfortunately, reusing existing services has its drawbacks.
In particular, web APIs impact the performance, behavior,
and reliability of the applications that integrate them. Web
service functionality and performance can change over time
without prior notice, while their APIs remain unchanged.
Moreover, there is a shortage of tools to help developers
reason about the impact of web API dependencies, and their
potential for dynamic change throughout an application’s
lifecycle (i.e. development, deployment, and runtime).

In this paper, we study the use of on-line monitoring
and statistical forecasting of web API performance as a
means of providing each API consumer with a guaranteed
minimum performance level. More specifically, we explore
the idea of formulating Service Level Agreements (SLAs)
for web APIs, based on automatic prediction of web API

response times. Most cloud platforms which are used to
serve web APIs today only offer probabilistic SLAs for
service availability but not response time. Our work focuses
on response time SLAs for web APIs deployed in Platform-
as-a-Service (PaaS) clouds.

We use the term “SLA” to refer to the minimum service
level promised by the service provider regarding some non-
functional property of the service such as its availability
or performance (response time). Such SLAs are explicitly
stated by the service provider, and are associated with
a correctness probability, which can be described as the
likelihood the service will meet the promised minimum
service level. An availability SLA that follows this notion
takes the form: “the service will be available p% of the
time”. Here the value p% is the correctness probability of
the SLA. Similarly, a response time SLA would take the
form of the statement: “the service will respond under Q
milliseconds, p% of the time. Naturally, p should be a value
close to 100, for this type of SLAs to be useful in practice.

In a corporate setting, an SLA would consist of additional
clauses describing what happens if and when the service fails
to meet the promised minimum service level (for example,
if the service is only available p’% of the time, where
p’ < p). This typically boils down to service provider paying
some penalty (a refund), or providing some form of free
service credits for the users. We do not consider such legal
and social obligations of an SLA in this work, and simply
focus on the minimum service levels and the associated
correctness probabilities, since those are the things that
matter from a performance and capacity planning point of
view of an application. Some authors use the term Service
Level Objective (SLO) to refer to promised minimum service
levels, and reserve the term SLA for the aggregate of SLOs
and other action clauses [2]. Since we are only looking at
the minimum service levels, we disregard this separation,
and make liberal use of the term SLA.

To enable our study, we have developed Cerebro [3], a
system that predicts the response time of web APIs hosted
in a PaaS cloud. Cerebro is able to determine automatically
the bounds on API response time with a specific correctness
probability. Our previous work [3] describes the effective-
ness of Cerebro when it is used in conjunction with Google’s
public PaaS (Google App Engine) and the AppScale [4]
private on-premise PaaS.

In this work, we explore the use of Cerebro predictions

as the basis of SLAs between an API consumer, or client,
and a service hosted by the PaaS. Specifically, we detail
the duration over which SLAs offered to clients of appli-
cations running in Google App Engine persist. The SLAs
based on predicted API response times do not remain valid
indefinitely due to the dynamic performance variations that
occur in the underlying cloud platform. Empirical analysis
on cloud workload traces has shown that production cloud
platforms often display performance variations, sometimes
with temporal patterns [5].

The resulting SLA duration is an important parameter
because PaaS API consumers often wish to contract for spe-
cific minimum service level guarantees, and must renegotiate
when those guarantees expire or can no longer be sustained.
This work demonstrates that, using a combination of on-
line benchmarking and static program analysis, Cerebro can
generate SLAs that are durable over long periods. That is,
using Cerebro it is possible for a user of Google App Engine
or AppScale to offer statistically reliable response time SLAs
on web APIs that persist over long periods (and thus do not
require frequent renegotiation).

To analyze SLA durability and how API consumers are
impacted by it, we perform extensive testing and empirical
evaluation of Google App Engine using a set of open source
Java web applications. We also employ simulation to explore
different options for SLA renegotiation. Our results indicate
that on average, the minimum duration for which Cerebro
SLAs remain valid for this PaaS is 12 days. We also show
that over a period of 112 days, the maximum number of
times that any API consumer must renegotiate their SLA is
6. Furthermore, we find that in some cases Cerebro prompts
an API consumer to renegotiate an SLA when the predicted
new SLA value is very close to the invalidated SLA value.
Such renegotiations are not useful in practice, and only serve
to increase the renegotiation overhead for API consumers.
We thus also present a threshold-based mechanism that both
reduces the number of required renegotiations, and extends
SLA validity duration. To our knowledge, no other research
or system is able to predict durable performance SLAs for
applications hosted on a public PaaS such as Google App
Engine.

II. CEREBRO

In this section we provide an overview of PaaS clouds and
Cerebro. Then we present a model for negotiating response
time SLAs for web APIs deployed in PaaS clouds.

A. Properties of PaaS-hosted Applications

PaaS clouds enforce a restricted programming model
on the application developer to guarantee the scalability,
security and the availability of the cloud-hosted applications.
PaaS clouds provide a predefined set of programming inter-
faces through which they export various platform services.
We shall refer to these programming interfaces as the cloud

S
-

Web API
code

Cloud SDK
Monitor Static Analyzer

Paas Cloud

Cloud SDK invocation
sequences

Fetch cloud monitoring

data SLA Predictor

(Time series aggregation
& QBETS)

Figure 1. Main components of Cerebro and their interactions.

software development kit (cloud SDK). The cloud SDK
exposes scalable functionality that can be used to program
a wide range of application features. These include key-
value data stores, databases, caching, task scheduling, and
user management. In a typical PaaS environment such as
Google App Engine, AppScale [4], and Microsoft Azure,
developers must use the cloud SDK to implement the
required application functionality.

Similarly, PaaS clouds may impose restrictions on per-
forming certain types of I/O operations, and executing long
running tasks [6], [7], [8]. For example, Google App Engine
denies applications access to the local file system (i.e. no
file I/0). Furthermore, it forces the developer to implement
all application tasks as request-response interactions of a
web service where all requests must be processed under 60
seconds. Any task that takes longer than this is terminated by
the cloud platform. This restriction is particularly interesting
to us, since it gives a 60 second default SLA for all web
APIs developed for Google App Engine. The result of all
these restrictions is a programming model that is amenable
to static analysis, a feature we exploit in the design of
Cerebro. By surveying a collection of open source PaaS
applications we have also found that program features that
typically inhibit static analysis (e.g. excessive branching and
loops) are rare among PaaS-hosted applications.

B. Cerebro Architecture and Statistical Model

Figure 1 illustrates the main components of Cerebro, and
how they interact with each other. Cerebro runs a cloud SDK
monitor in the PaaS cloud, that periodically benchmarks
and records the execution time of each cloud SDK (PaaS
service) operation. This component executes continuously,
and separately from all other cloud-hosted applications.

When an application developer deploys a new application
to the cloud platform (i.e. before the application begins
executing), Cerebro automatically intercepts this process,
and statically analyzes the application. The analyzer extracts
the sequence of cloud SDK operations invoked by each web

API operation in a given application. When the application
code contains branches, it extracts multiple sequences of
cloud SDK operations — one sequence per code path. The
static analyzer also looks for loops, and if any cloud SDK
invocations are embedded within a loop, it attempts to
estimate loop bounds using existing loop bound analysis
methods [9]. All this information is then passed to the SLA
predictor.

Cerebro’s SLA predictor contacts the cloud SDK monitor
to retrieve the gathered benchmarking data pertaining to the
cloud SDK operations used in the application. The predictor
aggregates this data for the longest sequence of cloud
SDK calls (path through the operation), and forms a single
time series from benchmark results. Cerebro then processes
this aggregate time series using QBETS (Queue Bounds
Estimation from Time Series) [10], a non-parametric time
series analysis and forecasting technique. QBETS analyzes
the given time series, and predicts an upper bound for its
p-th percentile, where p is configurable. The predicted value
Q can be used to form a response time SLA of the form “the
web API operation responds under Q milliseconds at least
p percent of the time”.

Cerebro only takes the performance of the cloud SDK
calls into account when making predictions. It ignores all
other operations in the web API code, and assumes that
the response time of a PaaS-hosted web API is primarily
determined by the cloud SDK calls. Our previous work has
shown that this is a reasonable assumption — i.e. PaaS-hosted
web APIs spend most of their time (> 90%) executing cloud
SDK calls. Also the conservative nature of QBETS helps
offset any discrepancies that might occur due to operations
other than cloud SDK calls.

For a given web API, Cerebro predicts an initial response
time SLA at the API’s deployment-time. It then consults
an on-line API benchmarking service to continuously verify
the predicted response time SLA to determine if and when
it has been violated. SLA violations occur when conditions
in the PaaS change in ways that adversely impact the
performance of the cloud SDK operations. Such changes can
result from congestion (multitenancy), component failures,
and modifications to PaaS service implementations. The
continuous tracking of SLA violations is necessary to notify
the affected API consumers promptly.

Cerebro also periodically recomputes the SLAs for the
APIs over time. Cerebro is able to perform fast, online
prediction of time series percentiles via QBETS as more
SDK benchmarking data becomes available from the cloud
SDK monitor. This periodic recomputation of SLAs is
important because changes in the PaaS can occur that make
new SLAs available that are better and tighter than the
previously predicted ones. Cerebro must detect when such
changes occur so that API consumers can be notified and
SLAs renegotiated.

To determine SLA durability, we extend Cerebro with

a statistical model for detecting when a Cerebro-generated
SLA becomes invalid. Suppose at time ¢ Cerebro predicts
value Q as the p-th percentile of some API’s execution time.
If Q is a correct prediction, the probability of API’s next
measured response time being greater than Q is 1 —(0.01p).
If the time series consists of independent measurements, then
the probability of seeing n consecutive values greater than
Q (due to random chance) is (1 —0.01p)". For example,
using the 95 percentile, the probability of seeing 3 values
in a row larger than the predicted percentile due to random
chance is (0.05)% = 0.00012.

This calculation is conservative with respect to autocor-
relation. That is, if the time series is stationary but auto-
correlated, then the number of consecutive values above the
95" percentile that correspond to a probability of 0.00012
is larger than 3. For example, in previous work [10] using
an artificially generated AR(1) series, we observed that 5
consecutive values above the 957 percentile occurred with
probability 0.00012 when the first autocorrelation was 0.5,
and 14 when the first autocorrelation was 0.85. QBETS uses
a look-up table of these values to determine the number of
consecutive measurements above Q that constitute a “rare
event” indicating a possible change in conditions.

Each time Cerebro makes a new prediction, it computes
the current autocorrelation and uses the QBETS rare-event
look-up table to determine C,,: the number of consecutive
values that constitute a rare event. We measure the time
from when Cerebro makes the prediction until we observe
C,, consecutive values above that prediction as being the
time duration over which the prediction is valid. We refer
to this duration as the SLA validity duration.

C. SLA Negotiation Model

We extend Cerebro with an SLA negotiation process
that invalidates SLAs at the end of the SLA valid-
ity duration, and re-establishes a new SLA for the API
consumer. API consumers acquire an initial SLA for a
web API hosted by a Cerebro-equipped PaaS as part of
the API subscription process (i.e. when obtaining API
keys). At this point Cerebro also records the tuple <
API Consumer,API, Timestamp,SLA Value >.

When Cerebro detects consecutive violations of one of
its predictions, it considers the corresponding SLA to be
invalid, and notifies the affected API consumers to establish
anew SLA. Cerebro can suspend API access by affected API
consumers until renegotiation occurs, or simply record vio-
lations for later remediation. Ideally however, it is desirable
that the SLA be immediately and automatically renewed. We
refer to such on-the-fly SLA changes as SLA renegotiations.
Upon renegotiation, Cerebro updates the Timestamp and
SLA Value entries in the appropriate data tuple for future
reference.

There is also a second type of SLA renegotiation that
is possible with Cerebro. When recomputing SLAs peri-

odically, Cerebro might come across situations where the
latest SLA is smaller than some previously established SLA
(i.e. a tighter SLA is available). Cerebro can notify the API
consumer about this prospect, but wait for authorization from
the API consumer before establishing the SLA. If the API
consumer consents to the SLA change, Cerebro may update
the data tuple, and treat the SLA as established. We next use
empirical testing and simulations to explore the feasibility
of the Cerebro SLA negotiation process, and evaluate how
response time SLA duration and invalidation impact API
consumers over time.

III. METHODOLOGY

In this section we describe the experimental methodology
we use to evaluate how the SLAs generated by Cerebro
change over time. Our goal is to understand the frequency
with which Cerebro requires API consumers to renegotiate
auto-generated performance SLAs. That is, we assess the
number of times an API consumer will be prompted to rene-
gotiate an SLA due to the changes that occur in the cloud
platform, and the time duration between these renegotiation
events.

To enable this, we deploy Cerebro’s cloud SDK monitor-
ing agent in the Google App Engine cloud and benchmark
the cloud SDK operations every 60 seconds for 112 days. We
then use Cerebro to make SLA predictions (95th percentile)
for the following set of open source web applications.

o StudentInfo: RESTful (JAX-RS) application for manag-
ing students of a class (adding, removing, and listing
student information).

o ServerHealth: Monitors, computes, and reports statis-
tics for server uptime for a given web URL.

o StockTrader: A stock trading application that provides
APIs for adding users, registering companies, buying
and selling stocks among users.

e Rooms: A hotel booking application with APIs for
registering hotels and querying available rooms.

Cerebro analyzes the benchmarking results collected by
the cloud SDK monitor and generates sequences of SLA
predictions for the web APIs of each application. Each
prediction sequence is a time series that spans the duration in
which the cloud SDK monitor was active in the cloud. Each
prediction is timestamped. Therefore given any timestamp
that falls within the 112 day period of the experiment, we
can find an SLA prediction that is closest to it. Further, we
associate each prediction with an integer value (C,,) which
indicates the consecutive number of SLA violations that
should be observed, before we may consider the prediction
to be invalid.

We also estimate the actual web API response times
for the above four applications. This is done by simply
summing up the benchmarking data gathered by the cloud
SDK monitor. Again, we assume that the time spent on non
cloud SDK operations is negligible. For example, consider

a web API that executes the cloud SDK operations O, O>
and O in that order. Now suppose the cloud SDK monitor
has gathered following benchmarking results for O; and O;:

e O1:[t1 :x1, 1y :x2, 13 :x3...]

o Oy [t1:y1,triy2, 131y3..]

Here #; are timestamps at which the benchmark opera-
tions were performed. x; and y; are execution times of the
two SDK operations measured in milliseconds. Given this
benchmarking data, we can calculate the time series of actual
response time of the API as follows:

[t1 :2x1 +y1, 12 : 2X0 4+ Y2, 13 : 2X3 + ¥3...]

The coefficient 2 that appears with each x; term accounts
for the fact that our web API invokes O; twice. In this man-
ner, we can combine the static analysis results of Cerebro
with the cloud SDK benchmarking data to obtain a time
series of estimated actual response times for all web APIs
in our sample applications.

Having obtained a time series of SLA predictions (7)) and
a time series of actual response times (7;) for each web API,
we perform the following computation. From T, we pick a
pair < sg,fp >, where s is a predicted SLA value and ¢y is
the timestamp associated with it. Then starting from #y, we
scan the time series T, to detect the earliest point in time
at which we can consider the predicted SLA value sp as
invalid. This is done by comparing sy against each entry in
T, that has a timestamp greater than or equal to 7, until we
see C,, consecutive entries that are larger than sg. Here C,, is
the rare event threshold computed by Cerebro when making
SLA predictions. Having found such an SLA invalidation
event at time ¢/, we record the duration t' — 7y (i.e. the SLA
validity period), and increment the counter invalidations,
which starts from 0. Then we pick the pair < s1,f; > from
T, where t; is the smallest timestamp greater than or equal
to ¢/, and s is the predicted SLA value at that timestamp.
Then we scan T, starting from ¢, until we detect the next
SLA invalidation (for s;). We repeat this process until we
exhaust either 7, or 7. At the end of this computation we
have a distribution of SLA validity periods, and the counter
invalidations indicates the number of SLA invalidations we
encountered in the process.

This experimental process simulates how a single API
consumer (re-)negotiates SLAs. Selecting the first pair of
values < sqg,fp > represents the API consumer negotiating
the SLA for the first time (i.e. at API subscription). When
this SLA becomes invalid, the API consumer renegotiates
for a new SLA, which is represented by the selection of the
pair < sy,t; >. Therefore, when the simulation reaches the
end of the time series, we can determine how many times
the API consumer had to renegotiate the SLA (given by
invalidations). The recorded SLA validity periods give an
indication of the time between these renegotiation events.

For a given web API we perform the above simulation
many times, using each entry in 7}, as a starting point. That
is, in each run we change our selection of < s,y > to be a

===StudentinfottaddStudent
===Studentinfo#igetStudent

===Studentinfo#fdeleteStudent

Probability
4
n

===ServerHealth#info
—=Rooms#getRoomsInCity

Rooms#igetRoomByName

Stocks#buy

0 1 2 3 4 5 6
Renegotiation Events Experienced by the API Consumer

Figure 2.
consumers.

CDF of the number of renegotiation events faced by API

different entry in 7),. This way, for a time series comprised of
n entries, we can run the simulation n — 1 times, discarding
the last entry. We can assume that each simulation run
corresponds to a different API consumer. Therefore, at the
end of a complete execution of the experiment we have the
SLA renegotiation counts for many different API consumers,
and the empirical SLA validity period distributions for each
of them.

The smallest n we encountered in all our experiments was
125805. That is, we repeatedly simulated each web API
SLA trace for at least 125804 API consumers. Similarly,
the largest number of API consumers we performed the
simulation for is 145130.

IV. RESULTS

We next present the experimental results obtained using
this methodology. We analyze the number of SLA renego-
tiations performed by each API consumer during the 112
day period of the experiment, and calculate a set of cumula-
tive distribution functions (CDF). These CDFs describe the
probability of finding an API consumer that experienced a
given number of renegotiation events. Figure 2 presents the
CDFs. We use the convention ApplicationName#Operation
to label individual web API operations.

According to Figure 2, the largest number of SLA renego-
tiations experienced by any user is 6. This is with regard to
the StudentInfo#addStudent operation. Across all web APIs,
at least 96% of the API consumers experience no more than
4 renegotiation events during the period of 112 days. Further,
at least 76% of the API consumers see no more than 3 SLA
renegotiations. These statistics indicate that SLAs predicted
by Cerebro for Google App Engine are fairly stable over
time, and renegotiation is required only rarely. From an API
consumer’s perspective this is a highly desirable property,
since it reduces the frequency and the overhead of SLA
renegotiation.

Next we analyze the time duration between SLA rene-
gotiation events. For this we combine the SLA validity

Operation 5 Mean 95"
StudentInfo#getStudent 12.97 631.24 1911.19
StudentInfo#deleteStudent | 7.65 472.07 2031.59
StudentInfo#addStudent 0.05 458.24 1711.08
ServerHealth#info 12.96 630.01 1911.19
Rooms#getRoomByName | 8.48 345.13 1096.53
Roomst#getRoomsInCity 20.56 296.44 1143.45
Stocks#buy 8.46 411.75 815.5
Table I

PREDICTION VALIDITY PERIOD DISTRIBUTIONS (IN HOURS). 5" AND
95" COLUMNS REPRESENT THE 5TH AND 95TH PERCENTILES OF THE
DISTRIBUTIONS RESPECTIVELY.

periods computed for different API consumers into a single
statistical distribution. Table I shows the 5th percentile,
mean, and 95th percentile of these combined distributions.

The smallest mean SLA validity period observed in
our experiments is 296.44 hours (12.35 days). This value
is given by the Rooms#getRoomsInCity operation. This
implies that on average, API consumers do not have to
renegotiate Cerebro-predicted SLAs for at least 12.35 days.
Similarly, we observed the largest mean SLA validity period
of 26.3 days with the StudentInfo#getStudent operation. The
smallest 5th percentile value of 0.05 hours is shown by the
StudentInfo#addStudent operation, but this appears to be a
special case compared to the other web API operations.
The second smallest 5th percentile value of 7.65 hours is
shown by the StudentInfo#deleteStudent operation. There-
fore, ignoring the StudentInfo#addStudent operation, API
consumers observe SLA validity periods longer than 7.65
hours at least 95% of the time. That is, the time between
SLA renegotiations is greater than 7.65 hours at least 95%
of the time.

To reduce the number of renegotiations further, we ob-
serve that we can exploit the SLA change events in which
the difference between an invalidated SLA and a new SLA
is small. In such cases, it is of little use to renegotiate a
new SLA, and API consumers may be content to continue
with the old SLA. To incorporate this behavior into Cerebro
(and our simulation process), we introduce threshold value
sla_delta_threshold into the process. This parameter takes
a percentage value that represents the minimum acceptable
percentage difference between the old and new SLA values
before renegotiation. If the percentage difference between
the two SLA values is below this threshold, we do not record
the SLA validity period, nor increment the count of the
SLA invalidations. That is, we do not consider such cases
as renegotiation events. We simply carry on with the old
SLA value until we come across an invalidation event with
a percentage difference that exceeds the threshold. Note that
our previous experiments are a special case of thresholding
for which sla_delta_threshold is 0.

Next we evaluate the sensitivity of our results to
sla_delta_threshold. Figure 3 shows the resulting CDFs of

===StudentinfottaddStudent

===Studentinfo#igetStudent

Studentinfo#deleteStudent

Probability
)
n

===ServerHealth#info

o
IS

===Rooms#getRoomsInCity

o
w

Roomst#getRoomByName

Stocks#buy

o
N}

0.1

0 1 2 3 4 5
Renegotiation Events Experienced by the API Consumer

Figure 3. CDF of the number of renegotiation events faced by API
consumers, when sla_delta_threshold = 10%

Operation 51 Mean 95"

StudentInfo#getStudent 19.93 644.58 1911.19
StudentInfo#deleteStudent | 7.93 512.52 2031.59
StudentInfo#addStudent 0.05 491.68 1711.08
ServerHealth#info 19.91 643.33 1911.19
Rooms#getRoomByName | 8.48 392.01 1096.53
Rooms#getRoomsInCity 21.82 304.97 1143.45

Stocks#buy 7.41 510.31 1277.7

Table II

PREDICTION VALIDITY PERIOD DISTRIBUTIONS (IN HOURS) WHEN
sla_delta_threshold = 10%. 5" AND 95" COLUMNS REPRESENT THE 5TH
AND 95TH PERCENTILES OF THE DISTRIBUTIONS RESPECTIVELY.

per-user renegotiation count when the threshold is 10%. That
is, Cerebro does not prompt the API consumer to renegotiate
an SLA, unless the new SLA is at least 10% off from the
old one. In this case, the maximum number of renegotiation
events drops from 6 to 5. Also most of the probabilities shift
slightly upwards. For instance, now more than 82% of the
users see 3 or less renegotiation events (as opposed to 76%).

Table II shows the SLA wvalidity period distributions
computed when sla_delta_threshold is 10%. Here, as ex-
pected most of the mean and 5th percentile values have
increased slightly from their original values. The smallest
mean value recorded in the table is 304.97 hours. We have
also considered a sla_delta_threshold value of 20%. This
change introduces only small shifts in the probability values
of the CDFs (more than 84% of the users see 3 or less
renegotiations), and the maximum number of renegotiations
remains at 5.

In summary, we find that the performance SLAs predicted
by Cerebro for the Google App Engine cloud environment
are stable over time. That is, the predictions are valid
for long periods of time, and API consumers need not
renegotiate the SLAs often. In our experiment spanning over
a period of 112 days, the maximum number of renegotiations
a user had to undergo was 6. More than 76% of the users
experienced only 3 or less renegotiations. We can further

reduce the number of SLA renegotiations per API consumer
by introducing a threshold for the minimum applicable
percentage SLA change. This helps to eliminate the cases
where an old SLA has been marked as invalid by our
statistical model for detecting SLA invalidations, but the new
SLA predicted by Cerebro is not very different from the old
one. However, the effect of this parameter starts to diminish
as we increase its value. In our experiments, we observe the
best results for a threshold of 10%. Using a value of 20%
does not achieve significantly better results.

V. RELATED WORK

SLA management on service-oriented systems and cloud
systems has been studied in some depth previously. Much
of this existing work has focused on issues such as SLA
monitoring [11], [12], [13], [14] and SLA modeling [15],
[16], [17]. In our work, we automatically identify the SLAs
that can be defined and maintained for a given web API
by using a combination of static analysis, cloud platform
monitoring and time series analysis.

In PROSDIN [18], a proactive service discovery and
negotiation framework, the SLA negotiation occurs during
the service discovery phase. This is similar to how Cerebro
establishes an initial SLA with an API consumer, when the
consumer subscribes to an API. PROSDIN also establishes
a fixed SLA validity period upon negotiation, and triggers
an SLA renegotiation when this time period has elapsed.
Cerebro on the other hand continuously monitors the cloud
platform, and periodically re-evaluates the response time
SLAs of web APIs to determine when a re-negotiation is
needed. Similarly, researchers have investigated the notions
of SLA brokering [19], and the automatic SLA negotiation
between intelligent agents [20], ideas that can complement
the simple SLA negotiation model of Cerebro to make it
more powerful and flexible.

Meryn [21] is an SLA-driven PaaS system that attempts
to maximize cloud provider profit, while providing the
best possible quality of service to the cloud users. It
supports SLA negotiation at application deployment, and
SLA monitoring to detect violations. However, it does not
automatically determine what SLAs are feasible or address
SLA renegotiation, and employs a policy-based mechanism
coupled with a penalty cost charged against the cloud
provider to handle SLA violations. Also, Meryn formulates
SLAs in terms of the computing resources (CPU, memory,
storage etc.) allocated to applications. It assumes a batch
processing environment where the execution time of an
application is approximated based on a detailed description
of the application provided by the developer. In contrast,
Cerebro handles SLAs for interactive web applications.
It predicts the response time of applications using static
analysis, without any input from the application developer.
Cerebro also supports automatic SLA renegotiation, with
possible room for economic incentives.

Tosup et al showed via empirical analysis, that production
cloud platforms like Google App Engine and AWS regu-
larly undergo performance variations, thus impacting the
response time of the applications deployed in such cloud
platforms [5]. Some of these cloud platforms even exhibit
temporal patterns in their performance variations (weekly,
monthly, annual or seasonal). Cerebro and the associated
API performance forecasting model acknowledge this fact,
and periodically re-evaluate the predicted response time
upper bounds. It detects when a previously predicted upper
bound becomes invalid, and prompts the API clients to
renegotiate their SLAs accordingly. Indeed, one of Cerebro’s
strength’s is its ability to detect change points in the input
time series data (periodically collected cloud SDK bench-
mark results), and generate up-to-date predictions that are
not affected by old obsolete observations that were gathered
prior to a change point.

There has also been prior work in the area of predicting
SLA violations [22], [23], [24]. These systems take an
existing SLA and historical performance data of a service,
and predict when the service might violate the given SLA
in the future. Cerebro’s notion of prediction validity period
has some commonalities with this concept. In fact, Cerebro
can make use of such a method to determine the frequency
at which it should re-evaluate the predicted SLAs.

VI. CONCLUSION

Web APIs impact the correctness and performance of
the applications that depend on them. However, most web
APIs do not provide SLAs with regard to such properties,
making it difficult to reason about the performance of the
applications that use web APIs. Cerebro attempts to solve
this problem for web APIs developed for PaaS clouds, by
automatically predicting response-time SLAs for them.

In this work we analyze the validity period of the SLAs
predicted by Cerebro. We present a simple SLA negotiation
model, and a conservative statistical approach for detecting
when a predicted SLA has become invalid. We evaluate
our methods on the Google App Engine public cloud using
empirical testing and simulations. We find that on App
Engine, Cerebro predictions are valid for at least 12 days
on average. We also find that API consumers do not have to
renegotiate SLAs often, and the maximum number of times
an API consumer must renegotiate an SLA over a period of
112 days is six. We also present and evaluate a threshold-
based mechanism to eliminate the SLA renegotiations where
the old and new SLA values are very close to each other.
This optimization further increases the average SLA validity
period, and reduces the number of SLA renegotiations per
API consumer. Overall, this work shows that automatic
definition of response-time SLAs for web APIs is practically
viable in real world cloud settings, and API consumer
timeframes.

ACKNOWLEDGMENT
This work is funded in part by NSF (CCF-1539586,
CNS-1218808, CNS-0905237, ACI-0751315), NIH
(1IRO1EB014877-01), and the California Energy
Commission (PON-14-304).

REFERENCES

[1] “ProgrammableWeb,”
[Accessed March 2015].

http://www.programmableweb.com

[2] A. Keller and H. Ludwig, “The wsla framework: Specifying
and monitoring service level agreements for web services,” J.
Netw. Syst. Manage., vol. 11, no. 1, Mar. 2003.

[3] H. Jayathilaka, C. Krintz, and R. Wolski, “Response time
service level agreements for cloud-hosted web applications,”
in Proceedings of the Sixth ACM Symposium on Cloud
Computing, 2015.

[4] C. Krintz, “The appscale cloud platform: Enabling portable,
scalable web application deployment,” Internet Computing,
IEEE, vol. 17, no. 2, pp. 72-75, March 2013.

[5] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance
variability of production cloud services,” in Cluster, Cloud
and Grid Computing (CCGrid), 2011 11th IEEE/ACM Inter-
national Symposium on, 2011.

[6] https://cloud.google.com/appengine/docs/quotas
March 2015].

[Accessed

[7] http://azure.microsoft.com/en-
us/documentation/articles/azure-subscription-service-
limits/#cloud-service-limits [Accessed March 2015].

[8] “Google app engine java sandbox,” 2015,
https://cloud.google.com/appengine/docs/java/#Java_

The_sandbox” [Accessed March 2015].

[9] S. Bygde, “Static wcet analysis based on abstract interpreta-
tion and counting of elements,” Ph.D. dissertation, Mélardalen
University, 2010.

[10] D. Nurmi, J. Brevik, and R. Wolski, “QBETS: Queue Bounds
Estimation from Time Series,” in International Conference on
Job Scheduling Strategies for Parallel Processing, 2008.

[11] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“Comprehensive QoS Monitoring of Web Services and Event-
based SLA Violation Detection,” in International Workshop
on Middleware for Service Oriented Computing, 2009.

[12] A. K. Tripathy and M. R. Patra, “Modeling and Monitoring
SLA for Service Based Systems,” in International Conference
on Intelligent Semantic Web-Services and Applications, 2011.

[13] FE. Raimondi, J. Skene, and W. Emmerich, “Efficient Online
Monitoring of Web-service SLAs,” in ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
2008.

[14] A. Bertolino, G. De Angelis, A. Sabetta, and S. Elbaum,
“Scaling Up SLA Monitoring in Pervasive Environments,” in
Workshop on Engineering of Software Services for Pervasive
Environments, 2007.

[15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

T. Chau, V. Muthusamy, H.-A. Jacobsen, E. Litani, A. Chan,
and P. Coulthard, “Automating SLA Modeling,” in Confer-
ence of the Center for Advanced Studies on Collaborative
Research: Meeting of Minds, 2008.

K. Stamou, V. Kantere, J.-H. Morin, and M. Georgiou,
“A SLA Graph Model for Data Services,” in International
Workshop on Cloud Data Management, 2013.

J. Skene, D. D. Lamanna, and W. Emmerich, “Precise Service
Level Agreements,” in International Conference on Software
Engineering, 2004.

K. Mahbub and G. Spanoudakis, “Proactive SLA Negotia-
tion for Service Based Systems: Initial Implementation and
Evaluation Experience,” in IEEE International Conference on
Services Computing, 2011.

L. Wu, S. Garg, R. Buyya, C. Chen, and S. Versteeg, “Auto-
mated SLA Negotiation Framework for Cloud Computing,” in
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2013.

E. Yaqub, R. Yahyapour, P. Wieder, C. Kotsokalis, K. Lu, and
A. L. Jehangiri, “Optimal negotiation of service level agree-
ments for cloud-based services through autonomous agents,”
in IEEE International Conference on Services Computing,
2014.

D. Dib, N. Parlavantzas, and C. Morin, “Meryn: Open, SLA-
driven, Cloud Bursting PaaS,” in Proceedings of the First
ACM Workshop on Optimization Techniques for Resources
Management in Clouds, 2013.

P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dust-
dar, and F. Leymann, “Runtime Prediction of Service Level
Agreement Violations for Composite Services,” in Service-
Oriented Computing. ICSOC/ServiceWave 2009 Workshops,
ser. Lecture Notes in Computer Science, A. Dan, F. Gittler,
and F. Toumani, Eds. Springer Berlin Heidelberg, 2010, vol.
6275, pp. 176-186.

B. Tang and M. Tang, “Bayesian Model-Based Prediction
of Service Level Agreement Violations for Cloud Services,”
in Theoretical Aspects of Software Engineering Conference
(TASE), 2014.

S. Duan and S. Babu, “Proactive Identification of Performance
Problems,” in ACM SIGMOD International Conference on
Management of Data, 2006.

