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Abstract—Spot instances are commonly offered by IaaS cloud
providers to opportunistically utilize spare capacity and meet
temporary user demand for additional resources. Although the
availability of service SLAs is a core paradigm of cloud computing,
spot instances in practice still come without any service quality
guarantees. We aim to extend the spot instance service to provide
a probabilistic SLA for eviction probability, based on the user esti-
mate of the maximum expected instance lifetime. This probabilistic
foundation simplifies reasoning about the spot instance service and
enables providers to construct higher-level SLAs from them. For
this to be possible, however, the statistical guarantees must be
adhered to strictly, for a wide range of real-world workloads, at
cloud scale. We propose a new approach to providing SLAs on the
time-until-eviction for spot instances by employing Monte-Carlo
simulation to compute the distribution of future spot instance
lifetimes at current cloud utilization levels. We then show that
an IaaS cloud scheduler can use the quantiles of such conditioned
distributions to safely provision spot instance requests and maintain
an SLA with a specific target eviction rate.

I. INTRODUCTION

Cloud computing, in the form of Infrastructure as a Service
(IaaS), has emerged as a new paradigm for Information Tech-
nology (IT) management of data center infrastructure. Under
the IaaS cloud model, users request that data center resources
be provisioned for their exclusive use via network-facing web
service interfaces (APIs). “The Cloud” services these requests
in a way analogous to the way in which e-commerce services
operate: automatically and transactionally. Users interact only
with the automated cloud services and requests are either
fulfilled or denied immediately (possibly due to error) so that the
user may retry if he or she desires to do so. The user-requested
services are then typically delivered until cancellation subject to
a Service Level Agreement (SLA).

In this paper, we examine the feasibility of using two
classes of resources requests – on-demand and spot – to achieve
greater resource utilization while providing statistical service
level guarantees for both classes. We borrow this terminology
from Amazon’s AWS [1] where spot instances are pre-emptable
requests that may be terminated without warning if the “spot
market” conditions warrant (i.e. the current market price ex-
ceeds the user’s bid), and on-demand instances are never pre-
empted, but incur a higher per-minute occupancy cost than spot
instances.

Our goal is to understand whether it is possible to use the
spot instance service in a cloud to accept workload subject to
a statistical guarantee on minimum time until pre-emption. In
particular we

• demonstrate that it is possible to provide statistical
guarantees on minimum spot instance lifetimes using
production private cloud workload traces, and

• detail the effectiveness of co-scheduling on-demand
workloads with spot workloads with these guarantees
to utilize otherwise unused resource capacity.

This work complements previous investigations of public
cloud spot instance services from the user perspective. Prior
work develops bidding schemes based on spot instance price
history of public clouds and looks at revenue optimization for
hypothetical web services built on top of spot instances [2],
[3], [4]. While these works demonstrate the economic viability
of using spot instances in public clouds, they rely on use-case
specific utility functions and assumptions about the spot instance
workload, such as the ability to checkpoint.

In contrast, our work is motivated by production enterprise,
research, and high-performance computing environments where
a private cloud offers scalable, automated, SLA-governed ser-
vice to its users. In these settings, resource utilization must
be maximized, although resources are often over-provisioned
to ensure an acceptable user experience in terms of response
time and available capacity. Furthermore, unlike public cloud,
enterprise private clouds do not typically charge a fee for usage.
Rather, each user is given a a usage quota and must maximize
resource utilization subject to quota limits.

In this setting, spot-instances can allow enterprise users to
exceed their respective quotas by taking advantage of otherwise
unused capacity. Because a spot-instance will be terminated if
the capacity is needed to run an on-demand instance, users can
run spot instances without a charge to their respective quotas.
That is, the capacity for spot-instances is “scavenged” and then
reclaimed when it is needed for on-demand instances.

From a cloud perspective, the uncertain duration of time
that a spot-instance will run before it is terminated makes their
use difficult. Our work uses on-line simulation to predict spot-
instance lifetimes based on the recent history of cloud activity.
In particular, we use a Monte-Carlo style [5] simulation (run
every few minutes) to estimate the distribution of the time-
until-eviction of spot instances from requests in the recent past.
We use this non-parametric approach to compute the quantiles
(i.e. percentiles) of the empirical distributions of spot instance
lifetimes that are conditioned on the capacity currently available
in the cloud. These quantiles then serve as a probabilistic lower
bound on the future time-until-eviction which the user can
interpret as a statistical “guarantee” of spot instance lifetime.
For example, the lower 0.95 quantile indicates the minimum



spot-instance lifetime that as user can expect with probability
0.95.

We evaluate our method based on trace-driven simulation
with synthetic and recorded commercial traces from Eucalyp-
tus [6], [7] IaaS clusters deployed in production systems [8]. We
use the synthetic workload traces to demonstrate the theoretical
efficacy of our approach and give an in-depth look at the steps
required to produce accurate time-until-eviction estimates via
Monte-Carlo simulation. We then apply this method in a cloud
scheduler that is capable of maintaining an arbitrary SLA for
maximum eviction probability of spot instances in an IaaS cloud
even when faced with the adverse conditions of commercial
production environments.

II. METHODOLOGY

The goals of our methodology are to define a method

• for predicting minimum lifetime of spot instances with
configurable confidence bounds using historical obser-
vations of previous instance behavior, and

• for using these predictions in scheduler-level admission
control to ensure that all accepted spot requests meet
their target lifetime.

This latter requirement is consistent with current cloud abstrac-
tions in that requests are either accepted by the cloud (and thus
subject to the advertised SLA) or rejected because the SLA
cannot be met.

To predict minimum lifetime, we have developed a pre-
diction utility that uses historical data from IaaS system logs
of instance types (core counts) and instance start/stop events
to construct empirical distributions of instance lifetimes con-
ditioned on available cloud capacity via periodic Monte-Carlo
simulation. From these lifetime distributions, the utility extracts
the quantile associated with the SLA offered by the IaaS cloud
for spot instances (e.g. a 95% or 99% confidence bound on
the likelihood that the instance will not be evicted) to predict
minimum lifetime for each level of available capacity.

For admission control, we assume that spot requests are
accompanied by a user-specified lifetime (maximum) when
submitted. Our IaaS scheduler uses (i) the quantile estimates
for the SLA generated by the prediction utility, (ii) the instance
size (also specified per request) and maximum lifetime from the
user, and (iii) the currently available capacity of the system, to
decide whether to admit a spot request. The scheduler evicts
spot instances if/when an on-demand instance request is made
and the cloud has insufficient capacity to service the request.

A. Scheduling Model

Instance requests (to either start or stop an instance) are
routed to a scheduler (as implemented by IaaS infrastructures
such as Eucalyptus [6], Open Stack [9], and Cloud Stack [10])
which handles admission control and placement of instances
on physical resources in a cluster of “nodes.” IaaS clouds
typically define “instance types” that describe the resources
that an instance will consume (CPU cores, memory, ephemeral
disk storage, etc.). In the Eucalyptus systems (production and
research) that we investigate in this work, we observe that the
memory footprint associated with each instance type is such that
the instance placement decision by the scheduler can be made
strictly on core count.

When an instance is admitted, the scheduler makes a place-
ment decision by selecting a node on which the instance will
run. In this study, we use simple first-fit placement in favor of
more complex approaches to highlight the impact SLA-aware
admission control. If an on-demand instance is requested, and
the scheduler cannot find a node with available capacity, the
scheduler selects one or more spot instances to terminate (evict)
so that the on-demand instance can be scheduled.

Further, our scheduler (like other Eucalyptus schedulers)
assumes that the instance type definitions nest with respect to
their core counts. For example, an empty 4-core node node is
seen by the scheduler as having 1x 4-core slot, 2x 2-core slots,
4x 1-core slots, or 1x 2-core, 2x 1-core slots. The distinction
between available cores and available slots is important when
generating time-until-eviction estimates for different instance
sizes and different cluster load levels.

B. Prediction

Past work has shown that cloud workloads can be highly
variable and may not be easily described by single well-
known distributions [11]. To address this problem we run a
Monte-Carlo-style simulation on-line to generate the empirical
distribution of expected spot instance lifetimes. However, we
note that the time-until-eviction is affected by the capacity of
the cloud that is occupied by un-evictable on-demand workload
and other spot instances. Intuitively, if the cloud is relatively
“empty”, a spot-instance that is introduced will likely live longer
than if the cloud is close to “full” capacity. Thus, our Monte-
Carlo simulation produces a set of empirical distributions, one
conditioned on each level of possible occupancy.

For example, a cloud with 100 cores has 101 possible occu-
pancy levels: from 0 cores occupied to 100 cores occupied and
each level of occupancy corresponds to a different distribution of
spot-instance lifetimes. We use quantiles of these distributions to
quote the expected lifetime to the scheduler during the admission
control phase based on the current occupancy level at the time
the spot-instance request is made. If the instance (based on its
maximum lifetime specified by its user) is expected to be evicted
with a higher probability than specified by the target probability
(quoted as an SLA) for the cloud, it is rejected (not admitted).
The cloud administrator is responsible for setting the SLA on
eviction probability that is advertised to all cloud users.

The Monte-Carlo simulator generates a sample of “fictitious”
spot-instance requests that using the recent cloud load history.
It repeatedly chooses a random point in the history and simu-
lates the arrival and eviction of a spot-instance, recording the
occupancy level at he time the spot-instance starts and its time-
until-eviction. Running faster than real time, it generates 10000
such samples and divides them into empirical distributions based
on occupancy level.

C. Eviction Policy

The eviction policy affects the conditional spot-instance
lifetime distributions generated by the simulation (but not the
correctness of the method). Many policies are possible but each
has an impact on user experience. In this paper we chose a
simple “Youngest-Job-First” (YJF) eviction policy. Choosing the
“youngest” (i.e. the spot instance that has started most recently)
to evict among the candidate spot instances is an attempt to
minimize the “regret” associated with an eviction in this online



TABLE I: Parameters of synthetic log-normal on-demand and
spot instance workloads

VM arrival VM duration VM cores mean util.
on-demand µ = 4, σ = 1 µ = 6, σ = 1.5 1 21.77
spot µ = 4, σ = 1 µ = 6, σ = 1.5 1 21.95

decision making problem [12]. That is, the amount of work that
is lost because of an eviction is minimized.

D. Evaluation Metrics

To evaluate the system we use trace-based simulation with
both synthetic and production traces taken from private Euca-
lyptus IaaS clouds. We replay each trace in its entirety and we
log each individual state change in the simulated system. In
each case, the simulator uses separate traces for spot-instance
and on-demand instance requests. We then generate summary
statistics and evaluate our solution using two metrics:

• eviction ratio of spot instances
evicted = evictions/admissions

• admission ratio of spot instances
admitted = admissions/requests

The enforcement of the target SLA probability has highest
priority. After the SLA is fulfilled, a high number of completed
spot instance requests is desirable to maximize utilization.

III. RESULTS

Our experiments are run in simulation, based on our previ-
ous work on validated simulation of private IaaS clouds. We
use both, synthetic traces and anonymized production traces
obtained from Eucalyptus IaaS cloud installations. For repro-
ducibility we assume instant start and stop of instances in
the traces and rely on a publicly available set of anonymized
commercial production traces [8].

A. Prediction with synthetic traces

To outline our approach and show its basic behavior we
compare a scenario with an SLA-unaware scheduler and the
SLA-aware scheduler using multiple different SLA levels using
10-day synthetic traces (Parameters in Table I). Our initial setup
uses a single platform (IaaS cluster configuration) and synthetic
on-demand and spot request traces. The platform contains 8
nodes with 4 cores each, for a total of 32 cores. As a rough
estimate based on mean utilization the platform should be able
to support the on-demand trace plus half the spot instance trace.
We use a log-normal distribution to approximate the long-tailed
empirical distribution of instance life times.

Note that there is a trade-off between the probabilistic
guarantee given to the user and the fraction of spot-instance re-
quests that can be accepted by the scheduler. Greater “certainty”
associated with a spot-instance SLA (in the form of a lower
eviction probability) implies that fewer spot-instance requests
can be accepted (to decrease the possibility that an eviction will
be necessary).

To illustrate this trade-off, show the ratio of admitted spot
instances, as well as the eviction ratio of spot instances in Figure
1. The x-axis shows different SLA probabilities, starting with the
no-guarantees baseline on the left and then increasingly stringent
SLAs of 0.25, 0.10, 0.05 and 0.01. The y-axis shows the fraction
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Fig. 1: Ratio of admitted and evicted spot instances with
synthetic log-normal traces.

of admitted spot-instance requests instances in gray and the
fraction of evicted spot instances in black. The SLA-aware
scheduler meets the SLA in all cases (the eviction fraction is less
than the advertised guarantee level), at the cost of preemptively
rejecting an higher fraction of spot instances for stricter SLAs.
The measured SLA probabilities are in fact stricter than the
target SLA probabilities, showing that the predictions of time-
until-eviction made by the simulation are conservative.

The most visible improvement is the step from the no-
guarantees baseline to the 0.25 eviction ratio SLA. While the
baseline admits 70% of all requested spot instances, 39% of the
admitted spot instances are evicted before completion. The 0.25
SLA in contrast admits 60% of all requested spot instances, but
only 9% of the admitted spot instances are evicted. Subsequent
decreases in the demanded maximum eviction rate of spot
instances decrease the number of admitted spot instances as
well, but consistently (conservatively) achieve the SLA eviction
probabilities.

This experiment outlines the setup of our simulation driven
approach to enforce guaranteed levels of eviction probabilities
in a controlled environment. In the next section we discuss the
simulation method in-depth.

B. Conditional Distributions and Sample Size

The scheduler computes conditional distributions for all
possible core counts on a fixed duty schedule (every 6 hours
of trace time in the previous experiments) based on the history
of on-demand and spot instance behavior it has observed so far.
This gives rise to the property that the sample sizes for “rarely”
occurring conditions may be small. For example, if the cloud is
moderately loaded, the number of examples where all but one
of the cores is busy might occur infrequently or not at all.

To provide an in-depth insight in the behavior of the Monte-
Carlo simulation, we provide an exemplary intermediate results
at the 9 day mark of our synthetic trace experiment for single-
core instance slots. Figure 2 shows the number of samples
generated on the y-axis for each condition on the x-axis (avail-
able slot count). In our specific example, 2 to 4 open slots
are encountered the most frequently, with about 10000 samples
each. High open slot counts, which correspond to low cluster
utilization, are increasingly uncommon. Based on the number of
samples we expect predictions for common cases to be highly
accurate, while infrequently occurring cases will be based on
empirical distributions estimated from small samples.
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Fig. 2: Number of time-until-eviction samples per available-slots
bucket for a synthetic log-normal simulation run. Frequently
encountered load levels (left) have many samples, corner cases
(right) have few. The shape of the histogram depends on the
historic workload.
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Fig. 3: Quantiles of time-until-eviction per available-slots bucket
for a synthetic log-normal simulation run. Predictions for com-
mon load levels (left) can be made with high confidence,
predictions for infrequent ones (center) are rough estimates that
become increasingly erratic for corner cases (right).

Figure 3 shows the quantiles of the conditional distribution
of times-until-eviction. The x-axis again shows the condition,
while the y-axis indicates the time-until-eviction as estimated by
a quantile. The estimates to the left correspond to the buckets
with high sample count in Figure 2, whereas the estimates to
the right decrease in sample count. The 0.25 quantile lies above
the 0.10 quantile, followed by the 0.01 quantile. These quantiles
estimate the minimum time a spot instance is expected to survive
with the corresponding probability. For example, from the figure,
0.01 of the instances that are started when there are 15 free
slots run for 900 seconds or less before being evicted. In the
same column (for 15 free slots), 0.05 of the time-until-eviction
samples are 1500 seconds or less, and 0.25 of them are 3200
seconds or less.

A combined look on the counts per bucket in Figure 2 and
the corresponding quantiles in Figure 3 also provides an insight
into the reliability of conditional estimates. Buckets 0 to 14 each
have over 1000 samples each to determine quantiles from. This
is generally enough for low SLA probabilities, such as 0.05 or
0.01. With increasing slot count (decreasing cluster utilization) a
smoothly changing, and mostly increasing estimate of the time-
until-eviction can be observed. Buckets 15 to 20 still have over
200 samples each, which is enough for rough estimates, but
a look back at the quantiles shows that changes from bucket
to bucket already become erratic. Estimates for 21 available

TABLE II: Mapping of recorded commercial production traces
and their original hardware platforms from the data set collec-
tion [8] to experiments in this paper.

Name Source Organization Workload Nodes
A DS2 Medium bursts 7 x 8 cores
B DS3 Medium bursts 7 x 12 cores
C DS5 Large variable 31 x 32 cores
D DS6 Large constant 31 x 32 cores

slots and over appear extremely infrequently in our synthetic
trace. Their samples are mostly artifacts from the initial warm-
up period and as such, their estimated quantiles are not reliable
(but also hardly used).

Since we are using a synthetic trace based on log-normal
distributions for arrival time and instance lifetime, this specific
example could be described analytically as well. However, for
arbitrary traces, as found in production environments, this is
challenging to impossible depending on the typical usage of
the cluster. Monte-Carlo simulation offers a way to estimate
arbitrary empirical distributions and can be tailored to achieve
the desired degree of prediction accuracy.

C. Prediction with production traces

To study the utility of Monte-Carlo-based SLA enforcement
in a more realistic setting, we use four different traces obtained
from independent Eucalyptus IaaS production installations for
our experiments. The origin of these traces is documented
in [13], [11], [14]. and the traces themselves are available as part
of a collection from [8]. Table II shows the mapping of data sets
from the collection to experiments in this paper, together with
a short description of their workload and platform properties.

Compared to synthetic traces there are a number of important
differences. First, instance starts show temporal auto-correlation.
These “bursts” of instance starts are more extreme than ones
observed in synthetic log-normal traces. Second, the behavior
of users changes over time and causes change points which
the empirical distribution derived via Monte-Carlo simulation
only picks up over longer time frames. Third, instance sizes are
no longer uniform and traces contain instances with slot sizes
between 1 and 30 cores.

To facilitate the experiments with real world traces, two
modifications are made to the Monte-Carlo simulation. First,
we expect that our randomization approach may not gener-
ate starting points needed for all conditional core-utilizations
needed, especially in the beginning of the experiment where
data samples are scarce. To avoid rejecting spot instances
unnecessarily due to a perceived lack of information, we linearly
approximate quantiles of unobserved conditional distributions
between observed “neighboring” distributions.

For example, if the empirical distributions conditioned over
20 slots and 18 slots are available, while there are no samples
for 19 slots, the quantiles for 19 available slots are generated
by linear approximation between the the matching quantiles of
the neighbors. For example, the 0.01 quantile for 19 slots would
then be calculated as q(0.01|19) = (q(0.01|18)+q(0.01|20))/2.
In the case where multiple conditions are missing, we fit a line
to the two endpoints in the range of missing values and use it
to approximate the quantiles between. Additionally, the extreme
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Fig. 4: Production trace B as executed on its native platform
shows highly variable load and bursts of large requests as well.
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Fig. 5: Production trace C as executed on its native platform
shows a mixed pattern of load with constant plateaus and periods
with higher variability.

points of zero and full utilization need to be populated with
useful data. We chose an impossible value for expected life time
before eviction if there are no slots available for a given capacity
and conservatively use the quantiles for the lowest known cluster
utilization as values for zero utilization as well.

Second, we start the real world traces after a delay of 24 as
we do for the synthetic traces. Such a delay allows the scheduler
to “warm up.”

A visual inspection of the real-world traces shown in Fig-
ures 4 and 5 shows significant spikes at irregular intervals. If
an on-demand spike in load appears in an environment already
loaded with spot instances, we expect to see a high number
of correlated evictions, possibly leading to a violation of the
SLA in the short-term. If these correlated evictions are not
compensated for in the long-term by conservatively maintaining
a capacity buffer, these short-term violations will sum up to an
SLA violation over the course of the whole trace. We try to
capture this auto-correlation by replaying the actual observed
trace in our Monte-Carlo simulation rather than re-sampling the
input distribution. That is, we choose random locations in the
trace, but then replay the trace from those periods to include
auto-correlation effects.

We take the same approach to handling change points in the
production time series traces. The Monte-Carlo simulation that
computes the empirical conditional distributions is re-run every
6 hours of trace time to capture changes that may have occurred
in the underlying dynamics. The the Monte Carlo simulation
with production traces takes no more than 300 seconds (5

minutes) to generate the empirical distributions. Thus, in a
production implementation, it would be possible to make these
estimates every 6 hours “on-the-fly” as part of the cloud’s typical
operation.

The third difference of real-world traces over to our syn-
thetic ones are non-uniform instance capacities. This has two
major implications: first, Monte-Carlo simulation must consider
different instance sizes and second, placement decisions for on-
demand instances made at any time may have consequences later
in the trace. Because the scheduler attempts to find space for an
on-demand instance and only evicts when there is insufficient
capacity, the presence of spot-instances can change where the
scheduler places on-demand instances. As a result, because an
instance cannot span nodes, it could be that the introduction
of spot instances increases the “fragmentation” of the available
core capacity and, hence, affects the ability to run on-demand
instances. However, while spot-instances might cause the sched-
uler to reject an on-demand instance it would have otherwise
accepted (due to fragmentation effects) all of the on-demand
instances that are accepted receive the SLA guarantees that they
would have without spot instances present. This effect (detailed
in Subsection III-E) is small for the production workloads we
study but grows as the cloud runs closer to capacity.

The conditional distribution of expected lifetimes therefore
effectively becomes conditioned over instance capacity (taking
into account fragmentation effects) in addition to available slot
count. The conditioning over instance capacity does not increase
the amount of data required for accurate estimates as we can re-
run the same recorded trace with different virtual instance sizes.
An increasingly diverse population of instance types therefore
leads to a linear increase in computational effort for Monte-
Carlo simulations, but not to a relative reduction of estimation
accuracy. In practice, we do not expect this to be a severe
problem due to the embarrassingly parallel nature of Monte-
Carlo simulation.

D. SLA-aware co-scheduling of production traces

Having addressed the issues associated with generating
predictions for production traces the question remains whether
these modifications allow effective admission control for varying
types of production workloads. In this section we investigate the
efficacy of our approach for co-scheduling different production
workloads while maintaining an SLA for both, on-demand and
spot instances.

We perform the evaluation with production traces in two
parts and pair up our production traces based on similar platform
sizes. The first combination uses highly variable workloads,
“A” as on-demand trace and “B” as spot instance trace. The
specifications of the physical cloud platform are taken from
“A”, which contains 7 nodes with 12 cores each. We refer to
this configuration as “A-B”. We use the inverse notation “B-A”
to describe co-scheduling of “A” as spot instances in addition
to “B” as on-demand trace and “B”’s physical platform, which
contains 7 nodes with 8 cores each. In both cases, we set the
SLA to 0.01 eviction rate and we compare the results of the
SLA-aware scheduler (“sla”) with the SLA-unaware baseline
scheduler (“base”).

The second combination investigates the co-scheduling of
the more constant workloads “C” and “D” with larger platforms



TABLE III: Results of co-scheduled workloads with production
traces without SLA enforcement. In all cases the eviction ratio
is greater than 0.01.

Baseline A-B B-A C-D D-C
admitted (on-demand) 0.977 1.000 1.000 0.997
admitted (spot) 1.000 0.850 0.943 0.963
evicted 0.013 0.024 0.016 0.013

TABLE IV: Results of co-scheduled workload with production
workloads with SLA-aware scheduler, fulfilling the 0.01 eviction
SLA (equivalent to a 0.99 survival ratio)

SLA-aware A-B B-A C-D D-C
admitted (on-demand) 0.977 1.000 1.000 0.999
admitted (spot) 0.884 0.757 0.491 0.278
evicted 0.009 0.000 0.002 0.006

of 31 nodes each. The experiments are defined analogously to
the first part and we refer to them as “C-D” and “D-C”.

An important side-note is that A contains a number of
instances requiring 12 cores each, while the platform of B
only provides a maximum of 8 cores per node. This practically
lowers the load impact of A as spot trace over its impact as on-
demand trace on its native platform, as high-core-count instances
are rejected by the scheduler due to the physical limits of the
platform.

The results are summarized in Table III for the baseline,
while the results for the SLA-aware scheduler are presented in
Table IV. The SLA-aware scheduler meets the threshold, while
the baseline scheduler misses in all cases. The modifications dis-
cussed in the previous section allow the SLA-aware scheduler to
successfully handle production traces. The results are, however,
close due to low overall utilization of the underlying cluster
hardware. In fact, the mean utilization of on-demand and spot
traces combined is 26.62 cores. This compares to a platform
capacity of 84 cores for A and 56 cores for B. This degree of
under-utilization is typical for clouds over-provisioned to meet
peak demand. Reducing the under-utilization is a prime goal
of co-scheduling. In order to demonstrate the efficacy of our
approach in more resource constrained scenarios, we perform
a platform down-scaling experiment in simulation in the next
section.

E. SLA-aware co-scheduling with platform scaling

In this section we stress-test our approach to computing the
conditional quantiles for spot-instance lifetimes in increasingly
resource constrained environments. We use setups “A-B” and
“C-D” again, but vary the size of the underlying platform from
N to N−3 nodes for “A-B” and from N to N−15 in steps of 5
nodes for “C-D”. This corresponds to a reduction in node count
by about half while the request rate stays constant and target
SLA on eviction remains at 0.01. The inverse experiments “B-
A” and “D-C” show similar results and are skipped for brevity.

Figures 6 and 7 show the results for scaled-down platforms
of A-B and C-D, respectively. This experiment demonstrates the
robustness of the approach in fulfilling its target SLA. While the
baseline scheduler does not meet the SLA in any single case, the
SLA-aware approach works consistently with visible differences
in behavior.
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Fig. 6: Admission and eviction ratios of on-demand and spot
instances for A-B down-scaled. Non-SLA base, marked ‘N
(base)’ for N = 7 nodes in the first column compared with
0.01 SLA with full and reduced node counts N = [7, 6, 5, 4] in
the other columns.
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Fig. 7: Admission and eviction ratios of on-demand and spot
instances for C-D down-scaled. Non-SLA base, marked ‘N
(base)’ for N = 31 nodes in the first column compared with 0.01
SLA with full and reduced node counts N = [31, 26, 21, 16] in
the other columns.

Thus, while on-demand instance requests cannot completely
be fulfilled in increasingly constrained environments, the on-
demand rejection fractions for the production traces are small.
In each figure, the column labeled N represents a replay of the
production workload using the number of nodes and cores that
were present when the trace was gathered (i.e. the production
scenario). In the cases where our methodology offers an SLA
on spot-instance lifetime in the same environment, the fraction
of admitted on-demand instances is equal to the baseline.

As a result, we conclude that the success of the predictions
for the real-world production traces is not due to a lack of
utilization (i.e. an abundance of extra capacity) in over pro-
visioned production clouds. Shrinking these clouds does cause
some of the observed production workload to be rejected, but
the generated predictions of the time-until-eviction remain valid.

An additional observation is that for the down-scaling exper-
iments the ratio of admitted spot instances may increase as the
cluster size decreases (e.g. “C-D N−3). An in-depth look at the
simulation reveals that the rejected on-demand instances come in
batches and with high core counts per instance. Their rejection
due to capacity constraints leaves some additional capacity for
spot instances. Furthermore, the inopportune placement of a spot
instance does indeed lead to “fragmentation” and at times blocks
the placement of large on-demand instances later on. While in



our synthetic workloads the on-demand trace was completely
unaffected by the spot trace, real-world traces are measurably
impacted by the presence of spot instances.

IV. RELATED WORK

Spot instances were first employed in 2009 as part of
Amazon Web Services (AWS) [15]. Spot instances in public
clouds are typically available at a rate significantly lower than
that of on-demand instances as they allow providers to oppor-
tunistically utilize spare capacity. They do not, however, provide
a guarantee (SLA) on their lifetime: spot instances can be
terminated (evicted) at any time, whereas on-demand instances
provide a 99.95% SLA on their availability once started.

Due to their unreliability but low cost they are typically used
as opportunistic accelerators [16]. Previous research has also
studied pricing models and user experience (Quality of Service)
for services built entirely on spot instances. The authors in [17]
model pricing as a mixture of multiple Gaussian distributions
and reveal the challenges with modeling analytically, empirically
observed phenomena in the cloud. Andrzejak et al. [2] model the
trade-offs between spot instance bids and realized execution time
to achieve probabilistic deadline guarantees for long-running,
check-pointable jobs. In [3] the authors investigate a hypo-
thetical service provider running a QoS-sensitive web service
purely on spot instances, with a focus on revenue maximization.
Similarly, [4] investigates a service running purely over spot
instances and finds that existing SLAs capture only part of the
observed variation typical in cloud environments.

In our work, we also service complex commercial workloads
with spot instances, but side-step manual analytical modeling
via Monte-Carlo simulation to provide a powerful new type of
SLA on spot instance eviction probability for arbitrary jobs with
bounded lifetime. While revenue and user experience depend
on the specifics of the end-application, guarantees on eviction
probability simplify reasoning about the system as a whole and
allow providers to use it as foundation for custom SLA models.

V. CONCLUSIONS

Core economic drivers of cloud computing are the simpli-
fication of infrastructure management for clients, and increased
utilization of hardware for providers by consolidation of differ-
ent workloads. For private enterprise clouds, workload consol-
idation has its limitations due to smaller and more specialized
user bases. A spot instance service model is promising, but
comes with the challenge of reasoning about the implications
of using evictable instances.

In this paper, we present a novel approach to providing
spot instances with probabilistic SLAs on their minimum life-
time, which offers a generic solution to estimating costs and
availability guarantees. We base the SLAs on estimating the
time-until-eviction of spot instances from historical workload
traces via Monte-Carlo simulation, which effectively enables
cloud operators to offer an SLA on spot instance eviction
probability. Users can request spot instances for a fixed lifetime
with quantitative bounds on eviction probability and receive an
immediate response from the cloud provide of whether it can
provide the desired quality of service, or not. We demonstrate
the robustness of our approach to providing guarantees with
commercial workload traces and evaluate its efficiency for
increasing utilization via workload co-scheduling.
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