
Performance Monitoring and Root Cause Analysis for
Cloud-hosted Web Applications

Hiranya Jayathilaka, Chandra Krintz, Rich Wolski
Computer Science Department

University of California, Santa Barbara
{hiranya,ckrintz,rich}@cs.ucsb.edu

ABSTRACT
In this paper, we describe Roots – a system for automatically
identifying the “root cause” of performance anomalies in
web applications deployed in Platform-as-a-Service (PaaS)
clouds. Roots does not require application-level instrumen-
tation. Instead, it tracks events within the PaaS cloud that
are triggered by application requests using a combination of
metadata injection and platform-level instrumentation.

We describe the extensible architecture of Roots, a proto-
type implementation of the system, and a statistical method-
ology for performance anomaly detection and diagnosis. We
evaluate the efficacy of Roots using a set of PaaS-hosted
web applications, and detail the performance overhead and
scalability of the implementation.
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1. INTRODUCTION
Over the last decade cloud computing has become a popu-

lar approach for deploying applications at scale [2, 32]. This
widespread adoption of cloud computing, particularly for
deploying web applications, is facilitated by ever-deepening
software abstractions. While abstractions elide much of the
complexity necessary to enable scale, they also obscure the
runtime details, making the diagnosis of performance prob-
lems challenging. Therefore, the rapid expansion of cloud
technologies combined with their increasing opacity has in-
tensified the need for new techniques to monitor applications
deployed in cloud platforms [8].

Application developers and cloud administrators wish to
monitor application performance, detect anomalies, and iden-
tify performance bottlenecks. To obtain this level of oper-
ational insight in a cloud, the cloud platform must support
data gathering and analysis capabilities that span the en-
tire software stack. However, most cloud technologies avail-
able today do not provide adequate means to monitor ap-
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plications or the cloud services they depend on, in a way
that facilitates identifying performance bottlenecks within
the cloud platform.

Application-level instrumentation packages are plentiful [29,
9, 11], but because they perturb the applications they can
significantly increase the effort and financial cost of applica-
tion development and maintenance. Moreover, cloud admin-
istrators must trust the application developers to instrument
their applications correctly (e.g. logging all the relevant in-
formation to diagnose a rare performance fault). Even when
good application instrumentation is available, however, be-
cause applications depend so heavily on extant performance
opaque cloud services (e.g. database services, in-memory
caching, etc.), it is often difficult, if not impossible, to diag-
nose the “root cause” of a performance problem.

Further compounding the performance diagnosis problem,
today’s cloud platforms are large and complex [8, 17]. They
are comprised of many layers, where each layer may consist
of many interacting components. Therefore when a perfor-
mance anomaly manifests in a user application, it is often
challenging to determine the exact software component that
is responsible. Facilitating this type root cause analysis re-
quires both data collection at different layers of the cloud,
and mechanisms for correlating the events recorded at dif-
ferent layers [28].

In this paper, we present Roots – a full-stack application
platform monitor (APM) that is designed to be integrated
into a variety of cloud Platform-as-a-Service (PaaS) tech-
nologies. PaaS clouds, in particular, provide abstractions
that hide most of the details concerning application run-
time [33]. They offer a set of scalable, managed cloud ser-
vices that provide an assortment of functionality, which de-
velopers invoke from the application implementations. To
be able to correlate application activity with cloud service
events, Roots must be able to introspect the entire plat-
form software stack. Therefore we have chosen to design
it as another managed service built into the PaaS cloud.
As an added benefit, by implementing Roots as an intrin-
sic PaaS service, it can function fully automatically in the
background, without requiring instrumentation of applica-
tion code. Instead, Roots intercepts and records events as
the application code invokes various service implementations
of the PaaS cloud, and then correlates them with specific
application requests. Roots also records the latency of each
application request, and of each application call to an inter-
nal cloud service implementation.

When Roots detects a performance anomaly in applica-
tion request latency, it attempts to identify the root cause



of the anomaly by analyzing the previous workload data of
the application, and the performance of the internal PaaS
services on which the application depends. It determines if
the detected anomaly was caused by a change in the appli-
cation workload (e.g. a sudden spike in the number of client
requests), or an internal bottleneck in the cloud platform
(e.g. a slow database query). To facilitate this analysis we
propose a “bottleneck identification” methodology for PaaS
clouds. Our approach uses a combination of quantile analy-
sis, change point detection and linear regression.

We test the efficacy of our approach with a working pro-
totype of Roots using the AppScale [22] open source PaaS.
Our results indicate that using information gathered from
the entire cloud stack to parameterize the bottleneck iden-
tification algorithm, Roots makes remarkably accurate di-
agnoses. We also demonstrate that Roots does not add a
significant performance overhead to the applications, and
that a single Roots pod (our encapsulation abstraction for
data analysis processes) can monitor tens of thousands of
applications simultaneously.

Thus we summarize the contributions made by this paper
as follows.

• We describe the architecture of Roots as an intrinsic
PaaS service, which works automatically without de-
pending upon application instrumentation.

• We describe a statistical methodology for determin-
ing when an application is experiencing a performance
anomaly, and identifying the workload change or the
cloud service that is responsible for the anomaly.

• We demonstrate the effectiveness of the approach using
a working PaaS prototype and real web applications.

The rest of this paper is organized as follows. Section 2
describes the domain of PaaS clouds and discusses the fun-
damentals of performance monitoring. Section 3 overviews
Roots and the motivation behind our design choices. Sec-
tion 4 describes the implementation of our Roots prototype.
Section 5 presents our experimental results. Finally, we dis-
cuss related work (Section 6) and conclude (Section 7).

2. BACKGROUND
We only consider web applications deployed in PaaS clouds.

An application of this nature exposes one or more web ap-
plication programming interfaces (web APIs) through which
clients can interact with it. The web APIs accept HTTP/S
requests sent by remote clients, and respond with machine
readable responses (e.g. HTML, JSON, XML, Protocol Buffers).
This type of applications tend to be highly interactive, and
clients typically have strict expectations about application
response time [23]. Additionally, the PaaS cloud on which
an application is running may also impose constraints on the
application response time for scalability reasons [27, 14]. For
example Google App Engine (GAE) [13] requires that no ap-
plication request takes longer than 60 seconds to execute.

PaaS-hosted web applications, like those that run on GAE,
rely on various services offered by the underlying cloud plat-
form. We refer to these services as PaaS kernel services or
PaaS services. Offloading common application functional-
ity such as data storage, caching, and user management to
a set of scalable and managed PaaS services, significantly
simplifies and expedites application development.

The downside of this approach is that application develop-
ers no longer have full visibility into application execution.
Since most of the application functionality is provided by a
set of PaaS kernel services managed by the cloud provider,
the application developer does not have complete insight
into application performance. If application response time
becomes too slow, it is very challenging for the application
developer to determine the cause of the performance bot-
tleneck due to the opacity of the cloud platform’s internal
implementation.

One way to circumvent this limitation is to instrument
application code, and continuously monitor the time taken
by various parts of the application [29, 9, 11]. Unfortu-
nately, this is tedious for the application developer, error
prone thereby misleading those attempting to diagnose a
problem, and the additional code instrumentation may slow
down or alter the application’s performance. In contrast,
implementing data collection and analysis as a service built
into the PaaS cloud allows anomaly detection and bottle-
neck identification to be a “curated” service that is reliably
and scalably managed by the cloud platform.

2.1 PaaS Performance Anomalies
Our model is one in which the clients of a web applica-

tion have engaged in a “service-level agreement” (SLA) [19]
with the “owner” of the application that is hosted in a PaaS.
The SLA stipulates a response-time “service-level objective”
(SLO) that, if violated, constitutes a breach of the agree-
ment. A performance anomaly, then, is an event or set of
events that causes an application-level SLO to be violated.
The response time SLO of an application is specified by its
owner, when the application is deployed.

We refer to the process of diagnosing whether increased
workload or an unusually slow software component is respon-
sible for an anomaly, and in the latter case, the identification
of the slow component as root cause analysis. When request
latency increases and violates an SLO and the workload has
not increased, we assume that there is a “bottleneck” com-
ponent in the application code or PaaS runtime that is re-
sponsible. Roots performs root cause analysis in near real
time so that it can alert application owners and cloud ad-
ministrators of problems it detects. This allows application
owners to identify the potential bottlenecks in their applica-
tion implementations, and revise them accordingly. Cloud
administrators can use this information to uncover the bot-
tlenecks in the cloud platform, and take corrective action.

3. APPROACH
Our approach is based on the following observations.

• In a well-designed web application targeted for PaaS
environments, most of the “work” is done by curated
services intrinsic to the PaaS cloud [18].

• An application making maximal use of the PaaS ser-
vices finds that its performance is defined by the per-
formance of these services. Since the implementation
and deployment details of the PaaS services are hidden
from the applications, performance diagnostics must
also be implemented as an intrinsic PaaS service.

• The integrity and accuracy of application performance
diagnostics cannot rely on programmer-introduced ap-
plication instrumentation.



Figure 1: Roots APM architecture. Roots injects
a request ID (R) at request ingress that it uses to
correlate events at each level of the stack.

Thus, the key intuition behind Roots is that as a curated
PaaS service it has visibility into all the activities that occur
in various layers of the cloud, including all invocations of the
PaaS kernel services made by the applications.

3.1 Data Collection and Correlation
Since Roots does not rely on application instrumentation,

it must infer application performance traits from the perfor-
mance of the PaaS services in the cloud platform. Typically,
each individual layer of the cloud platform collects data re-
garding its own state changes facilitating measurement of
the time taken in service operations. However, a layer can-
not monitor state changes in other layers without violating
software isolation properties of layering in general. That
is, layers typically log their own internal activities, but do
not (or cannot) correlate these activities with the internal
activities of other layers.

Roots modifies the front-end request server (typically a
software load balancer) to tag all incoming application re-
quests with unique identifiers. Doing so enables Roots to
associate invocations of PaaS kernel services with a particu-
lar request. This request identifier is attached to an HTTP
request as a header, which is visible to all internal compo-
nents of the PaaS cloud. We configure performance data
collecting agents in each software layer in the PaaS cloud
to record the request identifiers along with any events they
capture. This way we maintain the relationship between ap-
plication requests, and the resulting local state changes in
different layers of the cloud without breaking the layered ab-
straction in the cloud architecture. To make this approach
scalable, we collect events independently within their layers,
and aggregate on-demand.

Figure 1 shows Roots collecting data from all layers in
a PaaS stack (i.e. full stack monitoring). Such monitor-
ing enables it to trace the execution of individual requests
through the cloud platform. In addition to Roots data col-
lecting agents directly integrated with the cloud platform,

Roots employs a collection of application benchmarking pro-
cesses that periodically measure application latency. It uses
these measurements to evaluate the performance SLOs for
each application.

To avoid introducing delays to the application request pro-
cessing flow, we implement all Roots data collecting agents
as asynchronous tasks. That is, none of them suspend appli-
cation request processing to store data. All expensive I/O
tasks related to data collection and storage in Roots are ex-
ecuted out of the request processing flow. Roots collects all
data into log files or memory buffers that are local to the
components being monitored. This locally collected data is
periodically sent to the data storage components of Roots
using separate background tasks and batch communication
operations. We also isolate PaaS services from potential fail-
ures in the Roots data collection or storage components to
avoid cascading failures.

Roots data storage uses a database for persisting and
querying monitoring data. We index key properties (ap-
plication and timestamps) to optimize query performance.
Roots also performs garbage collection for removal of old
monitoring data when it is no longer useful to its anomaly
detection algorithms.

3.2 Data Analysis
Roots data analysis components use two basic abstrac-

tions: anomaly detectors and anomaly handlers. Anomaly
detectors are processes that periodically analyze the data
collected for each application. Roots supports multiple de-
tector implementations, where each implementation uses a
different statistical method to look for performance anoma-
lies. Detectors are configured per-application, making it pos-
sible for different applications to use different anomaly detec-
tors. Roots also supports multiple concurrent anomaly de-
tectors on the same application so that mixture approaches
can be employed. Each anomaly detector has an execution
schedule (e.g. run every 60 seconds), and a sliding window
(e.g. from 10 minutes ago to now) associated with it. The
boundaries of the window determines the scope of the data
processed by the detector at any round of execution. Win-
dow is updated after each round of execution.

When an anomaly detector finds an anomaly in applica-
tion performance, it sends an event to a collection of anomaly
handlers. The event consists of a unique anomaly identi-
fier, timestamp, application name, and the source detector’s
sliding window corresponding to the anomaly. Anomaly
handlers are configured globally (i.e. each handler receives
events from all detectors), but each handler can be config-
ured to handle only certain types of events. Furthermore,
handlers can fire their own events, which are also delivered to
all listening anomaly handlers. Similar to detectors, Roots
supports multiple anomaly handlers that support logging,
alerting, dashboard updating, workload change detection,
and bottleneck identification.

3.3 Roots Pods
Roots groups data analysis processes (i.e. anomaly detec-

tors and handlers), and application benchmarking processes
into units called Roots pods. Each Roots pod is responsible
for starting and maintaining a collection of benchmarking
and data analysis processes. Pods are self-contained en-
tities, and there is no inter-communication between pods.
Processes within a pod communicate via shared memory,



Figure 2: Roots prototype implementation for App-
Scale PaaS.

and call out to Roots data storage to retrieve performance
measurements for analysis. Such encapsulation facilitates
efficient starting/stopping of pods without impacting other
PaaS and Roots components. Our pods design also facil-
itates replication for high availability and load balancing
among multiple pods for scalability.

4. PROTOTYPE IMPLEMENTATION
To investigate the efficacy of Roots as an approach to im-

plementing performance diagnostics as a PaaS service, we
have developed a working prototype, and a set of algorithms
that uses it to automatically identify SLO-violating perfor-
mance anomalies. For this investigation, we integrate Roots
into AppScale [22], an open source PaaS cloud that is API-
compatible with the Google App Engine [13] public cloud.
AppScale can run on bare metal or within cloud infrastruc-
tures (Amazon EC2, Eucalyptus, etc.), and executes GAE
applications without modification. We minimally modify
AppScale’s internal components to integrate Roots.

Figure 2 shows an overview of our prototype implementa-
tion. Roots components are shown in grey, while the PaaS
components are shown in blue. We use ElasticSearch [21]
for data storage in our prototype. We configure AppScale’s
front-end server (Nginx) to tag all incoming application re-
quests with a unique identifier via a custom HTTP header.
All data collecting agents in the cloud extract this identi-
fier, and include it as an attribute in all the events reported
to ElasticSearch. This enables our prototype to aggregate
events based on request IDs.

We implement a number of data collecting agents in App-
Scale to gather runtime information from all major com-
ponents of the PaaS. These agents buffer data locally, and
store them in ElasticSearch in batches. Roots persist events
when the buffer accumulates 1MB of data or every 15 sec-
onds, whichever comes first. This ensures that the events are
promptly reported to the Roots data storage while keeping
the memory footprint of the data collecting agents small and
bounded. To capture the PaaS kernel invocation data, we
augment AppScale’s PaaS kernel implementation, which is
derived from the GAE PaaS SDK. Specifically, we imple-
ment a Roots agent that monitors and times all PaaS kernel
invocations, and reports them to ElasticSearch.

We implement Roots pods, which contain more compu-
tationally intensive Roots components, as standalone Java
server processes. We use threads to run benchmarkers, anomaly

detectors, and handlers concurrently within each pod. Pods
communicate with ElasticSearch via a web API, and many
of the data analysis tasks such as filtering and aggregation
are performed in ElasticSearch.

4.1 Detecting SLO Violations
The SLO-based anomaly detector of Roots allows applica-

tion developers to specify simple performance SLOs for de-
ployed applications. A performance SLO is an upper bound
on the application response time (T ), and a probability (p)
that the application response time is below the specified up-
per bound. When activated, the detector starts an appli-
cation benchmarking process within a Roots pod that pe-
riodically measures the response time of the target applica-
tion. Probes made by the benchmarking process are sev-
eral seconds apart in time (defined by the process sampling
rate). The detector periodically analyzes the collected re-
sponse time measurements to check if the application meets
the specified performance SLO. The detector also accepts a
minimum sample count as a parameter. This is the min-
imum number of samples the detector should take before
evaluating an SLO. If the fraction of response time mea-
surements that are less than T falls below p, the SLO has
been violated, and Roots triggers an anomaly event.

To prevent the detector from detecting the same anomaly
multiple times, we flush the detection window upon each
SLO violation. A side effect of this is that the detector is un-
able to detect another violation until the window fills again.
For a sampling rate of 15 seconds and a minimum sample
count of 100, this “warm up” period will be 25 minutes.

4.2 Workload Change Analyzer
To detect changes in workload, Roots implements a work-

load change analyzer as an anomaly handler. This handler is
invoked for every anomaly detected by Roots. The workload
change analyzer determines if an anomaly is due to a change
in workload (i.e. an increase in the application request rate).
Roots can report changes in workload via alerts; PaaS ad-
ministrators can use such alerts to determine when to add
resources to the system. Roots subjects anomalies that are
not due to a workload change to bottleneck identification.

In contrast to the method described in [26, 25] which uses
correlation between request latency and workload, our work-
load change analyzer uses change point detection algorithms
to identify changes in the application’s request rate. Our
implementation of Roots supports a number of well known
change point detection algorithms (PELT [20], binary seg-
mentation and CL method [5]), any of which can be used
to detect level shifts in the workload size. For the results in
this paper, we use PELT to detect changes in workload.

4.3 Bottleneck Identification
When an anomaly occurs and it is not due to an increase

in workload, the bottleneck identification feature attempts
to find, across all the components executed by an applica-
tion, the one that is most likely to have degraded application
performance. PaaS applications consist of user code that is
executed in one or more application servers, which makes
remote service calls to PaaS kernel services. AppScale pro-
vides the same kernel services provided by GAE (datastore,
memcache, urlfetch, blobstore, user management etc.). We
consider each PaaS kernel invocation and the code running
in the application server as separate components. Each ap-



plication request causes one or more components to execute,
and any one of the components can become a bottleneck to
cause performance anomalies.

Roots tracks the total time and the time spent in indi-
vidual components for each request, and relates them via
the formula Ttotal = TX1 + TX2 + ... + TXn + r. Ttotal

is the total execution time of a request. TXi is the time
spent executing Xi; the ith PaaS kernel invocation. r is
the time spent in the resident application server executing
user code (i.e. the time spent not executing PaaS services
during a request). Roots measures the T values in the plat-
form, and computes r using this formula. r is not measured
directly because doing so would require application instru-
mentation. Given that typical PaaS-hosted web applications
spend most of their time executing platform services [18], we
expect r � TX1 + TX2 + ...+ TXn in the common case.

4.3.1 Selecting Bottleneck Candidates
Roots employs multiple candidate selection algorithms to

identify components that are potentially the bottleneck re-
sponsible for the detected anomaly. Our algorithms look for
a variety of inconsistencies and changes in the performance
characteristics of individual components. In our prototype,
we consider four selection algorithms: one that determines
the relative importance (in terms of explained variance) of
components, one that tracks variations in relative impor-
tance, and two distributional techniques that distinguish
rare events and outliers in performance history.

Relative Importance. Relative importance [15] identifies
the component that is contributing the most towards the
variance in the total response time. To use it, Roots re-
gresses the latencies of the PaaS kernel invocations that a
specific request generates against the total response time of
the request. That is, for a time window W just prior to the
detection of the anomaly, Roots fits a linear model using
linear regression of the form Ttotal = TX1 + TX2 + ...+ TXn

over the per-request performance data in the window.
We omit r since it is typically small. For cases in which

the anomaly occurs in r (e.g. a performance problem in the
application server or user code), r may not fit our assump-
tion that r � TX1 + TX2 + ... + TXn . When this occurs,
we assume that r is normally distributed and independent,
and filter out requests from the window for which r is larger
than the 0.95 quantile (r > µr + 1.65σr) to preclude them
from skewing the regression. We consider the influence of r
in other methods described below.

Roots ranks the regressors (i.e. TXn values) based on their
contribution to the variance in Ttotal. It uses the LMG al-
gorithm [24] to do so which is resistant to multicollinearity,
and provides a breakdown of the R2 value of the regression
according to how strongly each regressor influences the vari-
ance of Ttotal. Roots selects the highest ranked component
as a candidate.

Change in Relative Importance. The next method selects
the most likely candidate by detecting changes in relative
importance over time. This algorithm determines how the
variance a component contributes towards the total response
time has changed over time. For this method, Roots divides
the time windowW into equal-sized segments, and computes
relative importance for regressors within each segment. This
results in multiple time series of relative importance values.

We subject each relative importance time series to change
point analysis (PELT in our prototype), and identify the
variable that shows a change and the greatest increase in
relative importance. If such a variable is found, then the
component associated with that variable is considered by
Roots as a bottleneck candidate. The candidate selected by
this method represents a component whose performance has
been stable in the past, and has become variable recently.

High Quantiles. Roots next analyzes the empirical distri-
butions of TXk and r. Out of all the available distributions,
we wish to find the one whose quantile values are the largest.
Specifically, we compute a high quantile (e.g. 0.99 quantile)
for each distribution. The component, whose distribution
contains the largest quantile value is chosen as another po-
tential candidate for the bottleneck since it has recently had
(i.e. within the analysis window) large latencies.

Tail End Values. Finally, Roots analyzes each TXk and r
distribution to identify the one with the largest outlier value
with respect to a particular high quantile. For each maxi-
mum latency value t, we compute the metric P q

t as the per-
centage difference between t and a target quantile q of the
corresponding distribution. We set q to 0.99 in our exper-
iments. Roots selects the component with the distribution
that has the largest P q

t as another potential bottleneck can-
didate. This method identifies candidates that contain rare,
high-valued outliers (point anomalies) in their distributions.

4.3.2 Selecting Among Candidates
The above four methods may select up to four candidate

components for the bottleneck. We designate the candidate
chosen by a majority of methods as the actual bottleneck.
Ties are broken by assigning more priority to the candidate
chosen by the relative importance method.

5. RESULTS
We next evaluate the efficacy of Roots as a performance

monitoring and root cause analysis system for PaaS-hosted
web applications. To do so, we consider its ability to identify
and characterize SLO violations. For violations that are not
caused by a change in workload, we evaluate Roots’ ability
to identify the PaaS component that is the cause of the per-
formance anomaly. Finally, we investigate the performance
and scalability of the Roots prototype.

5.1 SLO Anomaly Detection
We first experiment with the SLO-based anomaly detector

of Roots using a simple HTML-producing, Java web appli-
cation called “guestbook”. This application allows users to
login and post comments. It uses the AppScale datastore
service to persist posted comments, and the AppScale user
management service to handle authentication. Each request
processed by guestbook results in two PaaS kernel service
invocations – one to check if the user is logged in, and an-
other to retrieve the existing comments from the datastore.
We conduct all our experiments on a single node AppScale
cloud except where specified. The node itself is an Ubuntu
14.04 VM with 4 virtual 2.4 GHz CPU cores and 4GB of
memory, provisioned by a Eucalyptus IaaS cloud [31].

We run the SLO-based anomaly detector of Roots on
guestbook with a sampling rate of 15 seconds, an analy-
sis rate of 60 seconds, and a window size of 1 hour. We set



Table 1: Number of anomalies detected in guestbook
app under different SLOs (L1, L2 and L3) when in-
jecting faults into two different PaaS kernel services.

Faulty Service L1

(30ms)
L2

(35ms)
L3

(45ms)
datastore 18 11 10

user management 19 15 10

the minimum samples count to 100, and run a series of ex-
periments with different SLOs on the guestbook application.
Specifically, we fix the SLO success probability at 95%, and
set the response time upper bound to µg + nσg. µg and
σg represent the mean and standard deviation of the guest-
book’s response time. We learn these two parameters a pri-
ori by benchmarking the application. Then we obtain three
different upper bound values for the guestbook’s response
time by setting n to 2, 3 and 5 and denote the resulting
three SLOs L1, L2 and L3 respectively.

Next, we inject performance faults into AppScale by mod-
ifying its code to cause the datastore service to be slow to
respond. This fault injection logic activates once every hour,
and slows down all datastore invocations by 45ms over a pe-
riod of 3 minutes. We chose 45ms because it is equal to
µg + 5σg for the AppScale deployment under test. There-
fore this delay is sufficient to violate all three SLOs used in
our experiments. We also perform experiments in which we
inject faults into the user management service of AppScale.
Each experiment is run for a period of 10 hours.

5.1.1 Anomaly Detection Accuracy
Table 1 shows how the number of anomalies detected by

Roots in a 10 hour period varies when the SLO is changed.
The number of anomalies drops noticeably when the re-
sponse time upper bound is increased. When the L3 SLO
(45ms) is used, the only anomalies detected are the ones
caused by our hourly fault injection mechanism. As the SLO
is tightened by lowering the upper bound, Roots detects ad-
ditional anomalies. These additional anomalies result from
a combination of injected faults, and other naturally occur-
ring faults in the system. That is, Roots detects naturally
occurring faults (temporary spikes in application latency),
while a number of injected faults are still in the sliding win-
dow of the anomaly detector. Together these two types of
faults caused SLO violations usually several minutes after
the fault injection period has expired. In each case, however,
a manual inspection of the data reveals that Roots identified
all of the injected and natural faults correctly, missing none
subject to the tightness of the SLO.

5.1.2 Anomaly Detection Speed
Next we analyze how fast and often Roots can detect

anomalies in an application. We consider the performance
of guestbook under the L1 SLO while injecting faults into
the datastore service. Figure 3 shows anomalies detected by
Roots as events on a time line. The horizontal axis repre-
sents passage of time. The red arrows indicate the start of a
fault injection period, where each period lasts up to 3 min-
utes. The blue arrows indicate the Roots anomaly detection
events. Note that every fault injection period is immediately
followed by an anomaly detection event, implying near real
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Figure 3: Anomaly detection in guestbook applica-
tion during a period of 10 hours. Red arrows indi-
cate fault injection at the datastore service. Blue
arrows indicate all anomalies detected by Roots.

13:00 15:00 17:00 19:00 21:00

50
0

10
00

15
00

20
00

Time (hh:mm)
R

eq
ue

st
s 

pe
r 

m
in

ut
e

Figure 4: Workload size (requests per minute) over
time for the key-value store application. The test
client randomly sends large bursts of traffic caus-
ing the spikes in the plot. Roots anomaly detection
events are shown in red dashed lines.

time reaction from Roots. The only exception is the fault
injection window at 20:00 hours, which is not immediately
followed by an anomaly detection event. Roots detected an-
other naturally occurring anomaly (i.e. one that we did not
explicitly inject but nonetheless caused an SLO violation) at
19:52 hours, which caused the anomaly detector to go into
the warm up mode. Therefore Roots did not immediately
react to the faults injected at 20:00 hours. Roots detects
the anomaly once it becomes active again at 20:17. As in
the previous experiment, the detection accuracy is 100%, as
determined by manual inspection.

5.2 Workload Change Analyzer
Next we evaluate the Roots workload change analyzer. In

this experiment we run a varying workload against a test
application for 10 hours. The test application is an online
key-value store that supports basic data management opera-
tions. The load generating client is programmed to maintain
a mean workload level of 500 requests per minute. However,
the client is also programmed to randomly send large bursts
of traffic at times of its choosing. During these bursts the
client may send more than 1000 requests a minute, thus im-
pacting the performance of the application server that hosts
the key-value store. Figure 4 shows how the application
workload has changed over time. The workload generator
has produced 6 large bursts of traffic during the period of
the experiment, which appear as tall spikes in the plot. Note
that each burst is immediately followed by a Roots anomaly
detection event (shown by red dashed lines). In each of
these 6 cases, the increase in workload caused a violation of



Time (hh:mm)

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Fault injection Anomaly detection

Figure 5: Anomaly detection in stock-trader appli-
cation while injecting faults to the 1st kernel invo-
cation
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Figure 6: Anomaly detection in stock-trader appli-
cation while injecting faults to the 2nd kernel invo-
cation

the application performance SLO. Roots detected the cor-
responding anomalies, and determined them to be caused
by changes in the workload size. As a result, bottleneck
identification was not triggered for any of these anomalies.
Even though the bursts of traffic appear to be momentary
spikes, each burst lasts for 4 to 5 minutes thereby causing a
lasting impact on the application performance. The PELT
change point detection method used in this experimental set
up is ideally suited for detecting such lasting changes in the
workload level.

5.3 Bottleneck Identification
In this subsection, we evaluate the bottleneck identifica-

tion capability of Roots. We first discuss the results obtained
using the guestbook application, and follow with results ob-
tained using a more complex application. In the experimen-
tal run illustrated in figure 3, Roots determined that all the
detected anomalies except for one were caused by the App-
Scale datastore service. This is consistent with our expecta-
tions since in this experiment we artificially inject faults into
the datastore. The only anomaly that is not traced back to
the datastore service is the one that was detected at 14:32
hours. This is indicated by the blue arrow with a square
marker at the top. For this anomaly, Roots concluded that
the bottleneck is the local execution at the application server
(r). We have verified this result by manually inspecting the
AppScale logs and traces of data collected by Roots. As it
turns out, between 14:19 and 14:22 the application server
hosting the guestbook application experienced some prob-
lems, which caused request latency to increase significantly.
Therefore we can conclude that Roots has correctly identi-
fied the root causes of all 18 anomalies in this experimental
run including one that we did not inject explicitly.

5.4 A More Complex Example
To evaluate how the bottleneck identification performs

when an application makes more than 2 PaaS kernel invoca-
tions, we conduct another experiment using an application
called “stock-trader”. This application allows setting up or-
ganizations, and simulating trading of stocks between the or-
ganizations. The two main operations in this application are

Time (hh:mm)

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

G4 anomaly G6 anomaly G7 anomalyFault injection

Figure 7: SLO-violation Anomaly detection in 8 ap-
plications deployed in a clustered AppScale cloud.

buy and sell. Each of these operations makes 8 calls to the
AppScale datastore. According to our previous work [18], 8
kernel invocations in the same path of execution is very rare
in web applications developed for a PaaS cloud. The proba-
bility of finding an execution path with more than 5 kernel
invocations in a sample of PaaS-hosted applications is less
than 1%. Therefore the stock-trader application is a good
extreme case example to test the Roots bottleneck identifi-
cation support. In this experiment we configure the anomaly
detector to check for the response time SLO of 177ms with
95% success probability.

In one of our experimental runs we inject faults into the
first datastore query executed by the buy operation of stock-
trader. The fault injection logic runs every two hours, and
lasts for 3 minutes. The duration of the full experiment is
10 hours. Figure 5 shows the resulting event sequence. Note
that every fault injection event is immediately followed by
a Roots anomaly detection event. There are also four addi-
tional anomalies in the time line which were SLO violations
caused by a combination of injected faults, and naturally oc-
curring faults in the system. For all the anomalies detected
in this test, Roots correctly selected the first datastore call
in the application code as the bottleneck. The additional
four anomalies occurred because a large number of injected
faults were in the sliding window of the detector. Therefore,
it is accurate to attribute those anomalies also to the first
datastore query of the application.

Figure 6 shows the results from a similar experiment where
we inject faults into the second datastore query executed by
the operation. Here also Roots detects all the artificially in-
duced anomalies along with a few extras. All the anomalies,
except for one, are determined to be caused by the second
datastore query of the buy operation. The anomaly detected
at 08:56 (marked with a square on top of the blue arrow)
is attributed to the fourth datastore query executed by the
application. We have manually verified this conclusion to
be accurate. Since 08:27 (when the previous anomaly was
detected), the fourth datastore query has frequently taken a
long time to execute (again, on its own), which resulted in
an SLO violation at 08:56 hours.

5.5 Multi-tenant Cluster Setting
To demonstrate how Roots can be used in a multi-node en-

vironment, we deploy AppScale using a cluster of 10 virtual
machines (VMs). VMs are provisioned by a Eucalyptus IaaS
cloud, and each VM is comprised of 2 CPU cores and 2GB
memory. Then we proceed to deploy 8 instances of the guest-
book application on AppScale. We use the multi-tenant sup-
port in AppScale to register each instance of guestbook as a
different application (G1 through G8). Each application in-
stance has its own datastore namespace, is isolated from the
others, and is accessed via its own public URL. We disable
auto-scaling support in the AppScale cloud, and inject faults



Table 2: Summary of Roots efficacy results.

Feature Results Observed in Roots
Detecting ac-
curacy

The first occurrence of all artificially in-
duced anomalies were detected. Roots
also detected several “natural” anomalies
in AppScale.

Anomaly Dif-
ferentiation

All anomalies were correctly identified as
either due to workload change or bottle-
neck.

Bottleneck
Identification

In all the cases where a bottleneck was
identified Roots identified the correct
bottleneck.

Reaction
time

All induced SLO violations were detected
as soon as enough samples of the fault
were taken by the benchmarking process.

into the datastore service of AppScale by delaying queries
from a particular VM by 100ms. We identify the VM by its
IP address in our test environment, and shall refer to it as Vf

in the discussion. We trigger the fault injection every 2 hours
for a duration of 5 minutes. We then monitor the applica-
tions using Roots for a period of 10 hours. Each anomaly
detector is configured to check for the 75ms response time
SLO with 95% success rate. ElasticSearch, Logstash and the
Roots pod are deployed on a separate VM.

Figure 7 shows the resulting event sequence. Note that
we detect anomalies in 3 applications (G4, G6 and G7) im-
mediately after each fault injection. Inspecting the topology
of our AppScale cluster revealed that these were the only 3
applications that were hosted on Vf . As a result, bi-hourly
fault injection caused their SLOs to get violated. Other
applications did not exhibit any SLO violations since the
SLO specifies a high response time upper bound. In each
case Roots detected the SLO violations 2-3 minutes into the
fault injection period. As soon as this happens, the anomaly
detectors of G4, G6 and G7 entered their warmup phases.
Our fault injection logic continued to inject faults for at least
2 more minutes. Therefore when the anomaly detectors re-
activated after 25 minutes (which is the time to collect the
minimum sample count), they each saw another SLO viola-
tion. Hence another set of detection events appears in the
figure approximately half an hour after the original fault
injection events.

5.6 Results Summary
Table 2 summarizes our results. While not exhaustive,

these results indicate that Roots is able to achieve a high
degree of accuracy in detecting and characterizing perfor-
mance anomalies. Moreover, for the experimental configu-
rations that we consider, Roots is able to accurately identify
the component that causes each anomaly in a production-
quality, open source PaaS.

5.7 Roots Performance and Scalability
We evaluate the performance overhead incurred by Roots

on the applications deployed in the cloud platform. We
are particularly interested in understanding the overhead of
recording the PaaS kernel invocations made by each appli-
cation, since this feature requires some changes to the PaaS
kernel implementation. We deploy a number of applications

Table 3: Latency comparison of applications when
running on a vanilla AppScale cloud vs when run-
ning on a Roots-enabled AppScale cloud.

Without Roots With Roots
App./Concurrency Mean

(ms)
SD Mean

(ms)
SD

guestbook/50 375 51.4 374 53.0
stock-trader/50 3631 690.8 3552 667.7

kv store/50 169 26.7 150 25.4

on a vanilla AppScale cloud (with no Roots), and measure
their request latencies. We use the popular Apache Bench
tool to measure the request latency under a varying number
of concurrent clients. We then take the same measurements
on an AppScale cloud with Roots, and compare the results
against the ones obtained from the vanilla AppScale cloud.
In both environments we disable the auto-scaling support of
AppScale, so that all client requests are served from a single
application server instance. In our prototype implementa-
tion of Roots, the kernel invocation events get buffered in
the application server before they are sent to the Roots data
storage. We wish to explore how this feature performs when
the application server is under heavy load.

Table 3 shows the comparison of request latencies with
50 clients for each of the applications. The data shows that
Roots does not add a significant overhead to the request
latency in any of the scenarios considered. In all the cases,
the mean request latency when Roots is in use is within
one standard deviation from the mean request latency when
Roots is not in use.

Finally, to demonstrate Roots scalability, we deploy a
Roots pod on a virtual machine with 4 CPU cores and 4GB
memory. With 10000 concurrent detectors, the maximum
memory usage of the pod was 778MB and the CPU usage
was 60% of a single core. Using just the one machine, with
4 cores and 4GB of memory, a single pod was able to ser-
vice 40000 concurrent detectors. Since one pod can service
a large number of applications simultaneously and pods are
independent, these results indicate that Roots scales in the
number of detectors.

6. RELATED WORK
Roots falls into the category of performance anomaly de-

tection and bottleneck identification (PADBI) systems [17].
They play a crucial role in achieving guaranteed performance
and quality of service by detecting performance issues be-
fore they escalate into major outages or SLO violations [16].
However, the paradigm of cloud computing is yet to be fully
penetrated by PADBI systems research. The size, com-
plexity and the dynamic nature of cloud platforms make
performance monitoring a particularly challenging problem.
The existing technologies like Amazon CloudWatch [7], New
Relic [29] and DataDog [9] facilitate monitoring cloud appli-
cations by instrumenting low level cloud resources (e.g. vir-
tual machines), and application code. But such technologies
are either impracticable or insufficient in PaaS clouds where
the low level cloud resources are hidden from users by soft-
ware abstractions, while application-level instrumentation is
generally tedious and error-prone.



Tracing system activities via request tagging has been em-
ployed in several previous works such as X-Trace [12] and
PinPoint [6]. X-Trace records network activities across pro-
tocols and layers, but does not support root cause analysis.
PinPoint traces interactions among J2EE middleware com-
ponents to localize faults rather than performance issues.
Currently it is limited to single-machine tracing within a
JVM.

Aguilera et al developed a performance debugging frame-
work for distributed systems comprised of blackbox com-
ponents [1]. They infer the inter-call causal paths between
application components, and attribute delays to those com-
ponents. Roots does something similar, but we only con-
sider one level of interaction in our work – from application
code to PaaS kernel services. This is sufficient to determine
the PaaS kernel invocation that may have caused a perfor-
mance anomaly. The blackbox components considered in
our work (i.e. the PaaS kernel services) do not typically in-
teract with each other. However, each PaaS kernel service
is a distributed system of its own right with many internal
components running on different containers and VMs. In
our future work we wish to also factor in the events that
occur within PaaS services and the underlying IaaS compo-
nents, and expand the bottleneck identification capabilities
of Roots down to internal service components, containers
and VMs.

Attariyan et al presented X-ray [3], a performance sum-
marization system that can be applied to a wide range of
production software. X-ray attributes performance costs to
each basic block executed by a software application, and esti-
mates the likelihood a block was executed due to a potential
root cause. With that X-ray can compute a list of root cause
events ordered by performance costs. However, X-ray re-
lies on instrumenting application binaries. It also attributes
performance issues to root causes under user’s control such
as configuration issues. Therefore for each application the
X-ray user must specify the application configurations, pro-
gram inputs, as well as a way to identify when a new request
begins. Roots requires neither binary instrumentation, nor
any additional user input. Also it can detect performance
bottlenecks in the cloud platform that are beyond applica-
tion developer’s control. In the future we wish to explore
the idea of selective instrumentation, in which we temporar-
ily instrument an application to gather additional runtime
data for a period, so we can perform X-ray like performance
summarization on-demand.

Systems noted above ([6, 1, 3]) collect/trace data online,
but perform heavy computations offline. We take the same
approach in Roots by running anomaly detection and root
cause analysis as offline processes. However, none of the
above systems have been designed for or tested in a cloud
environment. Roots on the other hand is specifically de-
signed to monitor web applications in PaaS clouds where
the abstractions, scale and user expectations pose unique
challenges.

Our work is heavily inspired by the past literature that
detail the key features of cloud APMs [8, 17] . We also
borrow from Magalhaes and Silva who uses statistical corre-
lation and linear regression to perform root cause analysis in
web applications [26, 25]. Dean et al implemented PerfCom-
pass [10], an anomaly detection and localization method for
IaaS clouds. They instrument operating system kernels of
VMs to perform root cause analysis in IaaS clouds. We take

a similar approach where we instrument the kernel services
of the PaaS cloud. Nguyen et al presented PAL, another
anomaly detection mechanism targeting distributed appli-
cations deployed on IaaS clouds [30]. Similar to Roots, they
also use an SLO monitoring approach to detect anomalies.

Anomaly detection is a general problem not restricted to
performance analysis. Researchers have studied anomaly
detection from various standpoints and come up with many
algorithms [4]. While we use many statistical methods in
our work (change point analysis, relative importance, quan-
tile analysis), Roots is not tied to any of these techniques.
Rather, we provide an extensible framework on top of which
new anomaly detectors and anomaly handlers can be built.

7. CONCLUSIONS AND FUTURE WORK
We propose Roots, a near real time monitoring and diag-

nostics framework for web applications deployed in a PaaS
cloud. Roots is designed to function as a curated service
built into the cloud platform, as opposed to an external
monitoring system. It relieves the application developers
from having to configure their own monitoring solutions or,
indeed, from having to instrument the application code.

We evaluate Roots using a prototype built for the App-
Scale open source PaaS. Our results indicate that Roots is
effective at detecting performance anomalies in near real
time. We also show that our bottleneck identification al-
gorithm produces accurate results nearly 100% of the time
(cf Table 2), pinpointing the exact PaaS service or the appli-
cation component responsible for each anomaly. Our empiri-
cal trials further reveal that Roots does not add a significant
overhead to the applications deployed on the cloud platform.
Finally, we show that Roots is lightweight, and scales well
to handle large populations of applications.

As part of future work, we plan to expand the data gather-
ing capabilities of Roots into the low level virtual machines
and containers that host various services of the cloud plat-
form. We intend to tap into the hypervisors and container
managers to harvest runtime data regarding the resource
usage (CPU, memory, disk etc.) of PaaS services and other
application components. Roots will use this information to
identify performance anomalies that are caused by the cloud
resources on which the PaaS relies.
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