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Abstract Tables are a ubiquitous form of communication.
While everyone seems to know what a table is, a pre-
cise, analytical definition of “tabularity” remains elusive be-
cause some bureaucratic forms, multicolumn text layouts,
and schematic drawings share many characteristics of tables.
There are significant differences between typeset tables,
electronic files designed for display of tables, and tables in
symbolic form intended for information retrieval. Most past
research has addressed the extraction of low-level geomet-
ric information from raster images of tables scanned from
printed documents, although there is growing interest in the
processing of tables in electronic form as well. Recent re-
search on table composition and table analysis has improved
our understanding of the distinction between the logical and
physical structures of tables, and has led to improved for-
malisms for modeling tables. This review, which is struc-
tured in terms of generalized paradigms for table process-
ing, indicates that progress on half-a-dozen specific research
issues would open the door to using existing paper and elec-
tronic tables for database update, tabular browsing, struc-
tured information retrieval through graphical and audio in-
terfaces, multimedia table editing, and platform-independent
display.
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1 Introduction
1.1 Why tables?

Tables are the prevalent means of representing and commu-
nicating structured data. They may contain words, numbers,
formulae, and even graphics. Developed originally in the
days of printed or handwritten documents (indeed, tables
may pre-date sentential text [47]), they have been adapted
to word processors and page composition languages, and
form the underlying paradigm for spreadsheets and rela-
tional database systems.

Some common examples of data usually presented in the
form of tables are calendars, rail and flight schedules, fi-
nancial reports, experimental results, and grade reports. It is
worth noting that the need to reformat and analyze the 1890
U.S. Census forms launched the punched-card “tabulator”
industry. Electronic computers were commissioned during
WWII for computing ballistic tables. The major commercial
applications envisioned for computers in the 1950s centered
on database manipulation, which remains the mainstay of
business data processing.

The other common representation for structured data is
a list. If we consider ordered lists analogous to vectors, then
we can think of tables as analogous to matrices. Unlike vec-
tors and matrices, lists and tables may contain non-numeric
data items. Graphs are required for relationships more com-
plex than can be represented by tables and are used primarily
for inter-document structure. Trees are often used to repre-
sent intra-document structure.

Note that not all tables can be easily interpreted us-
ing only common sense: consider, for instance, the Periodic
Table of the Elements, which requires substantial domain
knowledge to understand (see Table 1). It is exceedingly
easy to come up with other examples that are challenging
even from a human perspective. Rather than belabor this
point, for the purposes of this survey, we choose instead to
focus on the kinds of tables that researchers have addressed
with some degree of success.



Table-processing paradigms: a research survey

67
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Table-processing paradigms are part of the older field of
document image analysis [67]. A common objective of find-
ing and delimiting tables, equations and illustrations, is to
clear the path for optical character recognition (OCR) or, if
the document is already in electronic form, for text analy-
sis. Tables are between text and graphics with regard to the
relative proportion of alphanumeric symbols, linear compo-
nents and white space. If the text is sufficient for the purpose
at hand, then all other document components can simply be
either eliminated or preserved only in some image format.
That is indeed adequate for many keyword-based document
retrieval applications.

However, if some or all of the essential information re-
sides in tables, then the tables themselves must be processed.
There is little published research on OCR for tables. Current
commercial OCR systems are hampered by the non-uniform
spacing, multiple typefaces and sizes, rulings, and lack of
language context found in tables. Without special provisions
for tables, the OCR format preprocessor may simply attempt
to decolumnize them. Some OCR products offer a zoning
feature that marks and avoids table regions. More sophisti-
cated systems attempt to transform tables, without further
analysis, into the table format of the target representation
(like Microsoft Word), but the results tend to be unreliable.
None of these alternatives are satisfactory for table-rich doc-
uments: hence this special issue.

1.2 Rationale for this review

It appears likely that the automated or semi-automated in-
terconversion of tables from one medium to another (e.g.,
from paper or electronic text to a spreadsheet, database, or
query—answer system), or from one format to another in the
same medium (e.g., for different display sizes) will prove

desirable in a variety of computing environments. In some
applications, it may be advantageous to query and refer-
ence tabular data without regard to the underlying medium
or form.

Reflecting this growing interest, a number of surveys
on table processing have appeared over the past several
years [37, 47, 62, 63, 97]. The review by Lopresti and
Nagy [62] aims at exploring the diversity and extent of the
table world, and the many areas where further progress is
needed to make the transition between traditional tables and
digital presentation of structured information. A large col-
lection of examples is included to illustrate the difficulty of
both human and machine understanding of many tables. As
an experiment, the entire survey was converted into tabular
form for the version of the GREC proceedings later pub-
lished as a separate book [63].

Handley’s survey on document recognition [37] has sec-
tions on table recognition and forms recognition with accu-
rate and detailed descriptions of many previously published
algorithms.

The recent survey by Zanibbi et al. [97] includes refer-
ences to much new material, organized according to a view
of table recognition as the interaction of “models, observa-
tions, transformations, and inferences.” Work in the area is
partitioned according to the methods used for classification
(e.g., decision trees and neural networks) and segmentation
(e.g., clustering and grammars). This paper also has a useful
section on performance evaluation.

Surveys of the information-organizational aspects of ta-
bles are included in Hurst’s Ph.D. thesis [47] and a recent
paper by Embley et al. [28]. At the time of writing the paper,
another extensive bibliography, compiled by Price, could be
found on-line.!

I See http://iris.usc.edu/Vision-Notes/bibliography/char966.html
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The present paper is an attempt to review not only what
people have actually done with tables but also what they
would like to do with them, what they cannot do, and what
and how they think about them. Our object is to collect in-
formation about the composition, use, interpretation, and un-
derstanding of tables that may prove useful in the develop-
ment of tools for manipulating tables presented in a variety
of media.

1.3 Guide to the remainder of this paper

Our organizing principle is to attempt to orthogonalize the
various issues, so as to be able to make independent deci-
sions regarding algorithm development.

We begin by first considering the fundamental question:
“What is a table?” Rather than get hung up on the complexi-
ties of what is certainly a deep and debatable issue, we take a
pragmatic approach to our definition of tabularity, informed
largely by what researchers have already been able to ac-
complish in the area of table understanding.

To lay the groundwork for the kinds of tables we shall
consider, we then proceed to describe half-a-dozen appli-
cations that would result from new developments in table
processing. This is followed by a brief overview of existing
commercial approaches to the problems of table and forms
processing.

We then discuss input media under the headings of “elec-
tronic” and “paper.” The former can be further subdivided
into plain ASCII and page-descriptor representations. Elec-
tronic tables such as those found in word processing docu-
ments, e-mail, Portable Document Format (PDF) files, and
the Web, already have the content of the leaf cells in sym-
bolic form, so OCR is not necessary, but the structure is sel-
dom available in a convenient form. Tables on paper must be
optically scanned for any type of automated processing.

The bulk of our paper is structured in terms of paradigms
for table processing. Here we outline the major steps as a
series of generic tasks to be performed. Most, but not all,
past work can be cast in this framework, which provides a
foundation for describing and discussing research results to
this point in time.

In the final section, we summarize potential research di-
rections.

2 Tables
2.1 What is a table?

Although many consider the idea of a table to be simple,
careful study (e.g., [63]) reveals that the question “What
constitutes a table?” is indeed difficult to answer. Several
researchers have provided definitions. Peterman et al. [71],
for example, state that “tables have a regular repetitive
structure along one axis so that the data type is determined
either by the horizontal or vertical indices.” These defini-
tions, however intuitive, do not provide a theoretical basis
from which to work.

As recognized by Tijerino et al. [84], relational tables
[21] do provide a theoretical basis for tables. Axiomatically,
relations in a relational database can be considered to be ta-
bles in a canonical form. Using a standard, formal definition
of a relational table [66, 84] shows how to define a canonical
table as follows. A schema for a canonical table is a finite set
L ={Ly,...,L,}of label names or phrases, which are sim-
ply called labels. Corresponding to each label L;, 1 <i < n,
is a set D;, called the domainof L;.Let D = Dy U---U D,,.
A canonical table T is a set of functions T = {1, ..., t,}
from L to D with the restriction that for each functiont € T,
t(Lj)e Dj,1 <i<n.

As is common for relational databases, we can display
tables in two dimensions. When we display a table two di-
mensionally, we fix the order of the labels in the schema for
each function and factor these labels to the top as column
headers. Each row in the table constitutes the domain values
for the corresponding labels in the column headers. Thus,
for example, we can display the canonical table:

{{(LAST NAME, Smith), (INITIAL, J),
(BIRTH DATE, 12/3 1988)},

{ (LAST NAME, Barr), (INITIAL, K),
(BIRTH DATE, 25/5 1975)}}

as Table 2 shows. Displayed in this form, a canonical table
is simply called a table. Whether any format in which this
same information may be displayed (e.g., as the set of sets
illustrated earlier) should be called a “table” may be debat-
able. To avoid the argument, whenever there may be doubt,
we can refer to the information as table-equivalent data [84].
Displayed in its usual way as depicted in Table 2, this infor-
mation would certainly be called a table.

One consequence of this definition is that we can for-
mally investigate the boundary conditions constituting de-
generate table-equivalent data. When there is only one col-
umn, the table is more commonly called a /istz. When there
are no domain-value rows, we may think of the empty ta-
ble as a form with slots to be filled in. When there is only
one row, we may think of the table as a filled-in form. If a
label is missing (e.g., if either LAST NAME or INITIAL is
missing), we may think of the label as being implicit. Com-
mon sense (e.g., the names look like names and the initials
look like initials) and context (e.g., BIRTH DATE usually
implies people with names) allow us to reconstruct missing
labels, or at least synonymously equivalent missing labels.
If all labels are missing, self-identifying data may allow us
to reconstruct all implicit labels. If all labels are missing and
all domain values are numbers, we think of the table as a
matrix. Further, if a matrix has only one row or one column,
we think of it as a vector, as noted previously.

Table 2 A simple canonical table

LAST NAME INITIAL BIRTH DATE
Smith J 12/3 1988
Barr K 25/5 1975
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2.2 What is table understanding?

Another consequence of the formal definition for tables is
that it leads directly to a formal definition of table under-
standing. A table is understood if we can recover the set of
labels L = {L1, ..., L,}, the set of domains D = {Dq, ...,
D,}, and the set of functions T = {¢q,...,t,} that each
maps L to D. Often, we use a less-inclusive definition
that does not require us to identify D and the individual
domains, Di,...,D,, that constitute D. In this case,
recovering the label-value pairs for each function ; € T is
sufficient. Thus, for example, Table 2 is understood if we
can recover the set of functions:

{{(LAST NAME, Smith), (INITIAL, J),
(BIRTH DATE, 12/3 1988)},

{ (LAST NAME, Barr), (INITIAL, K),
(BIRTH DATE, 25/5 1975) }}

Experiments have shown that even human “experts” do
not always agree on the sets of label-value pairs for a ta-
ble [41]. Thus, we should not be surprised that automating
table understanding is difficult.

Although the task may be challenging, the formal defini-
tion does tell us exactly what we have to do to automate table
understanding: we must recover the label-value pairs from
the representation of a given table. To formalize this pro-
cess, we can adopt the ideas from [36], which proposes the
use of an ontology for automated table understanding. Since
“an ontology is a formal, explicit specification of a shared
conceptualization” [34], a table understanding ontology for-
mally and explicitly specifies a shared conceptualization of
table understanding. Basically, the idea is to ontologically
capture all the relevant representational knowledge about a
table (the input ontology) and transform it algorithmically to
sets of label-value pairs (the output ontology).

Figure 1 shows a graphical depiction of the output on-
tology for canonical tables. Later in this paper, when we
describe table-processing paradigms, we will show how to
represent input tables ontologically and explain how the
paradigms can all be thought of as transforming an input
table captured ontologically into an output ontology such as

Table
A

Tuple

The Label set for each Tuple
of a Table must be identical.

Each Tuple must have distinct Labels.

Fig. 1 An output ontology for tables [36]

the one in Fig. 1. In the diagram, we use boxes to repre-
sent object sets, solid boxes for abstract items represented
by object identifiers, and dotted boxes for concrete items
represented by value strings. Thus, for example, Table in
Fig. 1 is a set of table identifiers representing the tables of
interest, and Label is a set of labels such as LAST NAME or
BIRTH DATE. Hyperedges connecting object sets represent
relationship sets. N-ary edges have a diamond; binary edges
do not have a diamond. Edges may be functional, denoted by
an arrowhead on their range side. Thus, the relationship be-
tween tuples and tables is functional: each tuple (identified
by a tuple identifier) belongs to one and only one table. The
absence of an arrowhead allows an object to participate with
many other objects. Thus, in the n-ary relationship set, a tu-
ple may have many label-value pairs. Additional constraints
may further restrict object- or relationship sets. Thus, we can
force the conceptualization to correspond to the formal def-
inition of a table, which requires a distinct and equal set of
labels for every tuple belonging to a particular table.

2.3 Generalizing tables and table understanding

A further consequence of the formal definition for tables is
generalizations of tables and table understanding. Indeed,
some researchers have offered generalizations [47, 84]. One
way we can formally extend the definition is by defining
nested labels [47]. We can alter Table 2, for example, by
nesting LAST NAME and INITIAL under EMPLOYEE and
BIRTH DATE under PENSION STATUS. For nested tables,
we can use a nesting structure to describe the more complex
attribute value pairs.

In the following discussion we show the nested augmen-
tation of Table 2 using the notation of [47]. Categories are
made up of minimal sequences of dependent cells. Thus,
in the extended version of Table 2, as EMPLOYEE has no
discriminative power other than defining LAST NAME and
INITIAL, it forms part of the values in that category. The
reading set describes the subset of the cartesian product of
the categories that the syntax of the table allows. A reading
path, then, is a subset of the reading set with the specific
data category removed.

Categories:

{EMPLOYEE .LAST NAME, EMPLOYEE. INITIAL} ,

{PENSION STATUS.BIRTH DATE}, {Smith,
Barr}, {J, K}, {12/3 1988, 25/5 1975}
Reading Set:

{{EMPLOYEE.LAST NAME, Smith,
PENSION STATUS.BIRTHDATE,
12/3 1988}, ...}

Table 3 shows a more complex kind of nesting. Two
dimensions are used to index a third data category.” The
two dimensions are Position {First, Second, Third} and

2 Here the first and third categories are laid out vertically, and the
second category horizontally. Many other possible permutations exist.
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nucleotide {U, C, A, G}. Understanding the full label (or
reading path) Second Position C as a complex object, not
a simple string, is required if we are to interpret the table
against a model of the domain. This table is described as
follows:

Categories:

{First Position, Second Position,
Third Position},

{Nucleotide.U, Nucleotide.C,
Nucleotide.A, Nucleotide.G}

{Phe, Ser, Tyr, Cys, Leu, Stop, Trp,
Pro, His, Arg, Gln, Ile, Thr, Asn,
Lys, Met, Val, Ala, Asp, Gly, Glu}

Reading Set:

{{First Position, Nucleotide.U,
Second Position, Nucleotide.U,
Third Position Nucleotide.U, Phe},

-}

Another way we can formally extend the definition is
by defining collections of tables, in which case we have the
equivalent of a relational database [66]. Further, we can re-
verse engineer (e.g., [20]) a collection of tables into a con-
ceptual model (e.g., the entity—relationship model [18]). In
a similar vein, we can consider reverse engineering a single
table or a group of related tables into an ontology and pop-
ulate them as described in [84]. Using this technique, Fig. 2
shows the ontological representation for Table 2 that has
LAST NAME and INITIAL nested under EMPLOYEE and
BIRTH DATE nested under PENSION STATUS, and Fig. 3
shows the ontological representation for the nested genetic
code in Table 3.

In Fig. 3, the black triangle denotes an aggregation of the
elements connected to its base into the aggregate connected
to its apex, while the open triangles denote ISA relationships

Table 3 The genetic code: a mapping from triples of nucleotides
(codons) to the amino acids they encode

Second position

First position U C A G Third position

U Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
Leu Ser Stop Stop A
Leu Ser Stop Trp G
C Leu Pro His Arg U
Leu Pro His Arg C
Leu Pro GIn Arg A
Leu Pro GlIn Arg G
A Ile Thr Asn  Ser U
Ile Thr Asn  Ser C
Ile Thr Lys Arg A
Met Thr Lys Arg G
G Val Ala Asp Gly U
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

EMPLOYEE PENSION STATUS

\

...............

i Amino
i Acid
i First ! Second i Third
: Position ! : Position |

U C A G

Fig. 3 An ontology for Table 3

between specialization elements connected to their bases
and generalization elements connected to their apexes. The
symbol ‘&’ in an open triangle denotes a partition among the
specialization elements with respect to the generalization el-
ement. The large black dots represent individual elements,
thought of as singleton sets in the partition.

It is important to realize that we are using ontologies in
two different ways in this discussion: (1) ontologies to rep-
resent understood tables (Figs. 2 and 3) and (2) ontologies
to represent input and output descriptions of table knowl-
edge (Fig. 1). Although much too complex to depict and
describe in this survey, [27] gives an ontology that for-
mally describes ontologies that represent understood tables.
In this sense, ontologies that represent output descriptions
are meta-ontologies. Indeed, the output ontology in Fig. 1 is
a meta-description of a canonical relational table.

2.4 Models of tables

Not all table-processing research aims at table understand-
ing. For example, some may just want to convert a scanned
table into an editable Microsoft Excel or Word table that has
no meaning except to a human. A substantial amount of ta-
ble processing to date has not attempted to interpret tables;
rather, recovering the grid and cell contents are considered
the target. The researchers in question did formulate ade-
quate models based on their intended goals and their views
of what constitutes a table even though these models are
largely insufficient for the task of table understanding.
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Many different models of tables have been proposed.
This variation is generally in line with the particular tasks
addressed by the systems described or the particular philos-
ophy of document encoding. Low-level models use line-art
[31], white space [78], and character distributions [51] as
key features to drive analysis. Grid-based models include
[60] and [80].

Another class of table model is that which describes a
specific table. This is not only a syntactic constraint but also
a semantic constraint—the model fixes the labels of the po-
sitions in the data area of the table, thus obviating the need to
interpret the labels either syntactically or semantically. The
application context is one in which a known table (or small
set of tables) is input many times and requires interpreta-
tion [80].

It is also possible to devise more general systems that
can be customized to specific families of recursively or it-
eratively generated structured documents, including tables.
Enhanced Position Formalism (EPF) is a 2-D grammar able
to describe document layouts for sheet music, mathematical
equations, and tables [24, 25]. Although the examples pre-
sented in this paper are forms rather than tables, it should be
possible to compile EPF grammars for specific families of
tables. The authors claim that the grammars can be readily
combined, for example to recognize tables of mathematical
equations. The method was applied to several thousand de-
graded 19th century military documents with similar layout.

The database model is an appealing analogy to human-
authored tables. Green uses this analogy to refer to the
printed table as printed manifestations of relational infor-
mation [30]. He then continues by describing the complexi-
ties of the relational model in terms of joining and merging
multiple relations. This effectively appeals to the implicit se-
mantics behind the join as an analogy to the complex cate-
gorical structure present in all but the most trivial uniform
grid table.

The Semantic and Representation Detection (SRD)
framework is proposed for combining information from
a domain ontology, and standard-unit ontology, and table
metadata (possibly derived from surrounding context) into
relational tables for populating a database [4]. It is not clear
from the paper whether the SRD has been implemented.

Often the input format to a table-processing system lim-
its the complexity of the tables, requiring a model of a suit-
ably limited scope. Pyreddy and Croft [73] characterize ta-
bles in a typed-line-manner due to the limitations of an
ASCII representation.

Moving from low-level structural models to more ab-
stract models, we can see the influence of table editing sys-
tems. Wang’s is perhaps the most well-known model which
captures both logical and physical aspects [88]. She de-
scribes the Improv system [23] as being perhaps the first sys-
tem which provided a clear separation of logical and physi-
cal aspects.

Extending some of the concepts presented in [88],
Hurst [47] develops a characterization of tables as document
objects in context, recognizing the potential for surrounding

text to impact the understanding of the table. If the related
text informs the reader that “the values in the second column
are the median value,” we read the data quite differently to
the case where we have been told “the values in the second
column are the maxima.”

Finally, an account of table models is not complete with-
out mentioning research in the field of psycholinguistics.
Wright [95] describes the understanding of the organiza-
tional principles in tables, and Guthrie et al. [35] consider
the nature of categories.

3 Applications of table processing

In this section, we separate applications into as many dis-
crete categories as possible. It may or may not be advan-
tageous to develop a table-processing framework that can
handle several of these applications in a unified way.

3.1 Large-volume, homogeneous table conversion

An example of an application in this area is the work done at
AT&T/Lucent on the conversion of telephone billing state-
ments to a usable form [80]. Although the tables may vary
in format and content, all contain similar types of data that
are compatible with an existing database. The database itself
can be used to facilitate and validate data extraction from
the tables [29]. This application is very similar to forms pro-
cessing and could probably make use of advanced existing
commercial software developed for this purpose.

The authors of the aforementioned paper emphasize
the importance of a well-designed graphical user interface
(GUI) to allow customization of the table-processing tools
for specific formats. The use of table templates eliminates
the need for elaborate structure hypotheses, and the success
of the approach depends mainly on thorough preprocessing
and accurate OCR.

3.2 Large-volume, mixed table conversion

This is a preliminary step for data mining from sources that
are available only as paper or electronic tables. This applica-
tion may require table spotting and table-similarity detection
in addition to content and structure extraction.

Note that a successful approach to table understanding
could be used to facilitate what is regarded as traditional in-
formation retrieval. The answers to certain kinds of queries
seem most naturally expressed in tabular form. Consider, for
example, the following ad hoc topic (#219) from the TREC 4
evaluation [85]:

How has the volume of U.S. imports of Japanese au-
tos compared with exports of U.S. autos to Canada
and Mexico?

A document relevant to such a query will likely contain
a table comparing auto imports/exports over time or by
country.
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3.3 Individual database creation

This is a filing application for data that arrives in e-mail, by
post, or is discovered on the Web [94]. The individual sets
up some goal-oriented digital filing system and populates
it with items that arrive at unpredictable times. The tables
are processed either as they arrive, or batched for more con-
venient interactive processing. An important consideration
here is minimization of the original set-up time and level of
skill required.

3.4 Tabular browsing

Interactively extracting specific information from a large ta-
ble is somewhat similar to addressing queries to a database
with a language like SQL. Wang gives examples where the
results of a query consist of highlighting specific cells in a
table. She also mentions the possibility of creating subtables
in response to a query, which is similar to view generation
in a database [88].

3.5 Audio access to tables

In the EMU project [81], it may be desirable to detect and
access newly received tables in e-mail by telephone. Access
may take the form of an abbreviated reading or summariza-
tion of the table, a query—answer interface directly to the
table, or conversion of the table to a database and access
through an existing audio-database interface (if one were to
exist). A protocol for direct access to tables was devised for
“talking books” for the blind [76]. It requires repeating the
appropriate table heading before each content cell is voiced,
which can be a slow and painful process.

3.6 Table manipulation

Existing tables often need to be reformatted, combined, or
modified for specific target audiences. Such manipulation
may take place at the level of format, using a word pro-
cessor, page-composition language, or spreadsheet, or at the
deeper level of the underlying database. The latter can use
independently-developed facilities for view generation and
database output formatting. This application is mentioned in
[48, 88].

3.7 Table modification for display

Retargeting Web page displays for small-screen devices like
personal digital assistants (PDAs) and cell phones has as-
sumed increased urgency and importance with the deploy-
ment of fast wireless connectivity. A recent review [2] lists
four alternative techniques: hand recoding, trans-coding (au-
tomatic replacement of HTML tags by device- and target-
specific tags), re-authoring based on automatic layout anal-
ysis, and re-authoring based on natural language processing

(NLP). Re-authored pages can be presented hierarchically,
with a root node consisting of a table-of-contents with links
to detailed content. Although no table-specific techniques
are given, some of the methods we describe are referenced.

Interestingly, many if not most Web pages are con-
structed with the HTML <table> construct (just as fig-
ures in Microsoft Word are often laid out using its table fa-
cility). The real problem with layout analysis on Web pages
is that everything floats. The geometry is not fixed until the
page is displayed by a particular browser, with specific set-
tings and window size. Nevertheless, HTML preserves some
relative ordering. This is exploited in [3] to re-author an
HTML list. Further suggestions for generalizing the notions
of precedence, proximity, prominence, and preference for in-
terpreting content flow in HTML documents are presented
in [2]. As seen in the following discussion, PDF documents
share this problem of lack of association between content
and form, therefore some of the same techniques may be
useful for retargeting them to different formats.

In addition to accommodating small-format displays
such as a PDA, one may wish to modify a page-width ta-
ble to single-column width. Additional headers must be in-
serted to divide long tables to fit pages. A research issue here
that may draw on database concepts is the division of one or
more tables into a set of equivalent tables ( cf. “Large Ta-
bles” in [88]).

We believe that the extraction of tables from HTML doc-
uments is evanescent compared to the conversion of paper
documents because XML-based schemes are conceived with
the goal of assuring machine interpretability [75].

3.8 Information extraction from tables

Information extraction from tables is perhaps analogous to
the task of the same name applied to sentential text. The nar-
row definition requires a target schema and requires that ar-
bitrary input (generally of some standard encoding) be trans-
formed into instances of the schema. Examples of systems
that fit this definition include [22, 28, 31, 60, 80]. Each of
these systems works with varying definitions of tables and
varying data formats.’

A wider definition without a fixed schema may be anal-
ogous to message understanding and represents perhaps the
ultimate goal of table understanding.

It is perhaps too early to report any statistics representing
the state of the art for this task. Part of the challenge is to
provide a standard data set against which systems may be
tested and results compared.

An interesting approach adopted by many industrial so-
lutions uses the schema to drive the segmentation of the doc-
ument and the recognition and interpretation of the tables.
Knowing that one is looking for a financial table of a certain

3 One challenge that document-based tasks face is the added burden
of standardizing input into analytical components. One could argue
that information extraction from sentential text must only standardize
on the object language.
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sort, and the form of likely labels and values, is invaluable
knowledge even at the OCR and text blocking stage.

3.9 Ontology learning from tables

Ontology learning (e.g., [65]) has recently received consid-
erable attention because of the emergence of the Seman-
tic Web. The Semantic Web requires an abundance of on-
tologies, and creating them by hand is seen as a barrier
preventing widespread use of the Semantic Web. In an at-
tempt to break through this barrier, researchers have begun
to build systems to “learn” ontologies from existing docu-
ments. Learning ontologies from sentential text, however,
has proven to be difficult. Learning ontologies from tables
may be more fruitful.

Thus, a relatively new application for table processing is
the consolidation of information from multiple tables (usu-
ally downloaded from the Web) to generate domain-specific
ontologies. The TANGO project [84] is an initial effort to
use table analysis for generating ontologies. At least par-
tially automating the preparation of such bodies of factual
information may help pave the way towards a realization of
the Semantic Web.

4 The commercial landscape

The majority of current table applications, as described in
this paper, can be found in academic and other research con-
texts. However, like any advanced technology, a number of
commercial systems are now available that either offer direct
table-processing capabilities, or which rely to some extent
on table understanding technology.

Low-end OCR systems, such as ScanSoft’s Omni-
Page [79], provide table location and segmentation fea-
tures. These are generally targeted at explicitly gridded ta-
bles (with some packages permitting user-guided analysis of
non-gridded tables). Although the location of tables in such
systems is generally adequate, market forces are such that
the appearance of high-quality table segmentation features
for arbitrary document input is unlikely.

Companies providing archival and document conversion
services, such as XML Cities [96], recognize the importance
of capturing table data—as well as the need to index this data
appropriately. The work-flow around these services permits
the creation of new matching rules, as well as the validation
and correction of conversion by a human operator, thus pro-
viding the required quality level demanded by the customer.

In application services environments, where table un-
derstanding can be customized by domain to include con-
straints that enable high-quality results with almost complete
automation, the medical insurance domain is perhaps one
of the most successful. Insiders Information Management
GmbH [49] and TCG Informatik AG [83], for example, both
adopt this approach.

Information on the quality of commercial systems is
not generally available. In the low-end OCR market, the

input is so varied that claims—if available—would be
hard to interpret. Where the work-flow involves a human,
the quality is generally controlled according to individ-
ual customer needs through customization and/or validation
processes.

A form, as opposed to a table, is a sheet of paper with la-
beled boxes used for information collection: the items spec-
ified by the labels are written or typed into the boxes, then
the form is returned to the originator and the relevant in-
formation is extracted. Common examples of forms are tax
returns and catalog order forms. The advent of graphic print-
ers allowed printing forms on demand: forms intended for
the same purpose became diversified. The rulings and boxes
lost their importance. In document analysis, the distinction
between forms, invoices, and business letters is fading.

Forms processing is now a major industry. Large appli-
cations, such as medical claims processing, state income tax,
insurance, and retirement systems require conversion of sev-
eral hundred thousand forms per day. In many such appli-
cations, most forms are filled out by hand. The similarities
between table and form processing are emphasized in [87]
and [13]. Other notable work on forms includes [5] and [69].
Continuing efforts to pass processing costs down to the end
users will cause many of these mass form-processing ap-
plications to be migrated to the Web. Electronic forms are
based on HTML, JAVA, Active-X, or XML.

Few forms processing systems used in production en-
vironments are described in the research literature. An ex-
ception is smartFIX, which evolved from 10 years of re-
search at the German Artificial Intelligence Research Cen-
ter (DFKI), and is now used by a dozen medical insurance
companies to process tens of thousands of bills daily [54—
56]. The system is able to classify about 60 types of docu-
ments (hospital bills, prescription drug bills, dentist’s bills),
and extracts over 100 different types of information from
them (about 20 items per document on average). It relies
on large databases of customers, products, and price sched-
ules, and has elaborate models of the each customer’s infor-
mation flow, accuracy requirements, audit practices, train-
ing schedules, and distributed computational resources. Al-
though constraint satisfaction methods are incorporated, ev-
ery extracted field is subject to human verification. About
75% of the fields are labeled “safe,” with less than 1 error
per 1000. The major source of inadequately processed fields
is OCR error. It is reported that the system saves 65-75%
time over conventional manual data entry.

So far, there is no comparable table-processing industry,
but some service bureaus do offer conversion of printed ta-
bles to electronic form.

5 Input media and formats

We consider tables that are presented in two different media:
electronic and paper. We further subdivide the former based
on encoding schemes. The net result is three (broad) classes
of input tables:



74

D. W. Embley et al.

1. ASCII file with only “pure” linguistic content and
character-level spacing.

2. Page-descriptor file (Word, IXTgX, HTML, PostScript,
PDF) with linguistic content, and refined formatting.

3. Bitmap file of an image of a table with white space
around it.*

5.1 Tables presented in electronic format

Tables in plain text format may appear in e-mail or on certain
kinds of Web pages. The structure of the table is represented
only by ASCII symbols for space (blanks), tab characters,
and carriage returns. Occasionally, printable ASCII symbols
are used to show horizontal and vertical rules.

Electronic tables not intended for printing tend to be
smaller and simpler than paper tables. The amount of de-
tail that can be displayed on a typical monitor is less than
one-tenth of what can be seen on a typeset page.

Mark-up languages like SGML, HTML, and XML have
special conventions for tables, but there is no assurance that
table tags are not abused or misused. Page composition lan-
guages have elaborate facilities for formatting tables, like
TROFF Tbl [61] and the IATEX table and array environments
[59]. Many other table composition systems are surveyed
in [88].

Microsoft Word has a table formatting subsystem and
provides interconversion between tables in plain-text, Word-
table, Rich Text Format (RTF), and Excel spreadsheets.
FrameMaker offers PDF for posting tables on the Web in
non-editable form, and XML for applications where the
structure needs to be accessible. VXML is a proposed
general-purpose format for audio access to Web documents.

Tables may also be reproduced in any raster image for-
mat, such as TIF or GIF, or rendered directly in PostScript
[74]. Although directly-generated tables in image format
may look superficially like scanned paper tables, they are
not affected by noise or skew.

The Portable Document Format (PDF) is one of the most
widely used formats for document representation. PDF files
can be readily transformed to and from PostScript, and are
relatively small due to embedded compression. PDF can be
used for both computer-generated documents (conversion
options are built into many word processing systems) and for
scanned pixel maps in black-and-white, gray scale, or color.
It also has facilities for searching, indexing, annotation and
limited editing, but does not encode document structure be-
low the page level: the file is simply a list of low-level ob-
jects like groups of characters, curves, and blobs, with asso-
ciated style attributes like font, color, and shape. While there
are several on-going research projects on recovering logical
structure from PDF documents, we have found no research
specifically on PDF table recognition.

4 We assume that dynamic binarization, deskewing, and noise re-
moval have already been accomplished by standard image processing
methods, and also that a black-box OCR system—for print, handprint,
or handwriting as required—is available.

PDF encodes a document as four types of graphics
rendering instructions: (1) control instructions produce no
output; (2) text instructions render glyphs of symbols; (3)
graphics instructions render line art; (4) image instructions
map bitmapped images [6]. It is therefore possible to apply
directly the methods developed for hard-copy table recog-
nition, but this requires error-prone image processing and
OCR, the results of which are already explicitly and unam-
biguously provided in the PDF representation of computer-
generated documents.

The AIDAS project converts industrial technical manu-
als into an indexed database of training material. The manu-
als are annotated according to a domain ontology. An impor-
tant step is the extraction of logical structure from PDF files.
This is accomplished by assigning logical functions (section
header, text paragraph) to each layout object and refining the
assignment as more evidence (bullets, boldface) becomes
available. A shallow grammar is implemented for recogniz-
ing each function: tables are recognized as a proximate set
of “floating” text [6]. The approach is based on the notion
that layout objects do not explicitly represent logical struc-
ture but contain cues about their role in the structure [82].

The goal of a project at Hewlett-Packard Laboratories is
to reuse the layouts of existing PDF documents as templates
for creating new pages. This necessitates the identification of
logical components and the extraction of the content of each
component. The procedure first separates into text, image,
and vector graphics layers. Compound objects are reduced
to simple objects. Each component block is represented as a
polygonal outline, a set of style attributes, and content. Text
word, line, and segment (paragraph block) analysis is per-
formed on the text layer, taking into account style attributes
such as type size and italics. The contents are transformed
to XML format. Bitmap analysis of the graphics layer was,
perhaps surprisingly, found easier than performing segmen-
tation following drawing paths. The segmented graphic ob-
jects are eventually converted to SVG format. Based on the
analysis of the 18 page-segmentation errors that arose in pro-
cessing 200 test pages, the development of specific table and
map recognition modules is suggested to reduce errors fur-
ther. It is clear that the combination of the current text layer
and vector graphics layer analysis provides the necessary
foundations [16, 17]. Among references that address elec-
tronic tables are [26, 48, 71, 73].

5.2 Tables presented on paper

Paper tables are usually typeset, typewritten, or computer-
generated. In principle, they can also be hand-printed or
drafted (like telephone-company drawings [7-11, 15, 19],
and the header-blocks of old engineering drawings), but we
deem such hand-drawn tables as more akin to forms and ex-
clude them from consideration here.

Paper tables are converted to digital form by optical
scanning. Printed tables are typically scanned at sampling
rates of 200—600dpi, but for some applications facsimile
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scans (100 x 200dpi) may be important. High-speed du-
plex scanners have a throughput of 100 pages per minute
at 300dpi and 24-bit color depth. Bilevel scanners, which
are suitable for most tables, are even faster.

Copying and scanning may introduce noise and skew.
Both of these are more effectively corrected on a gray-
level representation of the page. Image-reparation software
is available from many vendors, including Lead Technolo-
gies, Mitek, Visual Image, Cardiff, and Captiva. The major-
ity of the published work on table processing deals with the
extraction of structure from scanned paper tables [1, 10, 15,
32, 39, 50, 60, 87, 93, 98].

5.3 Table detection

Conceptually, table processing can be broken into two logi-
cal steps: table detection and table recognition. Much exist-
ing work on tables described in the literature addresses the
latter step and assumes that the table has already been iden-
tified and segmented out from the input (or that identifying
the table is trivial—e.g., the whole document is the table).
While this is, in fact, the focus of our survey, we digress
briefly to consider the table detection problem.

Most prior research on the problem of table detection has
concentrated on detecting tables in scanned images, and the
vast majority depends on the presence of at least some ruling
lines (e.g., [60]). Hirayama [39] uses ruling lines as initial
evidence of a table or figure and then further refines this de-
cision to distinguish tables from figures by a measure based
on such features as the presence of characters. There is, of
course, no guarantee that such lines will be present in printed
tables. Notable exceptions to this assumption include work
by Rahgozar and Cooperman [74], where a system based on
graph-rewriting is described and work done by Shamalian et
al. [80] in which a system based on predefined layout struc-
tures in given.

There is much less prior art in the case of symbolic ta-
bles, though they are becoming increasingly important. As
noted earlier, these may originate either in ASCII form (e.g.,
as part of an e-mail message), or as the result of saving a
“richer” document (e.g., an HTML page) in “text-only” for-
mat. They may also be encoded in a page-descriptor lan-
guage such as PDF or PostScript, or in an electronic file
format such as the one used by Microsoft Word. More of-
ten than not, ASCII tables contain no ruling lines whatso-
ever, depending only on the 2-D layout of the cell contents
to convey the table’s structure. Little of the past research on
printed tables is applicable in such cases.

Hu et al. [42] describe a technique for detecting tables
that does not rely on ruling lines and has the desirable prop-
erty that an identical high-level approach can be applied to
tables expressed as ASCII text (or any other symbolic for-
mat) and those in image form. This general framework is
based on computing an optimal partitioning of a page col-
umn into some number of tables. A dynamic programming
algorithm is presented to solve the resulting optimization
problem.

Three different heuristics to enable a production system
to detect tables in incoming documents are discussed by
Klein et al. [57]. The first, based on searching OCR results
for predefined table headers, was found to be too susceptible
to a variety of real-world complications and hence unaccept-
able from a user standpoint. More sophisticated techniques
based on detecting column structure and inter-textline simi-
larities proved to be more robust.

Lastly, in a recent paper, Pinto et al. [72] describe an
approach for locating and extracting tables based on condi-
tional random fields. Applied to plain-text government sta-
tistical reports, they report a detection accuracy of 92%.

5.4 Simplifying assumptions

We note that in order to focus on a core set of issues,
we have been forced to omit numerous important prob-
lems relating to the processing of tables, including plausi-
ble sources of tables, table similarity detection, and human—
machine interfaces (graphical and spoken) to tabular data.
For these, we refer the reader to the previously mentioned
surveys [62, 63, 97].

For the purposes of the present study, we exclude from
consideration the following concerns.

1. Information external to the table proper, including ti-
tles and captions; footnotes; relevant passages from
nearby narrative text; information from related tables;
and domain-specific table conventions.

2. Tables outside our restrictive definition, including folded
and nested tables; tables with spanning cells in the table
body; tables with both horizontal and vertical text; tables
with domain-specific symbols, foreign script, or out-of
lexicon text; tables containing graphics; skewed tables;
and sparse tables.

3. Expandable (clickable) Web tables and Web tables em-

ploying hypertext links (embedded URLs).

. Multidimensional data arrays (D > 2).

. Tables that may or may not be tables, including matrices;
tables used for formatting text, equations, or graphics;
tables of contents; and artistic, multi-color, and sloppy
tables.

[ N

6 Table-processing paradigms

Tables may be encoded in many different input formats.
However, in this section we take the view that a table is a
table if and only if it appears as such when presented in
its intended visual form to the end user. Hence, the con-
cept of a 2-D rendering is central to our discussion of table-
processing paradigms.

On the one hand, renderings of tables encoded as ASCII
text are so self-evident that it is easy to forget that they are
still based on a set of underlying assumptions (e.g., what is
connoted by a carriage return and, in most cases, that the ren-
dering will use a monospaced font). While other encoding
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schemes such as PostScript and HTML have the potential to
be much more complex, the simple fact is that such docu-
ments are rendered all the time, and developing systems to
perform this function is not considered a particularly daunt-
ing task. The former are known as PostScript interpreters
(e.g., Ghostscript), while the latter are referred to as Web
browsers (e.g., Mozilla).

Although we shall at times strive for maximum possible
generality, from a pragmatic standpoint, the vast majority of
table-processing research to date has focused on two spe-
cific classes of inputs. Tables encoded in ASCII format are a
canonical instance of rendering on a coarse (i.e., character-
level) grid, while scanned bitmap tables are a canonical in-
stance of rendering on a fine (i.e., pixel-level) grid. Hence,
these are the concrete examples we turn to most frequently
in the following exposition.

The first group of paradigms associates cell content with
row and column numbers. Logically, their output is a list:
(i,3j) cell-content, etc. Top-down methods recover
the underlying grid structure, then find the content of each
cell. Bottom—up methods first delimit cell contents, then
construct the grid.

The input to the second group of paradigms is the above
list. These paradigms associate cell contents with row and/or
column headers. If row and column headers are absent, vir-
tual headers are assigned. This requires some renumbering.
The most complex algorithms target nested headers.

The third paradigm level extracts high-level (semantic)
information from the output of the earlier paradigms, i.e.,
row and column numbered headers and cell contents. Its out-
put is suitable for downstream applications like SQL, PRO-
LOG, XML or other logic-based schemata. While this is of
increasing interest, especially arising out of the Semantic
Web, there has been more work on the earlier aspects.

6.1 Simple tables

In the simplest case, it is possible to determine the cell struc-
ture of the table using purely geometric cues from the 2-D
rendering. If it is known that the maximum intra-cell hori-
zontal spacing is strictly less than the minimum inter-column
horizontal spacing, and that the maximum intra-cell vertical
spacing is strictly less than the minimum inter-row vertical
spacing, the table can be parsed into columns and rows by
using these parameters to determine whether a given “gap”
represents a continuation of the current cell or the start of a
new cell.

Note that this paradigm can be implemented indepen-
dently of the input format of the table because it is defined
in terms of the intended 2-D rendering of the tabular infor-
mation. All we need is an understanding of the way the file is
to be rendered, a way to identify the basic “unit” in the input
under study (i.e., character strings in the case of ASCII and
connected components in the case of bitmaps), and a way to
measure distances between these basic units.

This paradigm is too simple by itself to suffice for
many tables, but the notion of thresholds that allow merging

intra-cell constituents without merging the contents of sepa-
rate cells is subsumed in many of the paradigms mentioned
later.

In the ASCII domain, this corresponds to character
strings delimited by column separators (e.g., consecutive
spaces) and row separators (e.g., carriage returns). For
example, we might have the following input, where spaces
are indicated by a dash symbol, -, and carriage returns are
indicated by a new paragraph symbol, §:

LASTNAME- - - -INITIAL----BIRTHDATE{Smith- -
————— J----------12/3/19889Barr--------K-
————————— 25/5/19759

which would be rendered (on a coarse grid) as:

LASTNAME INITIAL BIRTHDATE
Smith J 12/3/1988
Barr K 25/5/1975

On the other hand, in PostScript a similar table would be
represented, thus:

/Courier-New findfont 8 scalefont setfont

0 100 moveto (LASTNAME) show

60 100 moveto (INITIAL) show
120 100 moveto (BIRTHDATE) show
0 90 moveto (Smith) show

60 90 moveto (J) show

120 90 moveto(12/3/1988) show

0 80 moveto (Barr) show

60 80 moveto (K) show

120 80 moveto (25/5/1975) show

showpage

with a rendering (on a fine grid) like this:

LASTNAME INITIAL BIRTHDATE
Smith J 12/3/1988
Barr K 25/5/1975

Lastly, in HTML, for an input like this:

<html><body><table cellpadding="5">
<tr><td>LASTNAME</td>
<td>INITIAL</td>
<td>BIRTHDATE</td></tr>
<tr><td>Smith</td>
<td>J</td>
<td>12/3/1988</td></tr>
<tr><tdsBarr</td>
<td>K</td>
<td>25/5/1975</td></tr>
</table></body></html>

the rendering (on a fine grid) might appear as in Fig. 4.
Independent of how the table is stored or rendered, we
can capture the table in an ontology that formally describes
the observable input. Figure 5 shows an ontology describing
the observable input for the table described by the ASCII
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Fig. 4 Screen snapshot of the rendering of an HTML table
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Fig. 5 Ontology of observable features of an input ASCII table

character sequence above. In Fig. 5 the ASCII Character ob-
ject set consists of all ASCII characters. The Character In-
stance object set consists of object identifiers, one for each
instance of an ASCII character in a table at a particular posi-
tion. Thus, we can capture each ASCII character (including
each space and carriage-return character) and its position in
the sequence of ASCII characters representing the table.’

Although our example here is particularly simple, we
observe that it is possible to model ontologically all ob-
servable input features. Different features would be captured
for alternative input media. For PostScript, for example, the
input ontology would capture bounding boxes for strings
along with string content, and for HTML, the input ontol-
ogy would capture the table-row and table-data structure as
provided by the (¢r) and (td) tags. For tables whose input
media is an image, we can model the input down to the pixel
level if we wish. Our ASCII example here only indicates the
possibilities, and we will not attempt in this paper to produce
a full ontology of all features of interest. Our desire here is
only to indicate that it is possible to create such ontological
models as suggested in both [36] and [4].

In any case, independent of the form of the input
(whether it is a simple string of ASCII characters, a
PostScript file, an HTML file, or an ontologically described
sequence of ASCII character instances), the goal is to obtain
the following kind of output:

3 The ‘0’ at the base of the arrowhead connected to ASCII Character
in Fig. 5 denotes “optional participation.” The meaning here is that
although ASCII Character contains the full set of ASCII characters,
some of the characters may not appear in the tables under consideration
and thus their participation in the relationship set between Character
Instance and ASCII Character is optional.

Character SN
= Position i
Instance
| Character-
Instance
Block
Carriage-
Word || Blank Return
Block || Block Block

Fig. 6 Ontology with Row and Column of cells derived

<cell row="1" col="1">LASTNAME</cells>
<cell row="1" col="2">INITIAL</cells>
<cell row="1" col="3">BIRTHDATE</cell>
<cell row="2" col="1">Smith</cells>
<cell row="2" col="2">J</cell>

<cell row="2" col="3">12/3/1988</cell>
<cell row="3" col="1">Barr</cells>
<cell row="3" col="2">K</cell>

<cell row="3" col="3">25/5/1975</cell>

which is a logical representation of the cell structure of the
table, with row and column indices assigned to each cell.

Considering table processing from an ontological point
of view, we can see this paradigm as generating object and
relationship sets in an intermediate, derived ontology that
includes a derived object set Cell with associated Row and
Column object sets. Figure 6 shows an ontology with these
derived object sets with their derived relationships among
each other and their relationship to Table. As part of the
derivation, the paradigm would have recognized character-
instance blocks of words, spaces, and carriage returns. An
intermediate ontology can represent these derived object sets
as they are created as Fig. 6 shows.

The paradigm for processing such tables, which corre-
sponds to transforming a list to an array, is as follows:

1. Render table on logical 2-D grid.

2. Parse 2-D representation. If necessary (i.e., if table is
in bitmap format), OCR cell contents. Call consecutive
character strings cell “word blocks” or “phrase blocks”
or “cell contents.”

3. Advance column count for each column separator.

4. Advance row count for each row separator and reset col-
umn count to 1.

In [75], table structure is viewed as a perfectly regu-
lar isothetic tessellation of a rectangular region into virtual
cells, and a superimposed partitions of the virtual cells with
which cell content is associated. The authors propose to link
together cells in the same row or column with a text-block-
adjacency graph reminiscent of DocStrum [70].
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A proposal to combine page analysis and table structure
analysis by seeking regions with horizontally and vertically
aligned word bounding boxes is advanced in [89]. No exper-
imental results are presented because the test data had not
yet been collected when the paper was written.

6.2 Compound tables with blank lines

In this case, the input is character strings delimited by
column-separators and row-separators. Each cell may have
multiple components on the same or different logical text
lines. For example, in ASCII this might be:

LAST----INITIAL----BIRTHINAME-----------
----DATE{YSmith---J---------- 12/3-198899
Barr----K---------- 25/5-19759

which would be rendered (on a coarse grid) as:

LAST INITIAL BIRTH
NAME DATE
Smith J 12/3 1988
Barr K 25/5 1975

The paradigm in this case, which is top—down, is as fol-
lows:

1. Render table on logical 2-D grid.

2. Parse 2-D representation. If necessary (i.e., if table is
in bitmap format), OCR cell contents. Project characters
horizontally and vertically.

3. Make horizontal cuts at the end of groups of blank text
lines and vertical cuts at the end of space sequences.

4. Then consider any text within a cell delimited by hori-
zontal and vertical cuts as a phrase block.

5. Assign row and column numbers.

Among the earliest researchers to tackle table recogni-
tion were Laurentini and Vida [60]. Their objective was
to transform tables found on scanned pages into electronic
form, rather than extract the table structure for further analy-
sis. They find rulings by run-length analysis, and then check
if tight groups of character-sized connected components fall
within the resulting cells. Groups with large gaps in their
projection profiles are subdivided by invisible virtual rul-
ings.

A method based on a similar view of tables, using pro-
jection profiles and aligned spaces between word bound-
ing boxes, was applied to convert Japanese tables into
HTML [86]. This paper has a very concise review of pre-
vious work, but only examples and no statistical results.

Another early paper by Chandran and Kasturi recognizes
the lines in partially ruled tables as successions of adjacent
black runs. Missing demarcations are found by an analy-
sis of white streams. After a set of horizontal and vertical
demarcations are obtained, individual blocks are labeled as
heading, subheading, or entry. A block is labeled as a head-
ing if it has more than one child, and as a subheading if it

is the first block with a single child, followed by a similar
single-child pattern. Only column headings are considered.

Abu Tarif finds and vectorizes any rulings, and adds “vir-
tual lines” that separate aligned components of text. He con-
verts the resulting “table skeleton” first into an XY tree [68]
and to Microsoft Excel spreadsheets using Excel macros [1].
He did not OCR the text itself.

Cesarini et al. search Modified X—Y Tree descriptors of
documents to find tables consisting of clusters of horizon-
tal and vertical cuts [14]. The algorithm has five thresh-
olds, which are optimized to obtain the maximum value of a
“Table Location Index” on training documents. The method
locates correctly over 58 of 75 tables in almost noise-free
IEEE-PAMI pages, and 22 of 58 tables in U. Washington
test images. They report that this performance is far superior
to that of two leading commercial OCR systems that also
find tables.

John Handley uses both rulings and word bounding
boxes to separate the cells and construct cell separators for
the table frame. His method handles large, complex, fully-
lined, semi-lined, and line-less cell tables with multiple lines
of symbols per cell by iteratively identifying all cell sepa-
rators and cells. Although spanning header cells are found,
their relationship to the leaf cells is not determined [38].

Hirayama proposes a sophisticated algorithm for seg-
menting a partially-ruled table into a lattice composed of a
grid of rectangles [39]. Lines are grouped when they inter-
sect, are close and nearly parallel, or if their endpoints are
close. Rulings are extended by virtual lines to the outermost
ruling. Eventually, rectangles separated only by virtual lines
are joined. The resulting polygons form cells only if they
are rectangular, contain only character strings, or are empty.
Alignment is performed left-to-right with a string-correction
algorithm (the DP—dynamic programming—that appears
in the title of the paper) where the weights for substitution
are the differences between the baselines of two text strings.
This method can find the cell structure even when the cell
contents are of unequal size or when there are many empty
cells.

6.3 Compound tables without blank lines

Here we have no guarantee that there is vertical separation
between logically distinct rows in the table. For example,
input in the ASCII case might consist of character strings
delimited by column separators and row separators. Each
cell may have multiple word blocks on the same or differ-
ent text lines. The contents of cells overlap both horizontally
and vertically.

LAST--INITIAL-BIRTH{NAME---------- DATEYS
mith--J------- 12/3-19889Barr--K------- 25
/5-19759

which would be rendered (on a coarse grid) as:

INITIAL BIRTH
DATE

LAST
NAME
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Smith J
Barr K

12/3 1988
25/5 1975

Unlike Paradigm 2, there are no blank lines, so we can-
not find the horizontal separators directly. The paradigm
here combines top—down and bottom—up processing:

1. Render table on logical 2-D grid.

2. Parse 2-D representation. If necessary (i.e., if table is
in bitmap format), OCR cell contents. Work bottom—up
by grouping horizontally and vertically adjacent word
blocks by some linguistic association measure (cohe-
sion).

(a) Association may be based on language models, type-
face and size, indentation.

(b) Language model includes conventions for dates, cur-
rencies and prices, telephone numbers, units, etc.

Here “LAST” and “NAME” go together, as do “BIRTH”
and “DATE,” and perhaps “12/3” and “1988.”

3. Group word blocks that have high association (or cohe-
sion) into phrase blocks.

4. Find and use bounding box of phrase blocks (cell over-
lap) to construct grid. (Graph representation may be ap-
propriate.)

5. Finally, assign row and column numbers to phrase
blocks.

A notation and an inference algorithm to identify con-
ceptual cell commonalities, such as “amount fields” and
“dates,” was developed by Bayer [12]. While the work does
not specifically address tables, it offers a toolbox of syntac-
tic, lexical, and geometrical properties in a manner suitable
for a table ontology.

In the ASCII domain, Pyreddy and Croft report on a ta-
ble extraction and retrieval experiment involving 6,509 ta-
bles from a corpus consisting of 6 years of text from the
Wall Street Journal [73]. This data, professionally written
and from a single source, is likely to be unrealistically uni-
form, however. Pyreddy and Croft have elaborate heuristics
to separate leaf cells from other table content but do not dif-
ferentiate between table captions and headings because they
are used in a similar way in their information retrieval sys-
tem.

Peterman et al. consider a table a collection of five types
of cells: data, vertical indices, horizontal indices, title, and
footnotes. They present a detailed analysis of “table topol-
ogy,” i.e., the conventions governing the layout of cells, and
of the placement of data within the cells. The contents of
each cell are analyzed by string matching to discover cells
with similar letter syntax. The resulting rules for determin-
ing the “reading order” of the table are embodied in a PERL
script. They present experimental results on a heterogeneous
corpus of 100 electronic tables that they suggest mimic the
results of processing typeset paper tables with 99% accurate
OCR. It is clear that even aside from possible OCR and im-
age processing errors, manual editing would be required for
most applications [71].

Building on extensive previous work, Rus and Subra-
manian [77] offer an interactive method of building models

consisting of modular interactive agents for information
access and capture in distributed databases. They give
examples of structure detectors and segmentation mod-
ules for both paper and electronic tables. These modules
subdivide documents according to prevalent white spaces
and match table rows by syntactic string matching. In
an interesting digression, they predict the probability of
incidental white streams from word length statistics.

In a series of papers [41, 42, 44], Hu et al. describe a
medium-independent approach to table detection and struc-
ture recognition based on a dynamic programming algorithm
that computes the optimal partitioning of the input into some
number of tables, uses hierarchical clustering to determine
the column structure, and then applies heuristics to deter-
mine table headers and row segmentation. They also present
evaluation measures for quantifying the performance of such
algorithms [45]. One targeted application is automatically
reformulating tables found in email for user access over the
telephone [43].

6.4 Tables with rules

Previously, we considered the table cell contents to be de-
limited by white space. Now we turn to the scenario where
cells are delimited by ruling lines. Such situations are more
likely to arise in the case of scanned tables, so our examples
will now refer to that mode of input.

The input, for example, might be a 300 dpi scanned
bitmap of a ruled table:

LAST INITIAL BIRTH
NAME DATE
Smith J 12/3 1988
Barr K 25/5 1975

The paradigm in this case is:

1. Process image to find and assemble line segments to de-
termine frame of this table.

2. If necessary (i.e., if table is in bitmap format), OCR cell
contents.

3. Use frame for row and column numbering.

Order of line finding and OCR, if it is necessary, may be
interchanged.

Image processing techniques for the extraction of line
segments include the Hough Transform [87], thinning, vec-
torization [1] and projection profiles [50]. Turolla et al. suc-
ceed in detecting 95% of 11,513 lines in 114 tables. They
located cell entries of fully boxed tables by finding the mini-
mal cycle of the graph corresponding to the frame. The lines
are found using the Hough Transform. The system was de-
veloped primarily for French tax forms.

Itonori [50] combines text-block information with ruled
lines. He expands the text bounding boxes until they meet
either rulings or other text. Then he aligns cell boundaries in
partially ruled tables with projection profiles. The method is
applied to tables scanned at 400 dpi. The method attempts
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to extract spanning vertical and horizontal header cells, but
sometimes fails on multiline header cells because of inaccu-
rate local text-block extraction.

Box-driven reasoning is proposed in [40] to mitigate
content-separator overlaps. Instead of seeking the intersec-
tion of horizontal and vertical lines, inner (white) and outer
(black) bounding boxes constitute the lowest-level structure
analyzed. The proposed underlying model is described only
as follows: “A table-form document is a type of form com-
posed of strings and cells made from vertical and horizon-
tal lines.” The system was tried only on 10 fairly complex
forms, and only the timing results are given in detail.

The primary goal of this research was the recovery of
cell structure from fully lined but highly degraded tables
with broken rulings and overlapping cell contents [40]. The
main contributions are the use of fine and coarse scans, and
a separate set of bounding boxes in both for white spaces
and for foreground connected components. The boxes in the
coarse and fine images are reconciled according to the ex-
pected grid layout, and converted into a cell structure that
corresponds to an idealized version of the scanned table.

T-Recs (Table REcognition System), an elaborate pro-
gram for the structural analysis of ASCII tables based on
bottom—up clustering of words, is described in [53]. The
method works on both electronic and paper tables, starting
with word bounding boxes. It can handle very narrow gaps,
misaligned cells, and cells that span more than one printed
line. It ignores ruling lines completely because it was de-
signed for blocked text structures not only regular tables.
A more flexible approach, T-Recs++-, that can detect and
analyze less regular tables as well as business letters, was
subsequently reported [52].

6.5 Tables with simple headers

The input to this stage of processing is the output from the
previous paradigms, i.e., phrase blocks with row and column
numbers. For the example we have been using thus far, the
output from the previous stage might be:

<cell row="1" col="1">LAST NAME</cell>
<cell row="1" col="2">INITIAL</cells>
<cell row="1" col="3">BIRTH DATE</cells>
<cell row="2" col="1">Smith</cells>
<cell row="2" col="2">J</cell>

<cell row="2" col="3">12/3 1988</cell>
<cell row="3" col="1"sBarr</cells>

<cell row="3" col="2">K</cells>

<cell row="3" col="3">25/5 1975</cell>

The output from this stage should be:

<colhead col="1">LAST NAME</colheads>
<colhead col="2">INITIAL</colheads>
<colhead col="3">BIRTH DATE</colheads>
<cell row="1" col="1">Smith</cell>
<cell row="1" col="2">J</cell>

<cell row="1" col="3">12/3 1988</cell>

Character
Instance

1

Character-
Instance
Block

Carriage-
Return
Block

Word
Block

Blank
Block

Column
Header

Fig. 7 Ontology with Column Header derived

<cell row="2" col="1"sBarr</cells>
<cell row="2" col="2">K</cell>
<cell row="2" col="3">25/5 1975</cell>

The paradigm (recover header—cell relations) is as fol-
lows:

1. Determine whether rows or columns or both are homo-
geneous (using language model, typeface/size, spacing).
2. If arow or column is homogeneous, it may have a header.

(a) Determine if top/leftmost cell is distinguished from
others (using language model, typeface/size, spac-
ing, rule if present).

(b) If yes, call this top/leftmost phrase block verti-
cal/horizontal header.

(c) If not, add virtual/row column header, and assign
unique constants as headers, and renumber.

Seen ontologically, we can consider the input for this
paradigm as the derived ontology in Fig. 6. Using algorithms
to derive headers, produces the ontology in Fig. 7, where the
only change to the diagram in Fig. 6 is the object set Column
Header, which marks certain cells as header cells. From this
information it should be clear that we can derive the label—
value pairs needed for the output ontology in Fig. 1.

Rahgozar applies rewriting rules in a graph language to
parse a table. The sequence of productions reproduces the
table structure of rows and columns [74].

6.6 Tables with nested headers
The input in this case is the intermediate output of

Paradigm 6.3: phrase blocks and phrase block bounding
boxes that do not constitute a uniform grid. For example:

EMPLOYEE PENSION STATUS
LAST NAME INITIAL BIRTH DATE
Smith J 12/3 1988
Barr K 25/5 1975

The output in this case should be:
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<colhead col="1">EMPLOYEE LAST NAME
</colheads>

<colhead col="2">EMPLOYEE INITIAL
</colheads>

<colhead col="3">PENSION STATUS BIRTH
DATE </colheads>

<cell row="1" col="1">Smith</cell>
<cell row="1" col="2">J</cell>

<cell row="1" col="3">12/3 1988</cell>
<cell row="2" col="1">Barr</cells>

<cell row="2" col="2">K</cell>

<cell row="2" col="3">25/5 1975</cell>}

The paradigm is as follows:

1. Determine top/leftmost spanning cells (using language
model, typeface/size, spacing).

2. Create virtual cells by subdividing spanning cells.

3. Determine whether elements of next row or column dis-
tinguished from rest of row/column.

4. If yes, distribute (inverse of “factoring”) contents of
spanning cells over next row/column. Rename spanning
headers accordingly.

5. If no, create virtual row/column headers with unique
constant names and rename spanning headers.

This paradigm may become immensely complex with multi-
ply nested row and column headers. The paradigm may also
include analysis of stub (top-left cell), which is often the
header for the row headers.

Formal paradigms for describing the structure of tables
are the Table Syntax [32, 58], the Structure Description
Tree [93], and the Cohesion Domain Template [48]. All
three model only local horizontal and vertical adjacency re-
lationships between cells. They aim at finding an appropriate
tiling of the table. The foundations for a more sophisticated
scheme are laid in [46].

Known (model-based) domain dependency relationships
between cells can be exploited for validating an interpreta-
tion. Some examples are given in [93].

In a series of papers [31, 32, 33], Green and Krish-
namoorthy apply a compiler design approach to parsing
scanned ruled tables. The analysis consists of lexical, syn-
tactic, and semantic steps starting at the pixel level and end-
ing up with an EXCEL-like cell enumeration scheme suit-
able for multiple levels of spanning headers. Although the
method is quite general, a model must be defined for every
new family of tables.

Toyohide Watanabe and coworkers [64, 92, 91, 90, 93]
aim at a complete description of the various types of infor-
mation necessary to interpret a ruled scanned table. A train-
ing set of diverse tables is used to populate a classification
tree, and each node of the classification tree contains infor-
mation, in the form of a Structure Description Tree (SDT), to
interpret a specific family of tables. In the operational phase,
unrecognized documents are added to the classification tree,
and a new STD is created for them.

The SDT represents generalized composition rules for
horizontally and vertically repeated structures. It is both

a logical layout representation and a syntactic description.
Single and multiple horizontal and vertical location de-
pendence relations are defined. These relations allow the
analysis of rectangular substructures (called “structure frag-
ments”) of cells with spanning cells (usually headers) to the
left or above related to content cells below and to the right.
The semantic properties of individual table entries (city, zip-
code) are expressed as item frames. Item fields may be name
fields or data fields. The authors view the SDT as 2-D infor-
mation, item sequence rules as 1-D, and a pattern dictionary
as 0-D.

The image-processing components (for scanned tables)
include extraction of horizontal and vertical line segments
and corners. Image processing errors may be recovered in
the course of subsequent analysis. The final output, aside
from the meta-information used to process the tables, is the
grid outlay and a set of interpreted name and data fields.
Recognition of the table type assumes that the relationship
between these fields is already known, hence high-level in-
terpretation is moot.

Konstantin Zuyev [98] converts scanned ruled tables into
a grid structure by finding horizontal and vertical “split
points” using connected components, projection profiles,
and gap thresholds. The method was developed for a mul-
tilingual FineReader OCR product. He also suggests using
a high-level declarative definition of possible table layouts
in the form of a grammar, with the extracted table grid and
its cells as the terminal symbols. Heuristics are provided
for common layouts of simple and compound (header) cells,
where allowable layouts are specified by a “style” variable.
The examples in the paper show successful segmentation of
quite complex and dense tables.

6.7 Nested tables with row and column headers

Table 4 shows a table with nested headers for both rows and
columns. The spanning header for the rows, which is Char.
in Table 4, is in the stub of the table.® In general, a table
with row headers may have none, one, or several spanning
headers. When there are several, they typically appear to the
left of the row labels in spanning boxes.

Since Table 4 is a table with rules, the input for this ex-
ample is the output of Paradigm 6.4. Since there is a row
spanning header, we should distribute it over the rows in
the same way we distribute column spanning headers over
columns as explained in Paradigm 6.6. The output in this
case should be:

row="1">Char. A</rowhead>
row="2">Char. B</rowheads>

<rowhead
<rowhead
<colhead
<colhead

col="1">Binary Zone</colhead>
col="2">Binary Numeric</colhead>

6 Note that it is sometimes ambiguous even to a trained human eye
whether the stub is a spanning header for a column of row labels or a
simple header for a column of values. Depending on the objectives for
table processing, this may or may not matter.
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Table 4 ASCII Code for capital letters

Binary

Character Zone Numeric Hex
A 1010 0001 Al
B 0010 A2
C 0011 A3
D 0100 A4
E 0101 A5
F 0110 A6
G 0111 A7
H 1000 A8
1 1001 A9
J 1010 AA
K 1011 AB
L 1100 AC
M 1101 AD
N 1110 AE
(0] 1111 AF
P 1011 0000 BO
Q 0001 Bl
R 0010 B2
S 0011 B3
T 0100 B4
U 0101 B5
\% 0110 B6
w 0111 B7
X 1000 B8
Y 1001 B9
Z 1010 BA

<colhead col="3">Hex</colhead>

<cell row="1" col="1">1010</cell>
<cell row="1" col="2">0001l</cell>
<cell row="1" col="3">Al</cell>
<cell row="2" col="1"></cell>
<cell row="2" col="2">0010</cell>
<cell row="2" col="3">A2</cell>

The paradigm is a combination of Paradigm 6.6 along with
a similar paradigm that produces row headers.

6.8 N-dimensional tables

Table 4 is a 2-D table; Table 3 is a 3-D table. In principle, we
can have any number of dimensions, although higher dimen-
sions are not typical because their layout becomes increas-
ingly complex. Higher dimension tables, for example, may
be recursively nested, broken into labeled groups of tables,
or successively linked through hypertext in cells of HTML
tables.

Paradigms to recognize and process high-dimensional
tables generalize Paradigm 6.7, which in turn generalizes
Paradigm 6.6. To generalize the output, we can use dimen-
sions rather than rows and columns. The output for Table 3,
for example, would be:

<header dimension="1", indexNr="1">
Nucleotide First Position U</headers
<header dimension="1", indexNr="2">

Nucleotide First Position C</headers>
<header dimension="1", indexNr="3">
Nucleotide First Position A</headers
<header dimension="1", indexNr="4">
Nucleotide First Position G</headers>
<header dimension="2", indexNr="1">
Nucleotide Second Position U</headers>

<header dimension="3", indexNr="1">
Nucleotide Third Position U</headers>

<cell
dimension="1" indexNr="1"
dimension="2" indexNr="1"
dimension="3" indexNr="1">Phe</cell>
<cell
dimension="1" indexNr="1"
dimension="2" indexNr="1"
dimension="3" indexNr="2">Phe</cell>
<cell
dimension="1" indexNr="4"
dimension="2" indexNr="4"
dimension="3" indexNr="4">Gly</cell>

We are not aware of any work in this area and leave it as
a future challenge for the community.

7 Conclusions

We have identified a number of potential applications for
table processing and the corresponding research problems
for which little work has been reported thus far. We have also
expressed our opinions of the relative difficulties of the tasks
involved. To recapitulate, the applications are as follows:

Large-volume, homogeneous table conversion.
Large-volume, mixed table conversion.
Individual database creation.

Tabular browsing.

Audio access to tables.

Table manipulation.

Table modification for display.

Nowuns LD~

An obvious next step would be to analyze these applications
further to determine their commonalities and differences.
The new research problems appear to us to be as follows:

Query mechanisms for freeform electronic tables.
Audio navigation and access to a gridded table.
Subdividing a table into a set of equivalent tables.
Spotting tables in electronic mail.

Clustering tables into similarity groups.

Converting a paper or electronic table into an abstract
representation.

Effects of “noise” in tables and correction of errors in-
troduced in processing.

A

=
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Table 5 Interrelationships between applications and research prob-
lems in table processing

Performance evaluation
Overcoming recognition errors
Conversion to abstract form
Table clustering

Table spotting

Table subdivision
Audio navigation
Query mechanisms
Large-volume, homogeneous conversion oo | e
Large-volume, mixed conversion e | e | o 0|0
Individual database creation . oo |o |0 e e
Tabular browsing o oo e 0o 0|0 e
Audio access to tables e oo |e |0 e e
Table manipulation . R
Table modification for display . R

8. Performance evaluation of both table conversion and ta-
ble query.

The ways in which the applications and problems interrelate
are depicted in Table 5. Unless we make headway on perfor-
mance evaluation, including acquisition of statistically ade-
quate test material, it will be difficult to evaluate progress on
any of the other tasks.

Most work to date is based on table geometry, i.e., pro-
cessing the graphic elements of the table. Very little has been
reported on combining such image processing with the re-
sults of character recognition of the cell contents. Although
the logical interpretation of paper and electronic tables is
similar, the overhead of image processing and OCR makes
the former a much more difficult task. Current OCR sys-
tems often de-columnize tables because superficially they
look like multicolumn text. No test on a large, heterogeneous
corpus has been reported, and few researchers have consid-
ered the need to provide a mechanism for the correction of
residual errors from automated processing.

More recently, the trend has shifted to the apparently
easier problem of electronic table conversion. Several com-
mercial organizations advertise their capability of converting
electronic tables to various forms, including spreadsheets.
Some advertise conversion of tables presented in raster im-
age form.

Simple electronic tables, whether ASCII, PDF, RTF,
SGML, HTML, XML, I4TEX, Tbl, or other, can probably
be converted with moderate effort to an abstract form with
over 90% accuracy. Spotting large tables in electronic doc-
uments is relatively easy, but delineating them precisely is
more difficult. A limit on achievable accuracy is imposed by
the ambiguity inherent in these tasks.

We have offered a formal definition of table understand-
ing in terms of relational tables and table ontologies. The
derivation of information from a table could be accom-
plished by converting the table to a relational database or
equivalent and formulating queries in SQL. Alternatively,
queries can be answered by direct interactive access to a pre-
processed table. Such preprocessing need not be much more
elaborate than division into rows and columns.

However, tables do not generally contain sufficient in-
formation for conversion into a database, although they can

be converted into an abstract table or spreadsheet. To add
the necessary semantics, a model of the table is required.
The model can be derived from an existing database cor-
responding to similar tables, or it can be provided by the
user/operator. The user can either provide the model explic-
itly, or implicitly by correcting errors. Except for large vol-
umes of similar tables, it appears sensible to take advantage
of the user’s understanding of the context of the table; en-
dowing a table-understanding system with such context is
difficult.

The economics of table processing is another important
point that has often been ignored. Clearly, an investment in
table processing must bring with it benefits that exceed the
expenses involved. If it is always easier to recover the de-
sired information through some other means (by browsing,
say, or via a simple keyword query), then table processing
serves no purpose. The formulation of such a model would
be invaluable, and may very well provide insight into where
we should apply our efforts to obtain the greatest possible
return.

The vast majority of papers published to date have con-
centrated either on the problems associated with low-level
analysis of printed tables, or on guidelines for table presen-
tation, with comparatively little work on the topic of making
tabular information useful (other than for highly specialized
applications). What has changed to make this an interest-
ing question to consider? The unprecedented explosion in
the amount of information people are confronted with each
day. Whereas large-scale databases were once the province
of a select few, nowadays anyone with Internet access and
an e-mail account is inundated with vast quantities of un-
structured (or at best semi-structured) data. Automated table
processing presents one promising way of recovering useful,
familiar structure making it possible to realize more of the
benefits of universal data access.

Industrial applications of table-processing technology
also play a role in moving the state of the art forward. Such
solutions have the potential to give data processing shops an
advantage in throughput. These businesses service, for ex-
ample, medical insurance companies (where tabulated claim
data is verified) and telephone companies (where competi-
tive analysis is performed on customer billing statements).
Business intelligence and financial services companies have
an interest in enhancing reaction speeds to dense informa-
tion such as SEC filings, news wire items (which often con-
tain tabular data) and other tabulated financial data. In cer-
tain domains, archival tasks are wholly enabled by table-
processing systems, as are data conversion and storage so-
lutions (e.g., conversion to XML).

It may be time for table-processing research to make the
transition from pixel and cell level analysis to table interpre-
tation in a multi-document context.
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