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Abstract

We study the tradeoff between efficiency and service quality in tandem systems. We

reward efficiency by assuming that a revenue is earned each time a job is completed, and

we penalize poor service quality by incorporating positive holding costs. We study the

dynamic assignment of servers to tasks with the objective of maximizing the long-run

average profit. For systems of arbitrary size, generalist servers, and linear or nonlinear

holding costs, we determine the server assignment policy that maximizes the profit.

For systems with two stations, two specialist servers, and linear holding costs, we

show that the optimal server assignment policy is of threshold type and determine the

value of this threshold as a function of the revenue and holding cost. We also provide

numerical results that suggest that the optimal policy has a threshold structure for

nonlinear holding costs. Finally, for larger systems with specialist servers, we propose

effective server assignment heuristics.

Keywords: Flexible servers, finite buffers, profit maximization, holding cost, queueing

control.
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1 Introduction

The tradeoff between service quality and efficiency is a common issue in manufacturing and

service systems. Attempts to improve one of these performance measures may worsen the

other. For example, increasing server utilization causes longer waiting times, and enforcing

shorter waiting times may decrease the throughput. In this paper, we study the tradeoff

between service quality and efficiency in tandem queueing systems with flexible servers.

More specifically, we assume that the service quality deteriorates as a customer spends more

time in the system, and that the efficiency is directly proportional to the throughput. Our

main objective is to determine a dynamic server assignment policy that maximizes the profit

by simultaneously achieving high throughput and short waiting times.

The queueing literature concentrates on the goal of either increasing service quality (by

reducing waiting times, queue sizes, abandonments, holding costs, etc.) or increasing effi-

ciency (by increasing throughput, revenue, utilization, etc.). Very few papers study these

two conflicting objectives at the same time. We now provide a summary of the work done

for the systems with flexible workforce, by classifying them according to their objective.

Most of the previous work concentrates on the holding cost minimization problem. More

specifically, Harrison and López [20], Bell and Williams [15, 16], Ahn, Duenyas, and Zhang

[4], and Mandelbaum and Stolyar [29] study holding cost minimization in parallel queueing

systems; and Rosberg, Varaiya, and Walrand [34], Farrar [18], Iravani, Posner, and Buzacott

[22], Ahn, Duenyas, and Zhang [2], Ahn, Duenyas, and Lewis [3], Kaufman, Ahn, and Lewis

[23], Wu, Lewis, and Veatch [39], Pandelis [32], and Wu, Down, and Lewis [40] study tandem

systems. These papers provide guidelines on how to effectively assign the flexible servers

dynamically to stations in order to minimize the holding cost in the system. These papers

study either systems with infinite buffers and outside arrivals or clearing systems with no

outside arrivals.

The papers that study the throughput maximization problem mostly concentrate on

tandem systems, although a few study general queueing networks. Andradóttir, Ayhan, and

Down [6, 9, 10], Andradóttir and Ayhan [5], and Kırkızlar, Andradóttir, and Ayhan [24, 25]

study the dynamic server assignment problem in various settings with finite buffers, including

tandem systems with failures or non-exponential service time distributions. Tassiulas and

Ephrimedes [36], Tassiulas and Bhattacharya [35], and Andradóttir, Ayhan, and Down [7, 8]

consider the throughput maximization problem in a queueing network with infinite buffers

and outside arrivals. Finally, McClain, Thomas, and Sox [31], Zavadlav, McClain, and

Thomas [41], Bartholdi and Eisenstein [12], Bartholdi, Bunimovich, and Eisenstein [13],

Bartholdi, Eisenstein, and Foley [14], Gel, Hopp, and Van Oyen [19], Hopp, Tekin, and Van

Oyen [21], Ahn and Righter [1], and Lim and Yang [27] are some of the main papers that

study line balancing via server flexibility.

2



We are aware of fewer queueing papers that study optimization problems that include

both throughput and costs. In particular, Mayorga, Taaffe, and Arumugam [30] study a

finite-horizon discounted profit maximization problem with holding and setup costs. They

provide heuristic server assignment policies for a tandem line with two homogeneous stations,

two flexible servers, and an infinite buffer between the stations. By contrast, in this paper we

consider the long-run average profit maximization problem with holding costs and provide

the exact optimal server assignment policy for a system with general service rates and finite

buffers. Note that general service rates (as opposed to systems with homogeneous servers or

homogeneous tasks) and finite buffers are more realistic representations of the actual systems,

however they also make our problem substantially more difficult to analyze. Andradóttir,

Ayhan, and Kırkızlar [11] study the profit maximization problem in a tandem line with two

stations, two flexible servers, a finite buffer between the stations, and a positive setup cost.

However, due to the complexity of the problem, Andradóttir et al. [11] only provide the

optimal server assignment policy for systems with small buffer sizes, but in this work we

study a system with a buffer of any finite size.

The main contributions of this paper can be summarized as follows:

• We identify the optimal server assignment policy for systems with arbitrary number

of stations, arbitrary number of generalist servers, and linear or nonlinear holding

costs. As systems with homogeneous tasks or servers are special cases of systems with

generalist servers, this result is applicable to a wide range of systems.

• For systems with two stations, two specialist servers, and linear holding costs, we show

that the optimal policy is of threshold type and determine the value of the threshold.

This is an important achievement because determining the optimal policy in a revenue

maximization problem is significantly harder than throughput maximization and cost

minimization problems (such problems can be considered as special cases of the profit

maximization problem).

• For systems with two stations, two specialist servers, and nonlinear holding costs, we

provide results of numerical experiments that suggest that the optimal server assign-

ment policy also has a threshold structure in this setting.

• For systems with more than two stations and more than two specialist servers, we

propose effective server assignment heuristics.

Furthermore, we believe that this work has the potential of starting a new line of research

in the area of dynamic server assignment. In particular, the problems studied in the papers

cited above (including the ones studying parallel systems and line balancing problems) can be

potentially adapted to the profit maximization problem. This would also determine which
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server assignment policies and system configurations can deal with conflicting objectives

better than the others.

The remainder of this paper is organized as follows. In Section 2, we provide a detailed

description of our system and formulate our problem as a discrete-time Markov decision

problem (MDP). In Section 3, we determine the optimal server assignment policy for systems

with two stations and two flexible servers. In Section 4, we present our results about the

optimal server assignment policy for different holding cost structures and for larger systems.

Finally, in Section 5, we make some concluding remarks. Proofs of our main results are given

in the Appendix.

2 Problem Formulation

We consider a tandem line with N ≥ 2 stations and M ≥ 1 flexible servers. We assume that

there is an infinite supply of jobs in front of the first station, infinite room for completed

jobs after the last station, and a buffer of size Bj between stations j − 1 and j, where j ∈
{2, . . . , N}. A station is blocked after a service completion at that station if the consecutive

buffer is full (i.e., the line operates under the blocking-after-service mechanism), and travel

times of the servers and setup times at the stations are assumed to be negligible. Let

µij denote the deterministic rate with which server i ∈ {1, . . . ,M} works at station j ∈
{1, . . . , N}. Multiple servers can collaborate on the same job, in which case their service rates

are additive. Service times at each station j ∈ {1, . . . , N} are independent and exponentially

distributed with mean m(j). Without loss of generality, we assume that
∑N

j=1 µij > 0

for i ∈ {1, . . . ,M} (otherwise some servers have zero service rate at all tasks, and this is

equivalent to the case with fewer servers) and that
∑M

i=1 µij > 0 for j ∈ {1, . . . , N} (because

otherwise there is a station where nobody is trained at, and all policies will result in zero

throughput). Each time a job is completed at station N , we assume that a revenue r > 0

is earned. Furthermore, for each job that has completed service at station j − 1 but has

not completed service at station j, a holding cost hj ≥ 0 per time unit is incurred for

j ∈ {2, . . . , N}. We further assume that
∑N

j=2
hj
Σj

< r, where Σj =
∑M

i=1 µij, so that the

expected profit is positive when the jobs do not wait in the buffer at any station and are

served with the maximum service rate at each station, because otherwise the policy that

idles all servers is optimal. Without loss of generality, we assume that m(j) = 1 for all

j ∈ {1, . . . , N} and that r = 1. Our objective is to determine the dynamic server assignment

policy that maximizes the long-run average profit in the system described above.

For all server assignment policies π and t ≥ 0, let Xπ,j(t) ∈ {0, 1, . . . , Bj + 2} denote the

number of jobs that have completed service at station j and are either waiting for service or

in service at station j + 1 at time t under policy π for j ∈ {1, . . . , N − 1}. Let S ⊂ INN−1

be the state space corresponding to the stochastic process Xπ(t) = (Xπ,1(t), . . . , Xπ,N−1(t)).
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Decision epochs are the service completion times at any station, so that decisions are made

when changes to the state of the system are observable. Theorem 9.1.8 of Puterman [33]

shows the existence of an optimal stationary deterministic policy when the state and action

spaces are finite. Hence, without loss of generality, we restrict ourselves to the set Π of all

Markovian stationary deterministic policies corresponding to the state space S.

For all x ∈ S, let Ax denote the set of allowable actions at state x. We let aσ1σ2...σM ∈ Ax
denote an action at state x, where σi is the station to which server i ∈ {1, . . . ,M} is assigned

(with the convention that σi = 0 when server i is idle). The decision rule d is chosen such

that d(x) ∈ Ax for all x ∈ S, and hence the policy π ∈ Π corresponding to the decision rule

d can be represented as π = (d)∞.

For all π ∈ Π and t ≥ 0, let Dπ(t) be the number of departures under policy π by time

t. Moreover, for all π ∈ Π and t ≥ 0, let Hπ(t) be the (cumulative) holding cost incurred

under the server assignment policy π in the period [0, t]. Let

Pπ = lim
t→∞

IE

{
Dπ(t)

t
− Hπ(t)

t

}
(1)

be the long-run average profit under policy π ∈ Π (since r = 1). Note that the existence of

the limit in (1) follows from the strong law of large numbers for Markov chains (see, e.g.,

Wolff [38], page 164) because the state space of {Xπ(t)} and the immediate rewards are finite

(although this limit may depend on the initial distribution of the Markov chain). We are

interested in solving the optimization problem:

max
π∈Π

Pπ. (2)

Next, we translate our original optimization problem (2) into an equivalent (discrete time)

Markov decision problem.

Our assumptions ensure that the stochastic process {Xπ(t)} is a continuous time Markov

chain. Under the server assignment policy π = (d)∞ and for all x, x′ ∈ S, let qd(x, x
′) denote

the rate at which the continuous time Markov chain {Xπ(t)} goes from state x to state x′.

Then, for all π = (d)∞ ∈ Π, there exists a scalar qπ ≤
∑M

i=1 max1≤j≤N µij < ∞ such that

the transition rates {qd(x, x′)} of {Xπ(t)} satisfy
∑

x′∈S,x′ 6=x qd(x, x
′) ≤ qπ for all x ∈ S.

Hence, {Xπ(t)} is uniformizable for all π ∈ Π (as suggested in Lippman [28]). The fact

that {Xπ(t)} is uniformizable will be used to translate the original optimization problem (2)

into an equivalent (discrete time) Markov decision problem. We denote the corresponding

discrete time Markov chain by {X ′π(k)}. Hence, {X ′π(k)} has state space S and transition

probabilities pd(x, x
′) = qd(x, x

′)/qπ if x′ 6= x and pd(x, x) = 1 −
∑

x′∈S,x′ 6=x qd(x, x
′)/qπ for

all x ∈ S. We will generate sample paths of the continuous time Markov chain {Xπ(t)},
where π ∈ Π, by generating a Poisson process {Kπ(t)} with rate qπ and the next state of

the continuous time Markov chain {Xπ(t)} is generated (independently from {Kπ(t)}) using
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the transition probabilities of the discrete time Markov chain {X ′π(k)} at the times of the

events of {Kπ(t)} (so that there may be transitions from a state back to itself).

For all x, x′ ∈ S, let

Rd(x, x
′) =

 1−
∑N
j=2 hjxj

qπ
if x′ ∈ Dx,

−
∑N
j=2 hjxj

qπ
otherwise,

where D = {x ∈ S : xN−1 > 0}, and Dx = {(x1, . . . , xN−2, xN−1 − 1)} for all x ∈ D, and

Dx = ∅ for all x 6∈ D (note that the set Dx has at most one state x′). Note that
∑N

j=2 hjxj

is the holding cost per unit time in state x and that the expected time between transitions

is 1
qπ

. Hence an expected holding cost of
∑N
j=2 hjxj

qπ
is incurred for each transition in state

x. Moreover, a revenue of r = 1 is gained if there is a departure from the system. Hence,

Rd(x, x
′) equals the expected immediate reward associated with each transition from state

x to state x′. Consequently, for all π = (d)∞ ∈ Π,

Pπ = lim
t→∞

IE

Kπ(t)

t
× 1

Kπ(t)

Kπ(t)∑
k=1

Rd(X
′
π(k − 1), X ′π(k))

 . (3)

It is clear that Kπ(t)/t → qπ almost surely as t → ∞ for all π ∈ Π by the elementary

renewal theorem. Moreover, it is clear that for all π ∈ Π, the limit limK→∞
∑K

k=1 Rd(X
′
π(k−

1), X ′π(k))/K exists almost surely by the strong law of large numbers for Markov chains (see,

e.g., Wolff [38], page 164) , although the limit may depend on {X ′π(0)} and it may be random

(see also Section 3.8 of Kulkarni [26]). Uniform integrability shows that for all π ∈ Π, we

have

Pπ = qπIE

{
lim
K→∞

1

K

K∑
k=1

Rd(X
′
π(k − 1), X ′π(k))

}

= qπ lim
K→∞

IE

{
1

K

K∑
k=1

Rd(X
′
π(k − 1), X ′π(k))

}

(see for example the corollary to Theorem 25.12 in Billingsley [17]) since

∣∣∣ 1

K

K∑
k=1

Rd(X
′
π(k − 1), X ′π(k))

∣∣∣ ≤ 1 +
N

qπ

(
max

2≤k≤N
|Bk|+ 2

)(
max

2≤k≤N
|hk|
)
<∞

for all K ≥ 1 and supt≥0 IE{[Kπ(t)/t]2} < ∞ (because Kπ(t) is a Poisson random vari-

able with mean qπt). Hence, the optimization problem (2) has the same solution as the

optimization problem

max
π∈Π

qπ lim
K→∞

IE

{
1

K

K∑
k=1

Rd(X
′
π(k − 1), X ′π(k))

}
.
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Then, using the strong law of large numbers for Markov chains, we obtain for all π =

(d)∞ ∈ Π that

lim
K→∞

1

K

K∑
k=1

Rd(X
′
π(k − 1), X ′π(k)) = lim

K→∞

1

K

K∑
k=1

R′d(X
′
π(k − 1)) a.s.,

where

R′d(x) =
∑
x′∈S

pd(x, x
′)Rd(x, x

′)

=
∑
x′∈Dx

pd(x, x
′)−

∑
x′∈S

pd(x, x
′)

∑N
j=2 hjxj

qπ

=
∑
x′∈Dx

qd(x, x
′)

qπ
−
∑N

j=2 hjxj

qπ

for all x ∈ S (note that both limits may be random and may depend on {X ′π(0)}). Uniform

integrability now gives that

lim
K→∞

IE

{
1

K

K∑
k=1

Rd(X
′
π(k − 1), X ′π(k))

}
= lim

K→∞
IE

{
1

K

K∑
k=1

R′d(X
′
π(k − 1))

}
.

Hence, the optimization problem (2) has the same solution as the optimization problem

max
π∈Π

qπ lim
K→∞

IE

{
1

K

K∑
k=1

R′d(X
′
π(k − 1))

}
.

Finally, it is clear that if

R′′d(x) =
∑
x′∈Dx

qd(x, x
′)−

N∑
j=2

hjxj

for all x ∈ S and π = (d)∞ ∈ Π, then the optimization problem (2) has the same solution as

the Markov decision problem

max
π∈Π

lim
K→∞

IE

{
1

K

K∑
k=1

R′′d(X
′
π(k − 1))

}
. (4)

In the remainder of this paper, we analyze the alternative formulation (4) of the original

optimization problem (2).

3 Main Results

In this section, we provide our main results about the profit maximization problem in tandem

systems with finite buffers. More specifically, we characterize the optimal server assignment

policy for systems with arbitrary numbers of generalist servers and stations in Section 3.1,

and for systems with two specialist servers and two stations in Section 3.2.
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3.1 Systems with Generalist Servers

In this section, we consider a tandem line with generalist servers whose service rates at a

station can be written as the product of the server’s speed and a constant related to the

complexity level of the task at the station. In other words, we assume that µij = µiγj for

i, j ∈ {1, 2}. The following technical assumption is used in the description of the optimal

server assignment policy:

Assumption S. The service requirements Sj,k of job k ≥ 1 at station j ∈ {1, . . . , N} are

independent and identically distributed with mean 1. Moreover, if there is a job in service

at station j at time t ≥ 0, then the expected remaining service requirement at station j of

that job is bounded above by a scalar 1 ≤ S < ∞. Finally, the service discipline is either

nonpreemptive or preemptive-resume.

The following theorem characterizes the optimal server assignment policy for systems

with arbitrary size:

Theorem 3.1. Suppose that Assumption S holds. For a system with N stations in tandem,

M generalist servers, and finite buffers between the stations, the expedite policy πe of Van

Oyen, Gel, and Hopp [37] (in which all servers work as a team that moves with each job

through the line) is optimal, with the long-run average profit

Pπe =

∑M
i=1 µi∑N

j=1 1/γj

(
1−

N∑
j=2

hj
Σj

)
.

Proof: Define the holding cost per item produced up to time t under policy π ∈ Π as

Cπ(t) = Hπ(t)/Dπ(t). Moreover, note that for all π ∈ Π, we have

Pπ = lim
t→∞

IE

{
Dπ(t)

t

(
1− Hπ(t)

Dπ(t)

)}
= lim

t→∞
IE

{
Dπ(t)

t
(1− Cπ(t))

}
= lim

t→∞
IE

{
Dπ(t)

t

}
lim
t→∞

IE {(1− Cπ(t))} . (5)

Note that the existence of the limits in (5) follows because the state space and the im-

mediate rewards are finite. First, we determine an upper bound on the long-run aver-

age profit. Andradóttir, Ayhan, and Down [9] show that any nonidling server assignment

policy maximizes the long-run average throughput, with the throughput being equal to∑M
i=1 µi

/∑N
j=1 1/γj. Note that even if no waiting occurs before starting a job in any

station, an expected holding cost of
∑N

j=2
hj
Σj

is incurred. Hence, we can conclude that

limt→∞ IE(1− Cπ(t)) ≤ (1−
∑N

j=2
hj
Σj

). Combining these with (5), for all π ∈ Π we obtain

Pπ ≤
∑M

i=1 µi∑N
j=1 1/γj

(
1−

N∑
j=2

hj
Σj

)
. (6)
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Next, we show that the long-run average profit of the expedite policy is equal to the

upper bound provided in (6). Note that under the expedite policy there is only one job in

the system that incurs a holding cost. Hence, no waiting occurs before service at any station.

Hence, we conclude that the long-run average profit under the expedite policy is equal to(∑M
i=1 µi

/∑N
j=1 1/γj

)
(1 −

∑N
j=2

hj
Σj

) because expedite policy is a nonidling policy. This,

together with inequality (6), proves the result. 2

Note that the expedite policy is also optimal when the holding cost is not a linear function

of the number of jobs. More specifically, assume that a holding cost of hcj(s) is incurred

when there are s jobs waiting to be served or being served at station j, where hcj(s) is

a nondecreasing function of s for j ∈ {1, . . . , N} and s ∈ {0, . . . , Bj + 2}. The proof of

Theorem 3.1 shows that the expedite policy is optimal with the long-run average profit

Pπe =

∑M
i=1 µi∑N

j=1 1/γj

(
1−

N∑
j=2

hcj(1)

Σj

)
.

3.2 Systems with Specialist Servers

In this section, we consider systems with specialist servers whose service rates cannot be

written as products of two terms. Specialist servers have a general service rate structure,

and hence their analysis is more complicated than that of generalist servers. Consider a

tandem line with two stations and two flexible servers. Since we can relabel the servers if

necessary, without loss of generality assume that µ11µ22 ≥ µ12µ21. For i, j ∈ IN+ and i < j,

let f1(i, j) and f2(i, j) be defined as follows:

f1(i, j) =

{
µi−1

22 (µ12 + µ22)(µ22 − µ11)(µ11µ22 − µ12µ21)(µj−i22 − µ
j−i
11 ) if µ11 6= µ22;

(j − i)µ22(µ12 + µ22)(µ2
22 − µ12µ21) if µ11 = µ22.

and

f2(i, j) =



µi−2
22

µi−1
11

(µ22 − µ11)
[
µj−i22

(
µ12

∑j−1
k=1 k(µ11

µ22
)k−1 + µ22

∑j
k=1 k(µ11

µ22
)k−1

)
×
(
µ12µ21(µi−1

22 − µi−1
11 ) + (µ12 + µ21)(µi22 − µi11) + µi+1

22 − µi+1
11

)
−
(
µ12

∑i−1
k=1 k(µ11

µ22
)k−1 + µ22

∑i
k=1 k(µ11

µ22
)k−1

)
×
(
µ12µ21(µj−1

22 − µ
j−1
11 ) + (µ12 + µ21)(µj22 − µ

j
11) + µj+1

22 − µ
j+1
11

)]
if µ11 6= µ22;(

µ12
(j−1)j−(i−1)i

2
+ µ22

j(j+1)−i(i+1)
2

)(
µ12µ21 + (µ12 + µ21)µ22 + µ2

22

)
if µ11 = µ22.

We need the following four lemmas in the proof of Theorem 3.2 that identifies a server

assignment policy that maximizes the long-run average profit. The proofs of the following

lemmas are provided in the Appendix.

Lemma 3.1. For a tandem line with M = 2, there exists an optimal policy that is non-idling.
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Lemma 3.2. We have f1(i,i+1)
f2(i,i+1)

> f1(i+1,i+2)
f2(i+1,i+2)

for i ∈ IN+.

Lemma 3.3. We have f1(i,j)
f2(i,j)

≥ 0 for i, j ∈ IN+ and i < j.

Lemma 3.4. f1(i,j)
f2(i,j)

is nonincreasing in i for all i, j ∈ IN+ and i < j.

Note that for i < j, f1(i, j) ≥ 0 trivially and f2(i, j) ≥ 0 as shown by Lemma 3.3.

Moreover, we show in the Appendix that the functions f1(i, j) and f2(i, j) are obtained in

the policy improvement step of policy iteration algorithm. More specifically, these functions

are found by comparing the actions a12 and a22 in state i, when state j is the smallest state

where both servers are assigned to station 2.

Now we characterize the optimal server assignment policy for a tandem line with two

stations and two specialist servers. The proof of the following theorem is provided in the

Appendix.

Theorem 3.2. Consider a system with two stations, two flexible servers, and a buffer of

size B between the stations. If h > f1(1,2)
f2(1,2)

, then let s = 1; or if h ≤ f1(B+1,B+2)
f2(B+1,B+2)

, then let

s = B + 2; or let s ∈ {2, . . . , B + 1} be such that f1(s,s+1)
f2(s,s+1)

< h ≤ f1(s−1,s)
f2(s−1,s)

. Let π = (d)∞,

where

d(i) =


a11 for i = 0,

a12 for 1 ≤ i ≤ s− 1,

a22 for s ≤ i ≤ B + 2.

Then π maximizes the long-run average profit and the recurrent states are {0, . . . , s}. More-

over, the optimal actions d(i) are unique for i ∈ {0, . . . , s} if µ11µ22 > µ12µ21 and h 6=
f1(s−1,s)
f2(s−1,s)

. However, in the transient states {s+1, . . . , B+2}, any action that eventually takes

the process to a state in {0, . . . , s} can be selected.

Note that Lemmas 3.2 and 3.3 guarantee that h can belong to only one of the intervals

described in Theorem 3.2.

The policy of Theorem 3.2 is a “threshold” policy, where each server is primarily assigned

to a station, the server assigned to station 2 only switches to station 1 to avoid idleness, and

the server assigned to station 1 only switches to station 2 when the number of jobs in the

buffer reaches a certain threshold (in other words, this policy has the effect of reducing the

size of the buffer that is used in the system). More specifically, when the service rates satisfy

the condition µ11µ22 ≥ µ12µ21, server 1 (2) is primarily assigned to station 1 (2), server 2

moves to station 1 when station 2 is idle, and server 1 moves to station 2 when the jobs in

the buffer reach a certain threshold. The value of this threshold decreases as the holding

cost increases (this follows from Lemma 3.2).

Remark 3.1. The optimal server assignment policy of Theorem 3.2 is the same as
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• the policy π∗T that maximizes the throughput (see, Andradóttir et al. [6]) when h ≤
f1(B+1,B+2)
f2(B+1,B+2)

;

• the policy π∗H that minimizes the holding cost (i.e., the expedite policy of Van Oyen

et al. [37]) when h > f1(1,2)
f2(1,2)

.

Moreover, for intermediate values of h, the optimal policy is always a compromise between

the two policies mentioned above (i.e., it is still a threshold policy but neither π∗T nor π∗H).

Note that the optimal policy may change or remain the same when the buffer size changes,

depending on the value of the threshold. More specifically, suppose that sB is the optimal

threshold for B and assume that the new buffer size is B′. If sB ≤ B + 1, then the optimal

policy does not change if B′ > B or if sB ≤ B′ + 2. However, if sB = B + 2, the optimal

policy may change if either B′ < B or both B′ > B and h ≤ f1(B′+1,B′+2)
f2(B′+1,B′+2)

. Moreover, for a

system with holding cost h that satisfies f1(s,s+1)
f2(s,s+1)

< h ≤ f1(s−1,s)
f2(s−1,s)

, having a buffer size larger

than s− 2 does not improve the performance of the system.

Finally, note that the performance loss associated with using the wrong threshold policy

can be large. For example, consider the system with µ11 = 10, µ12 = 0.5, µ21 = 0.5, µ22 = 15,

and B = 20. When h = 0.35, the profit of π∗H is 6.12. However, the optimal policy has s = 15

and the optimal profit is 9.45 (hence, using the optimal threshold improves the profit of π∗H

by more than 50%). Similarly, when h = 4, the profit of π∗T is 2.05. However, the optimal

policy has s = 2 and the optimal profit is 5.15 (hence, using the optimal threshold improves

the profit of π∗T by more than 100%).

4 Numerical Results

In this section, we present numerical results for the profit maximization problem in systems

with either nonlinear holding costs or more than two stations and servers. More specifically,

we provide simulation results for systems with two stations, two flexible servers, and non-

linear holding costs in Section 4.1 that show that the optimal server assignment policy is of

threshold type even when the holding cost is nonlinear. In Section 4.2, we provide several

server assignment heuristics and demonstrate how their performance depend on the length

of the line, the buffer size, and the relations between the holding costs at each stage.

4.1 Systems with Nonlinear Holding Costs

Theorem 3.2 shows that the optimal server assignment policy for systems with two stations

and two flexible servers is a threshold policy when the holding cost is a linear function of

the number of jobs waiting for service or in service at the second station. In this section,

we provide numerical results for systems with nonlinear holding costs. More specifically, we
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assume that either a superlinear holding cost of hc2(s) = hs2 or a sublinear holding cost of

hc2(s) = h
√
s per unit time is incurred when the system is in state s ∈ {0, . . . , B + 2}.

We perform simulations where the service rates are randomly generated from a uniform

distribution in the interval (0.5, 2.5), the size of the intermediate buffer is randomly gen-

erated from a discrete uniform distribution with range {0, . . . , 10}, and the holding cost is

randomly generated from a uniform distribution with range (0, 1). Note that the service

rates and the holding satisfy the assumption that h
µ12+µ22

< 1 (and hence it is not optimal

to idle all servers). In particular, in each experiment we create 100,000 random systems for

each nonlinear holding cost structure (i.e., when hc2(s) is equal to hs2 or h
√
s) and determine

the optimal server assignment policy using the policy iteration algorithm for weakly com-

municating Markov chains (note that we can do this because we start the policy iteration

algorithm with a policy that results in a communicating Markov chain). In each system, we

observe that the structure of the optimal server assignment policy is the same as the one in

Theorem 3.2, i.e., regardless of the holding cost structure, the optimal server assignment pol-

icy is a threshold-type policy. These results suggest that the structure of the optimal server

assignment policy is robust with respect to the holding cost, as long as it is a nondecreasing

function of the number of jobs in the system.

Note that this result can be used to develop effective heuristics for systems with M =

N = 2 and nonlinear holding costs. More specifically, the number of nonidling policies in

the policy space Π is 4B+1 (because there is one possible action in states {0, B + 2} and

four possible actions in states {1, . . . , B + 1}). However, the total number of threshold

policies is 2 × (B + 2) (because there can be two different primary assignments of servers

and there can be at most B + 2 different threshold policies for each primary assignment).

Hence, an enumeration of all possible threshold policies is a better alternative to other search

algorithms, including policy iteration, in terms of the required computational time.

4.2 Larger Systems

The optimal assignment policy for systems with M = N > 2 can be difficult to identify

and implement. In particular, numerical results suggest that the optimal policy, obtained

by using the policy iteration algorithm, for systems with M = N = 3 is still a threshold

policy. However, the servers do not necessarily have primary assignments, and each server

has multiple thresholds where the server moves between the stations according to the number

of jobs at each station and the server’s current location. In this section, we propose four

easily implementable server assignment heuristics and compare their performance to the

optimal server assignment policy.

We study server assignment heuristics with two main parts, namely a Primary Assignment

(PA) and a Contingency Plan (CP). The primary assignment determines the station that the
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server is initially assigned to. The contingency plan determines where the server works if it

is not working at the station it is primarily assigned to. Note that among the earlier papers

that study the throughput maximization problem, the ones that are most closely related to

our work (see, e.g., Andradóttir et al. [6] and Kırkızlar et al. [24]) propose heuristics that

employ a contingency plan when a station is starved or blocked. Our heuristics for the profit

maximization problem employ a contingency plan when a station is starved or blocked, as

well as when a threshold on the number of jobs is reached or the thresholds satisfy a certain

condition. The optimal server assignment policies for systems with two stations and two

servers also have this form, see Theorem 3.2.

As a primary assignment, we employ the one that maximizes ΠM
j=1µiji , where ji ∈

{1, . . . , N} denotes the station server i ∈ {1, . . . ,M} is assigned to. Note that this PA

was proposed by Andradóttir et al. [6] and has been shown to outperform other primary

assignments considered in Kırkızlar et al. [24] when the objective is to maximize system

throughput. Furthermore, this primary assignment has the advantage of assigning only one

server to each station, which consequently simplifies the corresponding contingency plans.

Finally, this primary assignment is also in accordance with the optimal server assignment

policy for small systems, as shown in Theorem 3.2.

In the heuristics, we consider the following contingency plans:

Heuristic 1: Determine a threshold tj for the number of jobs being served or waiting to

be served at each station j ∈ {1, . . . , N}, considering the servers that are primarily assigned

to station j − 1 and j. More specifically, label station j − 1 as the first station and station

j as the second station, and use the logic in Theorem 3.2. When a station is starved but

not blocked (in that the threshold at the next station is not exceeded), the server with a PA

at that station moves to the closest upstream station that is operating (neither blocked or

starved); when it is blocked (i.e., the threshold at the next station is reached), the server

with a PA at that station moves to the closest downstream station that is not blocked.

Heuristic 2: Employ Heuristic 1 with the modification that all servers not working at

their assigned station are working at the station closest to the end of the line that is not

blocked (i.e., the following threshold is not exceeded).

Heuristic 3: Whenever a station is blocked, starved, or its threshold is reached, the server

with a PA at this station works at the station that is operating and whose threshold is not

exceeded where it has the highest relative rate with respect to the cumulative rate of all

servers with primary assignment at that station (compared to the other stations that are

operating); i.e., server i works at station j∗ where j∗ = arg maxk∈I µik/SRk and I is again

the set of stations that are operating.

Heuristic 4: Employ Heuristic 3 with the modification that if a condition on the thresholds

is satisfied, the teamwork policy is used. More specifically, if some or all of the holding costs

are high enough so that
∑N

j=2 tj >
1
2

∑N
j=2(Bj +2) (i.e., the average of all thresholds is larger
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than half of the average of all maximum possible values for thresholds), then all the servers

work as a team at the closest station to the end of the line that is operating.

Note that Heuristic 1 is inspired by the local heuristic defined in Andradóttir et al. [6]. It

does not take into account the rest of the line, and its main objective is to make a server get

back to working at the station it is primarily assigned to. Heuristic 2 considers the perfor-

mance of the whole line by employing the servers to pull the jobs from the system when their

primarily assigned station is blocked or its threshold is exceeded. Heuristic 3 is a modified

version of the best heuristic provided in Kırkızlar et al. [24] for the throughput maximization

problem that considers exceeding the thresholds as blocking. Finally, using teamwork policy

as a special case, Heuristic 4 attempts to balance the throughput maximization and cost

minimization objectives at the same time.

We study systems with M = N = 3, M = N = 4, and M = N = 5. The service rates

are drawn independently from a uniform distribution with range (0.5,2.5). In other words,

we randomly generate sets of service rates {µij}, for 1 ≤ i ≤ M and 1 ≤ j ≤ N , and each

experiment consists of estimating the long-run average profit of such a random system. For

each experiment, we also determine the long-run average profit of the optimal policy by using

the policy iteration algorithm. In the tables below, we provide the 95% confidence interval

for long-run average profit of each heuristic as well as the percentage of the average optimal

profit each heuristic achieves. As a benchmark, we also compare our results to the profit of

the teamwork policy of Van Oyen et al. [37]. More specifically, in Section 4.2.1 we compare

the performance of our heuristics under holding costs of different magnitude, in Section 4.2.2

we study how the buffer sizes affect our heuristics, and in Section 4.2.3 we investigate the

effects of increasing and random holding costs at different buffers. Finally, in Section 4.2.4

we summarize the insights gained from the numerical experiments for larger systems, and

shortly describe how our heuristics can be improved.

4.2.1 Effects of the Magnitude of the Holding Cost

In this section, we study systems where a constant holding cost at each station was randomly

generated from a uniform distribution with range (0, 0.01), (0, 0.05), or (0, 0.1). Note that

these ranges were selected because for higher values of the holding cost, the teamwork policy

was optimal for most systems. Furthermore, these ranges satisfy the assumption
∑N

j=2
hj
Σj
<

1, so that the policy that idles all servers is not the optimal policy. Moreover, for all

systems, the buffer sizes at each station were randomly chosen independently from a discrete

uniform distribution. More specifically, the range for the discrete uniform distributions were

{0, . . . , 10}, {0, . . . , 5}, and {0, 1, 2} for systems with M = N = 3, M = N = 4, and

M = N = 5, respectively. The results for systems with M = N = 3 and M = N = 4

were obtained from 10,000 experiments, and the results for systems with M = N = 5
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was obtained from 1,000 experiments. Note that the magnitude of the buffers as well as the

number of experiments were decreased due to the computational effort required to determine

the optimal profit in each system.

When the holding cost is selected from the ranges (0, 0.01) or (0, 0.05), we observe in

Tables 1 and 2 that Heuristics 1 and 2 perform better when M = N = 3, but Heuristic

4 performs the best when M = N ∈ {4, 5}. Moreover, we observe that the best heuristic

attains at least 96.9% (95.5%) of the optimal profit in each system configuration when

h = 0.01 (h = 0.05), and that the optimality gap between the heuristics and the teamwork

policy increases as h decreases.

When the holding cost is selected from the range (0, 0.1), we observe in Table 3 that the

best heuristic attains at least 92.9% of the optimal profit in each system configuration and

each holding cost structure. Moreover, we observe that Heuristic 2 performs the best when

M = N ∈ {3, 4}, but Heuristic 4 performs the best when M = N = 5.

Table 1: Average Performance of Heuristics for Constant Holding Cost with Range (0, 0.01)

and Buffer Sizes with Varying Ranges

M = N = 3, M = N = 4, M = N = 5,

0 ≤ B2, B3 ≤ 10 0 ≤ B2, B3, B4 ≤ 5 0 ≤ B2, B3, B4, B5 ≤ 2

Policy performance % of the performance % of the performance % of the

optimal optimal optimal

Teamwork 1.448 ± 0.004 % 83.092 1.453 ± 0.003 % 79.452 1.463 ± 0.002 % 78.118

Heuristic 1 1.705 ± 0.005 % 97.844 1.755 ±0.004 % 95.928 1.755 ± 0.003 % 93.738

Heuristic 2 1.705 ± 0.005 % 97.843 1.749 ± 0.004 % 95.618 1.741 ± 0.003 % 93.009

Heuristic 3 1.676 ± 0.005 % 96.182 1.727 ± 0.004 % 94.414 1.730 ± 0.003 % 92.416

Heuristic 4 1.684 ± 0.005 % 96.625 1.778 ± 0.004 % 97.208 1.815 ± 0.003 % 96.921

optimal 1.743 ± 0.005 — 1.829 ± 0.004 — 1.872 ± 0.003 —
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Table 2: Average Performance of Heuristics for Constant Holding Cost with Range (0, 0.05)

and Buffer Sizes with Varying Ranges

M = N = 3, M = N = 4, M = N = 5,

0 ≤ B2, B3 ≤ 10 0 ≤ B2, B3, B4 ≤ 5 0 ≤ B2, B3, B4, B5 ≤ 2

Policy performance % of the performance % of the performance % of the

optimal optimal optimal

Teamwork 1.442 ± 0.004 % 84.232 1.443 ± 0.003 % 81.169 1.451 ± 0.002 % 79.817

Heuristic 1 1.644 ± 0.005 % 96.081 1.674 ±0.004 % 94.155 1.691 ± 0.003 % 93.040

Heuristic 2 1.655 ± 0.005 % 96.727 1.686 ± 0.004 % 94.808 1.689 ± 0.003 % 92.934

Heuristic 3 1.615 ± 0.005 % 94.343 1.637 ± 0.004 % 92.074 1.654 ± 0.003 % 90.998

Heuristic 4 1.623 ± 0.005 % 94.844 1.699 ± 0.004 % 95.512 1.750 ± 0.003 % 96.280

optimal 1.711 ± 0.005 — 1.778 ± 0.004 — 1.817 ± 0.003 —

Table 3: Average Performance of Heuristics for Constant Holding Cost with Range (0, 0.1)

and Buffer Sizes with Varying Ranges

M = N = 3, M = N = 4, M = N = 5,

0 ≤ B2, B3 ≤ 10 0 ≤ B2, B3, B4 ≤ 5 0 ≤ B2, B3, B4, B5 ≤ 2

Policy performance % of the performance % of the performance % of the

optimal optimal optimal

Teamwork 1.433 ± 0.004 % 85.117 1.431 ± 0.003 % 82.568 1.436 ± 0.002 % 81.429

Heuristic 1 1.571 ± 0.006 % 93.324 1.577 ±0.005 % 90.966 1.612 ± 0.004 % 91.444

Heuristic 2 1.597 ± 0.005 % 94.838 1.610 ± 0.004 % 92.891 1.613 ± 0.004 % 91.517

Heuristic 3 1.541 ± 0.006 % 91.495 1.527 ± 0.005 % 88.109 1.559 ± 0.004 % 88.401

Heuristic 4 1.551 ± 0.005 % 92.136 1.601 ± 0.005 % 92.388 1.670 ± 0.003 % 94.710

optimal 1.684 ± 0.005 — 1.733 ± 0.004 — 1.763 ± 0.003 —
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Note that when M = N = 2, the teamwork policy is optimal for some values of the

holding cost. Hence, we believe that superior performance of Heuristic 4 for longer lines

results from the fact that it employs the teamwork policy for some values of the holding

cost. Note that Heuristics 1, 2, and 3 are myopic in the sense that they only consider the

holding cost and number of jobs at each station. Hence, they give priority to increase the

revenue rather than to limit the holding costs. However, Heuristic 4 considers the holding

costs over the all line and hence its performance improves as the line gets longer. The

performance of the teamwork policy seems to be stable in all three systems. However, note

that the good performance of teamwork policy in longer lines also results from the decrease

in the buffer sizes. Since the heuristics performed similarly for different ranges of the holding

cost, we will concentrate on the intermediate case where the holding cost is selected from

the range (0, 0.05) in the rest of this paper.

4.2.2 Effects of the Buffer Size

In this section, in order to eliminate the effect of buffer sizes, we compare the performance

of heuristics for M = N ∈ {3, 4, 5} when constant holding cost was randomly drawn from a

continuous uniform distribution with range (0, 0.05), and buffer sizes were randomly drawn

from a discrete uniform distribution with ranges {0, 1, 2} and {0, . . . , 5}. The number of

experiments performed were as in Section 4.2.1. Tables 4 and 5 show that the performance

of the heuristics become even better for systems with smaller buffer sizes. However, the best

heuristic for each system does not change (compared to the systems with the same holding

cost range and varying buffer sizes). More specifically, for systems with buffer sizes from the

range {0, 1, 2}, we observe that performance of Heuristics 1 and 2 reach more than 97% of

the optimal profit when M = N = 3, and performance of Heuristic 4 reaches more than 96%

of the optimal profit when M = N ∈ {4, 5}. Similarly, for systems with buffer sizes from

the range {0, . . . , 5}, Heuristics 1 and 2 perform the best when M = N = 3, and Heuristic 4

performs the best when M = N ∈ {4, 5}. Furthermore, for some heuristics, we observe that

even the actual profit (in addition to the percentage of the optimal profit achieved) increases

as the buffer sizes decrease. We believe that this results from the fact that the effects of

holding costs become more prominent in systems with larger buffer sizes. Note that, due

to the long computational time, we have not been able to determine the optimal profit for

systems with M = N = 5 and the buffer sizes with range {0, . . . , 5}. To summarize, our

heuristics’ performance compared to each other does not change as the buffer sizes change,

however they perform slightly better for systems with small buffer sizes.
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Table 4: Average Performance of Heuristics for Constant Holding Cost with Range (0, 0.05)

and Buffer Sizes with Range {0, 1, 2}

M = N = 3 M = N = 4 M = N = 5

Policy performance % of the performance % of the performance % of the

optimal optimal optimal

Teamwork 1.442 ± 0.004 % 86.014 1.443 ± 0.003 % 82.036 1.451 ± 0.002 % 79.817

Heuristic 1 1.636 ± 0.005 % 97.634 1.673 ± 0.004 % 95.090 1.655 ± 0.003 % 93.040

Heuristic 2 1.637 ± 0.005 % 97.689 1.675 ± 0.004 % 95.186 1.615 ± 0.003 % 92.934

Heuristic 3 1.580 ± 0.005 % 94.286 1.626 ± 0.004 % 92.401 1.623 ± 0.003 % 90.998

Heuristic 4 1.593 ± 0.005 % 95.057 1.697 ± 0.004 % 96.430 1.750 ± 0.003 % 96.280

optimal 1.676 ± 0.005 — 1.760 ± 0.004 — 1.817 ± 0.003 —

Table 5: Average Performance of Heuristics for Constant Holding Cost with Range (0, 0.05)

and Buffer Sizes with Range {0, . . . , 5}

M = N = 3 M = N = 4 M = N = 5

Policy performance % of the performance % of the performance % of the

optimal optimal optimal

Teamwork 1.442 ± 0.004 % 84.931 1.443 ± 0.003 % 81.169 1.436 ± 0.002 —

Heuristic 1 1.649 ± 0.005 % 97.177 1.674 ± 0.004 % 94.155 1.601 ± 0.004 —

Heuristic 2 1.653 ± 0.005 % 97.411 1.686 ± 0.004 % 94.808 1.611 ± 0.004 —

Heuristic 3 1.607 ± 0.005 % 94.707 1.637 ± 0.004 % 92.074 1.571 ± 0.004 —

Heuristic 4 1.619 ± 0.005 % 95.381 1.699 ± 0.004 % 95.512 1.697 ± 0.004 —

optimal 1.697 ± 0.005 — 1.778 ± 0.004 — — —
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4.2.3 Effects of the Increasing and Random Holding Costs at Different Buffers

In this section, we try to understand the effects of increasing and random holding costs at

different buffers (as opposed to a constant holding cost at all buffers). More specifically,

In each experiment three different holding cost structures were considered: (i) a constant

holding cost at each station was randomly generated from a uniform distribution with range

(0, 0.05), (ii) h2 was chosen randomly from a range (0, 0.05), and hj was generated from

a uniform distribution with range (hj−1, 0.05) for j > 2, and (iii) each holding cost was

generated randomly and independently from each other from a uniform distribution with

range (0, 0.05). Moreover, the buffer sizes and the number of experiments were chosen as in

Section 4.2.1.

Comparison of Tables 2, 6, and 7 show that the effects of dependency between the holding

costs at different buffers is negligible. More specifically, we observe that performance of the

heuristics and the optimal server assignment policy is almost identical when constant holding

costs or independent holding costs are used at each buffer. When the increasing holding cost

structure is used, the performance of our heuristics are slightly worse when M = N ∈ {4, 5}
(however the difference as a percentage of the optimal profit is less than 1%). Hence, we can

conclude that our heuristics are robust to increasing and random holding costs at different

buffers.

Table 6: Average Performance of Heuristics for Increasing Holding Costs with Range (0, 0.05)

and Buffer Sizes with Varying Ranges

M = N = 3, M = N = 4, M = N = 5,

0 ≤ B2, B3 ≤ 10 0 ≤ B2, B3, B4 ≤ 5 0 ≤ B2, B3, B4, B5 ≤ 2

Policy performance % of the performance % of the performance % of the

optimal optimal optimal

Teamwork 1.441 ± 0.004 % 84.247 1.440 ± 0.003 % 81.651 1.444 ± 0.002 % 80.642

Heuristic 1 1.644 ± 0.005 % 96.059 1.650 ± 0.005 % 93.553 1.659 ± 0.003 % 92.606

Heuristic 2 1.655 ± 0.005 % 96.699 1.668 ± 0.004 % 94.559 1.663 ± 0.003 % 92.880

Heuristic 3 1.612 ± 0.005 % 94.230 1.610 ± 0.004 % 91.274 1.615 ± 0.003 % 90.191

Heuristic 4 1.621 ± 0.005 % 94.717 1.676 ± 0.004 % 95.003 1.718 ± 0.003 % 95.939

optimal 1.711 ± 0.005 — 1.764 ± 0.004 — 1.791 ± 0.003 —
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Table 7: Average Performance of Heuristics for Independent Holding Costs with Range

(0, 0.05) and Buffer Sizes with Varying Ranges

M = N = 3, M = N = 4, M = N = 5,

0 ≤ B2, B3 ≤ 10 0 ≤ B2, B3, B4 ≤ 5 0 ≤ B2, B3, B4, B5 ≤ 2

Policy performance % of the performance % of the performance % of the

optimal optimal optimal

Teamwork 1.442 ± 0.004 % 84.247 1.443 ± 0.003 % 81.166 1.451 ± 0.002 % 79.817

Heuristic 1 1.643 ± 0.005 % 96.022 1.674 ± 0.004 % 94.148 1.691 ± 0.003 % 93.060

Heuristic 2 1.654 ± 0.005 % 96.675 1.686 ± 0.004 % 94.789 1.689 ± 0.003 % 92.933

Heuristic 3 1.613 ± 0.005 % 94.300 1.637 ± 0.004 % 92.034 1.654 ± 0.003 % 91.004

Heuristic 4 1.621 ± 0.005 % 94.747 1.698 ± 0.004 % 95.491 1.750 ± 0.003 % 96.269

optimal 1.711 ± 0.005 — 1.778 ± 0.004 — 1.817 ± 0.003 —

4.2.4 Insights and Limitations

Our numerical experiments imply that the threshold policies perform well even for larger

systems. However, it is better to consider the holding costs, servers’ rates, and number of

jobs at each station (as opposed to two consecutive stations) when determining the thresh-

olds. Hence, it is not practically possible to calculate each threshold exactly, however simple

server assignment heuristics that use an effective primary assignment together with an effec-

tive contingency plan still have near-optimal performance. Moreover, we observe that our

heuristics provide significant improvements over the teamwork policy. For example, when

M = N = 3 and a constant holding cost of 0.05 is used, Heuristic 2 closes the optimality

gap by more than 85% compared to the teamwork policy. Moreover, we observe that our

heuristics perform better for systems with smaller buffer sizes, and the effects of increasing

and random holding costs at different buffers are negligible. Although our heuristics reached

near-optimal profit, we believe that it may be possible to improve some of our heuristics

even further. For example, Heuristic 2 can be changed to involve the value of the holding

costs in the contingency plan, and the condition in Heuristic 4 that determines when the

servers work as a team perhaps can be improved. Finally, note that our heuristics have been

devised for systems with M = N , but they can be easily adapted to systems with M > N .

However, we believe that understaffed systems with M < N necessitate different types of

server assignment heuristics that include zones instead of primary assignments.
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5 Conclusion

In this work we have studied the dynamic assignment of servers in tandem lines with the

objective of maximizing the profit. More specifically, we assumed that a positive revenue

is earned every time a job leaves the system and a holding cost is incurred for the jobs

that have completed the service at the first station. We have characterized the optimal

server assignment policy for systems with either arbitrary number of generalist servers and

arbitrary number of stations or two specialist servers and two stations.

We have observed that the optimal policy is of “threshold” type where each server moves

between the stations according to the number of jobs waiting for service or being served at

each station. In particular, we have shown that the policy where all the servers work together

as a team is optimal (note that this is a threshold policy as well) for systems with generalist

servers. For systems with two specialist servers and two stations, we have shown that as

the value of the holding cost increases, the value of the threshold decreases (we have also

determined this threshold). Furthermore, we have observed the teamwork policy is optimal

for high values of the holding cost, and the optimal policy of the throughput maximization

problem is optimal for small values of the holding cost.

Moreover, we have studied systems with nonlinear holding cost structures. We have

observed that the teamwork policy is still optimal for systems with generalist servers, and

we have provided numerical results that support the conjecture that the optimal server

assignment policy is of threshold type for systems with two specialist servers and two stations.

Finally, we have provided numerical results that compared the performances of various

server assignment heuristics with the optimal server assignment policy in larger systems.

More specifically, for systems with specialist servers we have observed that the optimal

server assignment policy of the systems with two specialist servers and two stations can not

simply be generalized to larger systems. Moreover, the teamwork policy (that is optimal for

generalist systems) have performed well even for systems with specialist servers, however its

performance have deteriorated as the system got larger.

This paper provides a starting point for future research in dynamic server assignment

problem with conflicting objectives. We plan to study the quality and efficiency tradeoff for

systems with different configurations, collaboration policies, and service time distributions.

We believe that this will provide significant improvements to earlier results for problems with

single objectives, because multiple conflicting objectives are more common in real production

and service systems and their analysis will provide interesting insights to the practitioners

as well as academicians.
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Appendix

Proof of Lemma 3.1: If all the servers are idle at a state s, then s is an absorbing state

and the long-run average profit is zero. Hence, at least one of the servers should not be idle

at a state s. Let π be any policy that idles one server when the other server is assigned to a

station j in state s. Now compare π with the policy π′ that assigns both servers to station

j in state s and agrees with π otherwise. The transition time from state s to another state

s′ is never longer for π′ compared to π. Hence, the number of departures is never smaller

under π′. Moreover, the holding cost per item produced is never bigger under π′ because

the time required to reach the same number of departures (going through the same states)

is never longer under π′. Hence, Dπ(t)
t
≥ D′π(t)

t
and Cπ(t) ≤ Cπ′(t) for all t ≥ 0. Equation (5)

shows that Pπ ≥ Pπ′ , and consequently there exists an optimal policy that does not idle any

servers in state s. 2

Proof of Lemma 3.2: When µ11 6= µ22, some algebra shows that

f1(i, i+ 1)

f2(i, i+ 1)
>
f1(i+ 1, i+ 2)

f2(i+ 1, i+ 2)

⇔ µ11(
µ11

µ22

)i−1(µ11 + µ12)(µ22 − µ11)

×
(
µ12µ21(µi22 − µi11) + (µ12 + µ21)(µi+1

22 − µi+1
11 ) + (µi+2

22 − µi+2
11 )
)
> 0.

The last inequality is correct because µ11 6= µ22, hence the lemma holds. When µ11 = µ22,

we can show that the lemma holds because

f1(i, i+ 1)

f2(i, i+ 1)
>
f1(i+ 1, i+ 2)

f2(i+ 1, i+ 2)
⇔ 2(µ12 + µ22)

(
µ12µ21 + (µ12 + µ21)µ22 + µ2

22

)
> 0.

Hence the proof is complete. 2

Proof of Lemma 3.3: Let i, j ∈ IN+ and i < j. Since f1(i, j) ≥ 0, we only need to show

that f2(i, j) ≥ 0. Some algebra shows that

f2(i, j) =
µj+i−3

22

µi−1
11

(µ22 − µ11)2
[
µ12µ

2
22

( j−1∑
k=1

k(
µ11

µ22

)k−1 +

j−1∑
k=1

k(
µ11

µ22

)k
)

+µ12µ22(µ12 + µ21)

j−1∑
k=1

k(
µ11

µ22

)k−1 + (µ11µ22 − µ12µ21)µ22

j−1∑
k=i

(
µ11

µ22

)k−1

+(µ11 + µ12)(µ11 + µ21)
(
µ12

j−1∑
k=i

i−1∑
l=1

(k − l)(µ11

µ22

)k+l−2 + µ22

j∑
k=i+1

i∑
l=1

(k − l)(µ11

µ22

)k+l−3
)]
.

Hence, it is clear that f2(i, j) > 0 because µ11 6= µ22 and µ11µ22 ≥ µ12µ21. Finally, when

µ11 = µ22, it is clear that f2(i, j) > 0 because i < j. Hence the proof is complete. 2

Proof of Lemma 3.4: It is sufficient to show that

f1(i, j)

f2(i, j)
≥ f1(i+ 1, j)

f2(i+ 1, j)
. (7)
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First assume that µ22 6= µ11. Then, some algebra shows that the inequality (7) holds if and

only if

µj−i−1
22 (µ22 − µ11)

(
µj+1

22 − µ
j+1
11 + (µj22 − µ

j
11)(µ12 + µ21) + (µj−1

22 − µ
j−1
11 )µ12µ21

)
×
(
µ12

j−1∑
k=i+1

(k − i)(µ11

µ22

)k−1 + µ22

j∑
k=i+2

(k − i− 1)(
µ11

µ22

)k−1
)
≥ 0. (8)

Note that the inequality (8) holds because j > i. When µ11 = µ22 we observe that the

inequality (7) holds if and only if

µ12 + µ22

2
(j − i)(j − i− 1) ≥ 0.

This final inequality holds because j > i and i ≥ 1. Hence the proof is complete. 2

Proof of Theorem 3.2: Lemma 3.1 shows that it suffices to consider the policies that are

non-idling. Then, in each state i ∈ S, it is sufficient to consider the following set of allowable

actions:

Ai =


a11 for i = 0,

{a11, a12, a21, a22} for i ∈ {1, . . . , B + 1},
a22 for i = B + 2.

Furthermore, for all π ∈ Π, let q be the uniformization constant(see, Lippman [28]). The

policy described in the theorem corresponds to a Markov chain with a single recurrent class

and possibly some transient states. Thus, we can use the policy iteration algorithm for

weakly communicating models as described in Section 9.5.1 of Puterman [33].

Let Pd be the probability transition matrix corresponding to the policy π, and rd(i)

denote the reward in state i when policy π is employed.

Let us define f1(0,1)
f2(0,1)

= ∞ and f1(B+2,B+3)
f2(B+2,B+3)

= 0, and assume that f1(s,s+1)
f2(s,s+1)

< h ≤ f1(s−1,s)
f2(s−1,s)

(Lemma 3.2 shows that this interval is nonempty). We start the policy iteration algorithm

by considering the policy π0 = (d0)∞, where

d0(i) =


a11 for i = 0,

a12 for 1 ≤ i ≤ s− 1,

a22 for s ≤ i ≤ B + 2.

Then we obtain

rd0(i) =


0 for i = 0,

µ22 − ih for 1 ≤ i ≤ s− 1,

µ12 + µ22 − ih for s ≤ i ≤ B + 2,
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and

Pd0(i, i
′) =



µ11+µ21

q
for i = 0 and i′ = 1,

µ12+µ22

q
for i = i′ = 0,

µ11

q
for i ∈ {1, . . . , s− 1} and i′ = i+ 1,

µ22

q
for i ∈ {1, . . . , s− 1} and i′ = i− 1,

µ12+µ21

q
for i = i′ ∈ {1, . . . , s− 1},

µ12+µ22

q
for i ∈ {s, . . . , B + 2} and i′ = i− 1,

µ11+µ21

q
for i = i′ ∈ {s, . . . , B + 2}.

For all i, i′ ∈ S and a ∈ Ai, we use r(i, a) to denote the immediate reward in state i

when action a is taken and p(i′|i, a) to denote the one-step probability of going from state

i to state i′ when action a is chosen in state i. Under our assumptions on the service rates

(µ11µ22 ≥ µ12µ21,
∑M

k=1 µkj > 0 for j ∈ {1, . . . , N}, and
∑N

j=1 µkj > 0 for k ∈ {1, . . . ,M}),
it is clear that µ11 > 0 and µ22 > 0. Hence, the discrete time Markov chain {X ′π0

(t)} found

by uniformization of {Xπ0(t)} is unichain, and we can solve the following set of equations to

find a scalar g0 and a vector h0, letting h0(0, 0) = 0,

rd0 − g0e+ (Pd0 − I)h0 = 0, (9)

where e is the column vector of ones and I is the identity matrix. We can show that

g0 =



(µ11 + µ21)(µ12 + µ22)
(

(µs22 − µs11)− h
(µ22−µ11)(µ12+µ22)

×
[
(µ12 + µ22)

(
µs22 − sµs−1

11 µ22 + (s− 1)µs11

)
+ sµs−1

11 (µ22 − µ11)2
])/(

µs+1
22 − µs+1

11 + (µs22 − µs11)(µ12 + µ21) + (µs−1
22 − µs−1

11 )µ12µ21

)
if µ11 6= µ22;

(µ11 + µ21)(µ11 + µ22)
(
sµ22 − h

2(µ12+µ22)

[
s(s− 1)(µ12 + µ22) + 2sµ22

])/(
µ22(µ11 + µ21) + (s− 1)(µ11 + µ21)(µ12 + µ22) + µ22(µ12 + µ22)

)
if µ11 = µ22;

and h0(0) = 0,

h0(i) =


g0q

(µ11+µ21)
∑i−2
j=0(j+1)µj11µ

i−2−j
22 +

∑i−1
j=0 µ

j
11µ

i−1−j
22

µi−1
11 (µ11+µ21)

− qµ22

∑i−2
j=0(j+1)µj11µ

i−2−j
22

µi−1
11

+hq(µ11 + µ22)
∑s−2
j=0 µ

j
11µ

i−2−j
22

∑j+1
k=0 k

µi−1
11

for 1 ≤ i ≤ s;

h0(s) + q(i− s)− qg0
(i−s)

µ12+µ22
− hq

∑i
k=s+1 k for s+ 1 ≤ i ≤ B + 1;

is a solution to (9), with the convention that summation over an empty set is equal to zero.

Next, we compute d1(i), where

d1(i) ∈ arg max
a∈Ai

{
r(i, a) +

∑
i′∈S

p(i′|i, a)h0(i′)
}
, ∀i ∈ S,

and set d1(i) = d0(i) whenever possible. If one can show d1(i) = d0(i) for all i ∈ S, then the

policy π0 = (d0)∞ is optimal according to Theorem 9.5.1 of Puterman [33]. Consequently,
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for all i ∈ S and a ∈ Ai, we want to show that the following inequality holds:

∆(i, a) =
(
r(i, d0(i)) +

∑
i′∈S

p(i′|i, d0(i))h0(i′)
)
− r(i, a)−

∑
i′∈S

p(i′|i, a)h0(i′) ≥ 0. (10)

For the remainder of the proof, we assume that µ11 6= µ22 since the proof for the case

with µ11 = µ22 is similar. It is clear that the action d0(i) is optimal for i ∈ {0, B+2} because

the action space consists of only one action in these states. Hence, it is sufficient to check if

the inequality (10) is satisfied in states 1 ≤ i ≤ B + 1. For i, l ∈ IN+ and i < l, let us define

fj(i, l) for j ∈ {3, 4, 5, 6} as follows:

f3(i, l) = µl−i−1
11 (µ11 + µ21)(µi22 − µi11)(µ22 − µ11)(µ11µ22 − µ12µ21),

f4(i, l) =
µi−1

22

µi11

(µ22 − µ11)
[(
µ11

i−1∑
k=1

k(
µ11

µ22

)k−1 + µ21

i∑
k=1

k(
µ11

µ22

)k−1
)

×
(
µ12µ21(µl−1

22 − µl−1
11 ) + (µ12 + µ21)(µl22 − µl11) + µl+1

22 − µl+1
11

)
−µl−i−1

22

(
µ12

l−1∑
k=1

k(
µ11

µ22

)k−1 + µ22

l∑
k=1

k(
µ11

µ22

)k−1
)

(µ11 + µ21)(µ21 + µ22)(µi22 − µi11)
]
,

f5(i, l) = (µ22 − µ11)(µ11µ22 − µ12µ21)
(
µl22 − µl11 + µ12µ

i−1
22 (µl−i22 − µl−i11 ) + µl−i−1

11 µ12(µi22 − µi11)
)
,

f6(i, l) =
µi−2

22

µi11

(µ22 − µ11)
[
µl−i22

(
µ12

j−1∑
k=1

k(
µ11

µ22

)k−1 + µ22

j∑
k=1

k(
µ11

µ22

)k−1
)

×
(
µi11(µ11 + µ21)(µ21 + µ22 − µ11 − µ12) + µi−1

22 (µ21 + µ22)(µ11µ12 − µ21µ22)
)

−
(
µ11µ12

i−1∑
k=1

k(
µ11

µ22

)k−1 − µ21µ22

i∑
k=1

k(
µ11

µ22

)k−1 + i
µi11

µi−2
22

)
×
(
µ12µ21(µl−1

22 − µl−1
11 ) + (µ12 + µ21)(µl22 − µl11) + µj+1

22 − µl+1
11

)]
.

First, let us consider the states i ∈ {1, . . . , s−1}. Recall that d0(i) = a12 for i ∈ {1, . . . , s−1}.
With some algebra we have

∆(i, a11) =
f3(i, s)− hf4(i, s)

(µ22 − µ11)
(
µs+1

22 − µs+1
11 + (µ12 + µ21)(µs22 − µs11) + µ12µ21(µs−1

22 − µs−1
11 )

) .
The denominator of this expression is always positive. We observe that f3(i, s) ≥ 0 for

i ∈ {1, . . . , s − 1}. If f4(i, s) ≤ 0, then ∆(i, a11) ≥ 0. If f4(i, s) > 0, we will prove that

∆(i, a11) ≥ 0 by showing that h ≤ f3(i,s)
f4(i,s)

(note that we do not have to show this when

f4(i, s) ≤ 0). Extensive algebra together with Lemma 3.3 shows that for i ∈ {1, . . . , s− 1},
we have

f1(i, s)

f2(i, s)
≤ f3(i, s)

f4(i, s)
⇔ (µ22 − µ11)

(
µs+1

22 − µs+1
11 + (µ12 + µ21)(µs22 − µs11) + µ12µ21(µs−1

22 − µs−1
11 )

)
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×
[
(µ11 + µ21)(µ12 + µ22)

s−1∑
k=i

i−1∑
j=1

(k − j)(µ11

µ22

)k+j−1

+(s− i)(µ11 + µ21)µs−1
11 µ22

s−1∑
k=i

(
µ11

µ22

)k

+(µ12 + µ22)µs−1
22

(
µ11

s−1∑
k=i

k(
µ11

µ22

)k−1 + µ21

s−1∑
k=i

(k − i)(µ11

µ22

)k−1
)]
≥ 0. (11)

We observe that the inequality (11) holds trivially. Our assumption that h ≤ f1(s−1,s)
f2(s−1,s)

together with Lemma 3.4 implies that h ≤ f1(i,s)
f2(i,s)

for i ∈ {1, . . . , s − 1}. Consequently, the

inequality (11) shows that h ≤ f3(i,s)
f4(i,s)

and hence ∆(i, a11) ≥ 0 for i ∈ {1, . . . , s− 1}.
Similarly, we can show that

∆(i, a21) =
f5(i, s)− hf6(i, s)

(µ22 − µ11)
(
µs+1

22 − µs+1
11 + (µ12 + µ21)(µs22 − µs11) + µ12µ21(µs−1

22 − µs−1
11 )

) .
The denominator of this expression is always positive. We see that f5(i, s) ≥ 0 for i ∈
{1, . . . , s − 1}. If f6(i, s) ≤ 0, then ∆(i, a21) ≥ 0. If f6(i, s) > 0, we will prove that

∆(i, a21) ≥ 0 by showing that h ≤ f5(i,s)
f6(i,s)

(note that we do not have to show this when

f6(i, s) ≤ 0). Extensive algebra together with Lemma 3.3 shows that for i ∈ {1, . . . , s− 1},
we have

f1(i, s)

f2(i, s)
≤ f5(i, s)

f6(i, s)
⇔ (µ22 − µ11)

µ11

(
µs+1

22 − µs+1
11 + (µ12 + µ21)(µs22 − µs11) + µ12µ21(µs−1

22 − µs−1
11 )

)
×
[
(µ11 + µ21)(µ12 + µ22)

s−1∑
k=i

i−1∑
j=1

(k − j)(µ11

µ22

)k+j−1

+(s− i)(µ11 + µ21)µs−1
11 µ22(µi22 − µi11)

i−1∑
k=0

(
µ11

µ22

)k

+(µ12 + µ22)µs−1
22

(
µ11

s−1∑
k=i

k(
µ11

µ22

)k−1 + µ21

s−1∑
k=i

(k − i)(µ11

µ22

)k−1
)]
≥ 0. (12)

We observe that the inequality (12) holds trivially. Our assumption that h ≤ f1(s−1,s)
f2(s−1,s)

together with Lemma 3.4 implies that h ≤ f1(i,s)
f2(i,s)

for i ∈ {1, . . . , s − 1}. Consequently, the

inequality (12) shows that h ≤ f5(i,s)
f6(i,s)

and hence ∆(i, a21) ≥ 0 for i ∈ {1, . . . , s− 1}.
Finally, some algebra shows that

∆(i, a22) =
f1(i, s)− hf2(i, s)

(µ22 − µ11)
(
µs+1

22 − µs+1
11 + (µ12 + µ21)(µs22 − µs11) + µ12µ21(µs−1

22 − µs−1
11 )

) .
The denominator of this expression is always positive, and our assumption that h ≤ f1(s−1,s)

f2(s−1,s)

together with Lemma 3.4 shows that ∆(i, a22) ≥ 0 for i ∈ {1, . . . , s− 1}.

26



For l ∈ IN+ and l ≥ s, let us define f ′j(l) for j ∈ {1, 2, 3, 4, 5} as follows:

f ′1(l) =
µs−2

22

µs−1
11

(µ22 − µ11)
[(
lµ12 + (l + 1)µ11

)
×
(
µ12µ21(µs−1

22 − µs−1
11 ) + (µ12 + µ21)(µs22 − µs11) + µs+1

22 − µs+1
11

)
−µs−2

22 (µ22 − µ11)(µ11 + µ12)(µ11 + µ21)
(
µ12

s−1∑
k=1

k(
µ11

µ22

)k−1 + µ22

s∑
k=1

k(
µ11

µ22

)k−1
)]
,

f ′2(l) = (µ11 + µ21)(µ11µ22 − µ12µ21)(µ22 − µ11)(µl−1
22 − µl−1

11 ),

f ′3(l) = (µ22 − µ11)
[(
l(µ12 + µ22) + (l + 1)(µ11 + µ21)

)
×
(
µ12µ21(µs−1

22 − µs−1
11 )

+(µ12 + µ21)(µs22 − µs11) + µs+1
22 − µs+1

11

)
− µs−2

22 (µ22 − µ11)(µ11 + µ21)(µ11 + µ12 + µ21 + µ22)

×
(
µ12

s−1∑
k=1

k(
µ11

µ22

)k−1 + µ22

s∑
k=1

k(
µ11

µ22

)k−1
)]
,

f ′4(l) = (µ11µ22 − µ12µ21)(µ22 − µ11)
(

(µl22 − µl11) + µ21(µl−1
22 − µl−1

11 )
)
,

f ′5(l) = (µ22 − µ11)
[(
lµ22 + (l + 1)µ21

)
×
(
µ12µ21(µs−1

22 − µs−1
11 ) + (µ12 + µ21)(µs22 − µs11) + µs+1

22 − µs+1
11

)
−µs−2

22 (µ22 − µ11)(µ11 + µ21)(µ21 + µ22)
(
µ12

s−1∑
k=1

k(
µ11

µ22

)k−1 + µ22

s∑
k=1

k(
µ11

µ22

)k−1
)]
.

Now, consider the states i ∈ {s, . . . , B + 1}, whenever this set is nonempty. Recall that

d0(i) = a22 for i ∈ {s, . . . , B + 1}. With some algebra we have

∆(i, a11) =
f ′2(s) + hf ′3(i)

(µ22 − µ11)(µ12 + µ22)
(
µs+1

22 − µs+1
11 + (µ12 + µ21)(µs22 − µs11) + µ12µ21(µs−1

22 − µs−1
11 )

) .
The denominator of this expression is nonnegative. We observe that f ′2(s) ≥ 0. Note that

f ′3(i) ≥ 0 is nondecreasing in i, hence we only need to show that ∆(s, a11) = f ′2(s)+hf ′3(s) ≥ 0

(which consequently implies that f ′2(s) + hf ′3(i) ≥ 0 for i ∈ {s, . . . , B + 1}). Some algebra

shows that

f ′3(s) = µs−2
22 (µ22 − µ11)2

[
µ22(µ12 + µ22)

(
(µ11 + µ21) + s(µ11 + µ21)(µ21 + µ22)

)
+(µ11 + µ21)

(
(µ12 + µ22)2

s−1∑
k=1

(s− k)(
µ11

µ22

)k−1 + µ12(µ11 + µ21)
s−1∑
k=1

(s+ 1− k)(
µ11

µ22

)k−1

+µ22(µ11 + µ21)
s∑

k=1

(s+ 1− k)(
µ11

µ22

)k−1
)]
.

It is clear that f ′3(s) ≥ 0. Hence we can conclude that ∆(s, a11) ≥ 0 and consequently

∆(i, a11) ≥ 0 for i ∈ {s, . . . , B + 1}.
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Similarly, we can show that

∆(i, a12) =
−f1(s, s+ 1) + hf ′1(i)

(µ22 − µ11)(µ12 + µ22)
(
µs+1

22 − µs+1
11 + (µ12 + µ21)(µs22 − µs11) + µ12µ21(µs−1

22 − µs−1
11 )

) .
Note that the denominator of this expression is always positive. We observe that f ′1(s) =

f2(s, s+ 1). Moreover, f ′1(i) is nonnegative (by Lemma 3.3) and nondecreasing in i. Hence,

it is sufficient to show that −f1(s, s+ 1) + hf ′1(s) = −f1(s, s+ 1) + hf2(s, s+ 1) ≥ 0 (which

consequently implies that −f1(s, s + 1) + hf ′1(i) ≥ 0 for i ∈ {s, . . . , B + 1}). This follows

since h > f1(s,s+1)
f2(s,s+1)

, and thus ∆(i, a22) ≥ 0 for i ∈ {s, . . . , B + 1}.
Finally, some algebra shows that

∆(i, a21) =
f ′4(s) + hf ′5(i)

(µ22 − µ11)(µ12 + µ22)
(
µs+1

22 − µs+1
11 + (µ12 + µ21)(µs22 − µs11) + µ12µ21(µs−1

22 − µs−1
11 )

) .
The denominator of this expression is nonnegative. We observe that f ′4(s) ≥ 0. Note that

f ′5(i) ≥ 0 is nondecreasing in i, hence we only need to show that ∆(s, a21) = f ′4(s)+hf ′5(s) ≥ 0

(which consequently implies that f ′4(s) + hf ′5(i) ≥ 0 for i ∈ {s, . . . , B + 1}). Some algebra

shows that

f ′5(s) = (µ22 − µ11)2
[
µ21

(
µs−1

11 (µ11 + µ21) + µs−1
22 (µ12 + µ22) + sµs−1

22 (µ12 + µ22)(µ21 + µ22)
)

+µs−1
22 (µ11 + µ21)(µ12 + µ22)

(
µ21

s−1∑
k=1

(s+ 1− k)(
µ11

µ22

)k−1 + µ22

s−1∑
k=1

(s− k)(
µ11

µ22

)k−1
)]
.

It is clear that f ′5(s) ≥ 0. Hence we can conclude that ∆(s, a21) ≥ 0 and consequently

∆(i, a21) ≥ 0 for i ∈ {s, . . . , B + 1}.
Note that any action that takes the process to one of the recurrent states can be used in

states {s+ 1, . . . , B + 2} because they are transient. The uniqueness of the optimal actions

in states {0, . . . , B + 2} when µ11µ22 > µ12µ21 and h 6= f1(s−1,s)
f2(s−1,s)

follows from the proof of

Theorem 3.1 of Andradóttir and Ayhan [5] and the discussion in Section 9.5.2 of Puterman

[33]. 2
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[24] E. Kırkızlar, S. Andradóttir, and H. Ayhan. Robustness of efficient server assignment

policies to service time distributions in finite-buffered lines. Naval Research Logistics,

57:563–582, 2010.
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