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Abstract

We study the optimal dynamic scheduling of different requests of service in a multiclass
stochastic fluid model that is motivated by recent and emerging computing paradigms for In-
ternet services and applications. In particular, our focus is on environments with specific per-
formance guarantees for each class under a profit model in which revenues are gained when
performance guarantees are satisfied and penalties are incurred otherwise. Within the context
of the corresponding fluid model, we investigate the dynamic scheduling of different classes of
service under conditions where the workload of certain classes may be overloaded for a tran-
sient period of time. Specifically, we consider the case with two fluid classes and a single server
whose capacity can be shared arbitrarily among the two classes. We assume that the class 1
arrival rate varies with time and the class 1 fluid can more efficiently reduce the holding cost.
Under these assumptions, we characterize the optimal server allocation policy that minimizes
the holding cost in the fluid model when the arrival rate function for class 1 is known. Using
the insights gained from this deterministic case, we study the stochastic fluid system when the
arrival rate function for class 1 is random and develop various policies that are optimal or near
optimal under various conditions. In particular, we consider two different types of heavy traffic
regimes and prove that our proposed policies are strongly asymptotically optimal. Numerical
examples are also provided to demonstrate further that these policies yield good results in terms
of minimizing the expected holding cost.

Keywords: Stochastic fluid model, transient overload, e-commerce, quality-of-service, service-
level-agreement

1 Introduction

Recent advances in Internet services and other emerging applications have created new comput-
ing and networking paradigms in which a set of e-commerce businesses contract with a common
hosting provider of Internet applications and services for their respective customers. In such an
environment, the hosting service provider needs to meet a diverse set of requirements of the var-
ious e-commerce businesses and customers. To address these diverse requirements and leverage
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potential economies of scale, the hosting service provider will often deploy a cluster of servers to
effectively share the computing and networking resources required to support the desired Internet
applications and services. A number of computer industry companies such as HP, IBM and Intel
are already providing such hosting services and it appears that more companies will be doing so in
the future.

To differentiate the diverse requirements of e-commerce businesses and customers, it is necessary
to introduce the notion of different service classes. These service classes typically have distinct levels
of importance to the hosting service provider, the businesses and their customers. Moreover, many
of these service classes require specific Quality-of-Service (QoS) performance guarantees; failures
to deliver such levels of QoS can have a significant impact on the e-commerce businesses and
customers. For example, customers may easily lose patience and discontinue using the service if
its responsiveness is perceived to be too long. Hence, as part of the contract between the service
provider and each business, the hosting service provider agrees to guarantee a certain level of
QoS for each class of service, and in return each e-commerce business agrees to pay the service
provider for satisfying these QoS performance guarantees. Such Service-Level-Agreements (SLA)
are included in service contracts between each business and the service provider, and they specify
both performance targets or QoS guarantees, and financial consequences for meeting or failing to
meet these targets. A service level agreement may also depend on the anticipated level of per-class
workload from the customers of the business.

Thus, it is critical for the hosting service provider to dynamically allocate its server resources
to optimize performance and profit measures in cluster-based computing environments with SLA
contracts containing QoS performance guarantees. This is also an important issue for the continued
growth and success of Internet services and applications. Therefore, in this paper we focus on a
particularly important class of dynamic scheduling problems that arise in these computing environ-
ments. However, it is important to note that while our analysis and results are motivated by such
environments, they apply more generally to a wide variety of emerging computing environments
with SLA-based QoS performance guarantees.

Previous studies that address QoS performance guarantees have focused mostly on throughput
or mean response time measures. However, a crucial issue for Internet applications and services
concerns the per-request efficiency with which the differentiated services are handled, since delays
experienced by customers can result in lost revenue and customers for a business as described
above. Furthermore, more standard performance metrics such as throughput and mean response
time may not fully capture such QoS performance guarantees. In order to address these issues,
we consider a general class of SLAs in which a threshold is defined for each class of service such
that the hosting service provider gains revenues when the QoS level experienced by the class stays
at or below the threshold, but the service provider pays penalties to the corresponding businesses
when this threshold is exceeded. Then the optimal control problem focuses on allocating server
resources in order to maximize the profit of hosting the collection of e-commerce sites under these
SLA constraints.

Another big challenge of the problem concerns the diverse workloads of different e-commerce
businesses and their variation over time. It is common in the computing environments of interest
to have the workload of certain classes in each e-commerce site alternate between a period during
which the arriving workload exceeds the allocated capacity, and a period during which the arriving
workload is less than this capacity, even though the average load is within the allocated capacity;
e.g., see [2]. These periods of transient overload can have a significant effect on the performance
experienced by the different classes of service. This in turn can have a critical impact on the
penalties that the hosting service provider is required to pay each e-commerce business according
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to the SLA contract between them. Hence, it is crucial to include these important workload
characteristics in the analysis of the optimal control problem.

Our problem falls within the general class of optimal resource control problems with the fore-
going non-conventional performance metrics and workload characteristics. Several researchers have
studied the issue of workloads with transient overload, but their studies have focused on single-
class workloads and specific scheduling strategies, such as admission control (e.g., [8]) and direct
modifications to the Internet server scheduling mechanism (e.g., [2, 5]). On the contrary, our focus
in this paper is on the optimal dynamic scheduling of a multiclass system with transient overload.
Furthermore, little has been done to consider the issue of maximizing profit in these computing
paradigms under non-conventional performance metrics. The primary exception is the study in [11],
which develops queueing-theoretic bounds and approximations to formulate the resource control
optimization problem and then develops efficient algorithms to compute the optimal solution. This
study is the one that is most relevant to our research, but it differs from the present study in several
important aspects. Our focus in this paper is on computing the optimal dynamic scheduling policy
and gaining insights into its fundamental properties, as opposed to computing the steady-state
solution, and to do so under a workload with transient overload, which is not considered in [11].

Our primary concern in this paper is to investigate the preceding optimal server resource control
problem as a dynamic scheduling problem. Our motivation behind considering a fixed time horizon
is that in reality many web sites exhibit [12] regular daily access patterns, typically there is one
single peak period each day, the low period load is far below the system capacity so that the
system usually starts empty the next day. Distributed architectures with separate machines for
different geographical locations are also common in practice in order to improve the response time
for accessing data over the Internet. This again validates the single period model. Hence, the
traffic from the previous period does not have an effect on the next period. Our approach is based
on formulating the problem as a multiclass stochastic fluid model and employing optimal control
theory [13, 14] to search for the optimal control policy that maximizes the total revenue over a
fixed time horizon. Even though recent studies of a similar spirit for different dynamic scheduling
problems include [1, 3, 6, 17], to the best our knowledge, no optimal scheduling policy is known for
the general problem considered herein. As mentioned above, we focus on minimizing the penalty of
the hosting service provider by dynamically scheduling its server resources among the fluid classes
in a system that can be overloaded for a transient period. In order to capture the QoS performance
guarantees in the SLA contracts, we introduce a threshold value for each fluid class such that a
holding cost is incurred only if the amount of fluid of a certain class exceeds its threshold value.
Preliminary results on this problem can be found in an earlier work [4]. In this paper, we consider
the specific case of two fluid classes and a single server whose capacity can be shared arbitrarily
among the two classes. We assume that the class 1 arrival rate changes with time and the class 1
fluid can more efficiently reduce the holding cost and develop the optimal server resource allocation
policy that minimizes the holding cost in the corresponding fluid model when the arrival rate
function for class 1 is known. We then study the stochastic fluid system when the arrival rate
function for class 1 is random and propose various policies that are optimal or near optimal under
various conditions. In particular, we consider two different types of heavy traffic regimes and prove
that our proposed policies are strongly asymptotically optimal in the following sense: the difference
between its performance and the optimality is bounded from above by a constant even as the optimal
value itself goes to infinity. This notion of strong asymptotic optimality has also been considered
in [15, 18], as a measure to evaluate the closeness to optimality of approximating control policies.
Numerical examples are also provided to demonstrate further that these policies yield good results
in terms of minimizing the expected holding cost.
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The outline of the paper is as follows. We define our multiclass fluid model in §2. Deterministic
instance of the model is analyzed in §3 where we provide the optimal control policy. §4 and §5
consider the stochastic instance of the model. In §4, we present a discrete review policy and show
that it is asymptotically optimal as the expected length of the high period tends to infinity. Other
policies that are asymptotically optimal are further discussed in §5. Our concluding remarks are
provided in §7. Throughout, proofs are relegated to the Appendix.

2 The stochastic fluid model

This paper focuses on the following stochastic fluid system that serves two classes of fluid. Each
class fluid continuously arrives at its buffer whose capacity is assumed to be infinite. Both classes
are served by a single server whose service capacity can be shared arbitrarily among the two classes.
When the server devotes full effort to class i, it processes class i fluid at rate µi, i = 1, 2.

Class 2 fluid arrives at a constant rate λ2 throughout the time horizon under consideration.
Class 1 fluid has a high arrival rate λh

1 during the first part of the time interval and a low arrival
rate λl

1 in the rest of the time interval. Naturally, λl
1 ≤ λh

1 . The durations of the first and second
time intervals are denoted by H and L, respectively. Both H and L are random. Some of their
statistics like mean remaining life times are assumed to be known. These assumptions will be
spelled in more precise terms later in the paper. We call the time interval [0,H) the high load
period and the time interval [H,H + L) the low load period.

We use Zi(t) to denote the fluid level in class i at time t, and Ti(t) to denote the cumulative
amount of time in [0, t] that the server spends on class i fluid, i = 1, 2. The dynamics of the fluid
model is given by the following equations

Zi(t) = Zi(0) +
∫ t

0
λi(s) ds− µiTi(t), t ∈ [0,H + L), (1)

Ti(0) = 0, Ti(t) is a nondecreasing function of t, (2)
t− (T1(t) + T2(t)) is a nondecreasing function of t, (3)

where λi(s) is the arrival rate to class i at time s. Since the class 1 arrival rate function λ1(·) is
random, the fluid level process Z is random as well. The allocation process T = {(T1(t), T2(t)), t ≥
0} reflects how the server spends its service capacity among two classes and it is called a scheduling
or a service policy.

Let hi > 0 and θi ≥ 0 be constants, i = 1, 2. For a real number x, define x+ = max(x, 0).
Consider the integral ∫ H+L

0

2∑

i=1

hi (Zi(t)− θi)
+ dt (4)

which is called the total cost of the system. Then one interprets hi as the holding cost per unit
time when the fluid level in class i exceeds θi. If the fluid level in class i is below θi, the fluid does
not accumulate cost for the system. Clearly, the cost depends on initial fluid level z = Z(0), and
allocation T employed. Since H and L are random variables, the cost is also random. The focus
of this paper is to find an allocation T to minimize the expected total cost for each initial point z.
We assume that working on class 1 can more efficiently reduce holding costs. Namely,

h1µ1 > h2µ2. (5)
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If the assumption in (5) is violated, the optimal policy is a generalization of the well-known cµ rule
(see for example, Smith [16], Klimov [9] and Green and Stidham [7]). Details of such an optimal
policy are discussed in Appendix A.

When θi = 0 for i = 1, 2, the optimal policy is again given by the cµ-rule. That is the server
gives priority to class i with highest hiµi. To the best our knowledge, the optimal policy for our
general problem is not known. In the special case when H and L are deterministic, and are known
at the beginning of the time window, we will present an optimal policy. Using this policy, we
will construct heuristic policies, known as discrete review policies, for controlling the system. We
will present numerical experiments showing that these policies perform well. We will establish
asymptotic results guaranteeing good performance of these policies in certain parameter regions.
We will also identify other policies that are asymptotically optimal in certain parameter regions.

For any feasible allocation T , it follows that T (t) is Lipschitz continuous in t. Thus, T is
absolutely continuous and has derivatives almost everywhere. Therefore, specifying an allocation
T is equivalent to specifying its derivative Ṫ (t) for almost every t in (0,H + L). (For a function
f , ḟ(t) denotes the derivative of f at time t. Whenever ḟ(t) is used, the derivative of f at time t
is assumed to exist.) Clearly, any feasible allocation T should be non-anticipating. Namely, Ṫ (t)
depends only on the information available up to time t.

For future reference, we also define the traffic intensities of the system. The system load per
unit of time contributed by class 1 fluid is ρh

1 = λh
1/µ1 for the high load period and ρl

1 = λl
1/µ1 for

the low load period. The system load per unit of time contributed by class 2 fluid is constant and
given by ρ2 = λ2/µ2 > 0. The overall system load is ρh = ρh

1 + ρ2 for the high load period and
ρl = ρl

1 + ρ2 for the low load period. When ρh > 1 and ρl < 1, the total system work increases
in the high load period and decreases in the low load period. In this case, the high load period is
also called the overload period. Thus, when ρh > 1 and ρl < 1 the system experiences an overload
period followed by an under-load period, a phenomenon known as transient overload in literature;
see, for example, [2]. Although understanding transient overload is the primary motivation of this
paper, except explicitly stated otherwise, we do not assume ρh > 1.

3 Optimal policies in the deterministic case

In this section, we present the optimal policy when the lengths of the high period and the low
period are known. Thus, H and L are deterministic quantities. The optimality of this policy is
proven in Appendix B. For convenience, we first define the following policy.

Definition 1. The following policy referred as the Low-period-policy is implemented in the low
period, i.e, when H < t ≤ H + L.

• If Z1(t) > θ1, full capacity is given to class 1, i.e. Ṫ1(t) = 1, Ṫ2(t) = 0.

• If Z1(t) = θ1, Z2(t) > θ2, class 1 fluid is kept at its threshold value θ1, while the remaining
capacity is used to serve class 2, i.e. Ṫ1(t) = ρl

1, Ṫ2(t) = 1− ρl
1.

• If Z1(t) < θ1, Z2(t) > θ2, then full capacity is given to class 2, i.e. Ṫ1(t) = 0, Ṫ2(t) = 1.

• If Z1(t) ≤ θ1, Z2(t) ≤ θ2, then the policy is not unique and Ṫ1(t) and Ṫ2(t) can be chosen
from any solution satisfying Ṫ1(t) ≥ ρl

1, Ṫ2(t) ≥ ρ2 and Ṫ1(t) + Ṫ2(t) ≤ 1.

The optimal policy depends on the system load. In the next three subsections, we will describe
the optimal policy under all load conditions. In the first case, ρh

1 > 1, ρl ≤ 1; in the second case,
ρh > 1, ρh

1 ≤ 1, ρl ≤ 1; and in the last case, ρh ≤ 1, ρl ≤ 1.
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3.1 The case ρh
1 > 1, ρl ≤ 1

Suppose that ρh
1 > 1 and ρl ≤ 1. Then the optimal policy has the following structure:

(OPT)

∀t ∈ (0, s1) : Ṫ2(t) = 1, Ṫ1(t) = 0;
∀t ∈ (s1, s2) : Ṫ2(t) = u2, Ṫ1(t) = u1, u1 + u2 = 1;
∀t ∈ (s2, H) : Ṫ2(t) = 0, Ṫ1(t) = 1;

∀t ∈ (H, H + L) : Low-period-policy.

Thus, the optimal policy gives fixed priority to class 2 in the interval 0 to s1, employs processor
sharing in the interval s1 to s2 and gives fixed priority to class 1 in the interval s2 to H. Specific
values of s1, s2, u1, and u2 depend on the initial fluid levels and the length of the high and the low
periods. Before discussing the computation of s1, s2, u1 and u2 for all possible cases, we introduce
the notation used in our developments:

d1 = θ1 − Z1(0), ψ1 = d1/µ1

ρh
1−1

, ψ̃1 =
d1/µ1

ρh
1

, (6)

d2 = θ2 − Z2(0), ψ2 = d2/µ2

ρ2
, ψ̃2 =

−d2/µ2

1− ρ2
. (7)

The quantities ψ1, ψ2, ψ̃1 and ψ̃2 have the following interpretations. Quantity ψ1 is the time that
class 1 increases to its threshold θ1 under the policy that gives fixed priority to class 1 if the initial
fluid level of class 1 is below θ1 and if the high period is long enough. Quantity ψ̃1 is the time class
1 increases to its threshold θ1 under the policy that gives fixed priority to class 2 if the initial fluid
level of class 1 is below θ1 and if the high period is long enough. Quantity ψ2 is the time class 2
increases to its threshold θ2 under the policy that gives fixed priority to class 1 if the initial fluid
level of class 2 is below θ2. Finally, ψ̃2 is the time class 2 decreases to its threshold θ2 under the
policy that gives fixed priority to class 2 if the initial fluid level of class 2 is above θ2. Clearly, d1

and d2 denote the initial deviation of the fluid levels from the desired thresholds for classes 1 and
2, respectively.

We also define

a1 =
d1/µ1 + d2/µ2

ρh
1 + ρ2 − 1

, a2 =
1− ηξ

1− η
ψ+

1 −
η(1− ξ)
1− η

ψ+
2 , (8)

B =
1− ηξ

1− η
ψ+

1 −
(1− ρl

1)[1 + η(ρh
1 − 1)] + (1− η)(ρh

1 − 1)
(ρh

1 − 1)(ρh
1 − ρl

1)(1− η)
ψ̃+

2 , (9)

where

ξ =
(ρh

1 − 1)
(ρh

1 − ρl
1)

and η =
h2µ2

h1µ1
.

Quantities a1, a2 and B have the following interpretations. Quantity a1 is the critical value such
that if the high period is longer than a1 then under any policy either class 1 fluid level will exceed
its threshold θ1 or class 2 fluid level will exceed its threshold θ2. Quantity a2 is the critical value
such that if the high period is longer than a2 and the low period is long enough to reduce the fluid
level of class 1 to its threshold θ1 then fixed priority to class 1 is the optimal policy in the high
period. Finally, B is the critical value such that if the high period is longer than B and the low
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period is long enough to reduce the fluid level of class 1 to its threshold θ1 then the optimal policy
never uses processor sharing in the high period. Finally, for the sake of simplicity, we define

γ1 = η(ρh
1−1)(ρh

1+ρ2−1)

(1−ρl
1)[ρ2+η(ρh

1−1)]+(1−η)ρ2(ρh
1−1)

, γ2 = ηρh
1 (ρh

1−1)

(1−ρl
1)[1+η(ρh

1−1)]+(1−η)(ρh
1−1)

, γ3 = ρh
1−1

1−ρl
1
.

We now provide a more detailed description of the optimal policy by considering all possible
cases of the initial load. As can be seen below, Cases 1 and 3 are simple and have no subcases (i.e
the policy is independent of the length of H and L). However, Cases 2 and 4 have many subcases.
Hence, for the sake of clarity, we provide pictorial representations of Cases 2 and 4 in Figures 1
to 3. In particular, we present the corresponding case for each value of H and L and demonstrate
that we consider all possible values for the length of the high and low periods. Depending on the
relationship between ψ̃1 and ψ̃2, we provide the corresponding pictorial representation of Case 2,
respectively in Figures 1 and 2. Figure 3 is the pictorial representation of Case 4.

• Case 1: Z1(0) ≥ θ1. In this case, the optimal policy is given by (OPT) with s1 = s2 = 0. Note
that when setting s1 = s2 = 0, the (OPT) policy gives fixed priority to class 1 throughout
the high period.

• Case 2: Z1(0) < θ1, Z2(0) > θ2. Computation of s1, s2, u1 and u2 depends on the length of
the high and the low periods.

– Case 2.1: If

a1 ≤ H ≤ B, L ≥ γ1(H − a1), (10)

then s1, s2, u1 and u2 are computed by solving

Z2(0) + (λ2 − µ2)s1 = θ2, (11)
Z1(0) + λh

1s1 = Z1(s1), (12)
Z2(s1) + (λ2 − µ2u2)(s2 − s1) = θ2, (13)
Z1(s1) + (λh

1 − µ1u1)(s2 − s1) = Z1(s2), (14)
u1 + u2 = 1, (15)
Z1(s2) + (λh

1 − µ1)(t1 − s2) = θ1, (16)
Z1(t1) + (λh

1 − µ1)(H − t1) = Z1(H), (17)
Z1(H) + (λl

1 − µ1)(t2 −H) = θ1, (18)
µ1h1(t2 − t1) = µ2h2(t2 − s2). (19)

Note that equations (11) to (18) describe the evolution of the fluid levels of class 1 and
class 2 from time 0 to t2 under the optimal policy, where t2 represents the time epoch
at which the class 1 fluid level in the low period reaches its threshold value as indicated
in equation (18). In particular, equations (11) and (12) describe the evolution of fluid
levels from time 0 to s1 when higher priority is given to class 2. At s1, class 2 fluid level
is reduced to its threshold θ2 from above. Equations (13) to (15) describe the evolution
of the fluid levels from s1 to s2 under the processor sharing policy. In [s1, s2], class 2 fluid
level remains at its threshold θ2. Equations (16) to (18) describe the evolution of class 1
fluid level from s2 to t2 under the policy that gives higher priority to class 1. Equation
(16) implies that at time t1, class 1 fluid level increases to its threshold θ1. Equation
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(17) records the class 1 fluid level at the end of the high period. Equation (19) ensures
that the profit gained by serving class 1 is equal to the profit lost by not serving class 2.
Under the conditions given in (10), it will be shown in Appendix B that equations (11)
to (19) have a unique solution with 0 ≤ s1 ≤ s2 ≤ t1 ≤ H ≤ t2 ≤ H +L and u1, u2 ≥ 0.

– Case 2.2: If

L ≤ γ1(H − a1), a1 ≤ H, H + L ≤ ψ̃1 +
1 + η(ρh

1 − 1)
(1− η)(ρh

1 − 1)
(ψ̃1 − ψ̃2),

then we set t2 = H +L and compute s1, s2, u1, u2 and t1 by solving equations (11)-(17)
and (19).

– Case 2.3: If

max{B, ψ̃1} ≤ H ≤ a2, L ≥ γ2(H − ψ̃1),

then we set s1 = s2 and solve the equations (12) and (16)–(19) for s2, t1 and t2.

– Case 2.4: If

L ≤ γ2(H − ψ̃1), max
{

ψ̃1, ψ̃1 +
1 + η(ρh

1 − 1)
(1− η)(ρh

1 − 1)
(ψ̃1 − ψ̃2)

}
≤ H + L ≤ ψ1

1− η
,

then we set s1 = s2 and t2 = H + L and compute s2 and t1, by solving equations (12),
(16)-(17) and (19).

– Case 2.5: If H ≤ max{a1, ψ̃1}, then the optimal policy is given by (OPT) with s1 =
min{ψ̃2, H}, s2 = H, u2 = ρ2, and u1 = 1− ρ2.

– Case 2.6: If H ≥ a2 and H +L ≥ (1−η)−1ψ1, then the optimal policy is given by (OPT)
with s1 = s2 = 0.

• Case 3: Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≤ ψ2. In this case, the optimal policy is given by (OPT)
with s1 = s2 = 0.

• Case 4: Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≥ ψ2. In this case, s1 = 0. However, the computation of
s2, u1 and u2 depends on the lengths of the high and the low periods as discussed below.

– Case 4.1: If a1 ≤ H ≤ a2, L ≥ γ1(H − a1), then s2, u1, u2, t1 and t2 are computed by
solving equations (13)–(19) with s1 = 0.

– Case 4.2: If

H ≥ a1, H + L ≤ ψ1 +
η

1− η
(ψ1 − ψ2), L ≤ γ1(H − a1),

then we set t2 = H + L, and solve the equations (13)-(17) and (19) with s1 = 0 to
compute s2, u1, u2 and t1.

– Case 4.3: If H ≤ a1, then the optimal policy is given by (OPT) upon setting s1 = 0,
s2 = H, selecting u2 as any value in the interval [(ρ2−d2(µ2H)−1)+, d1(µ1H)−1−(ρh

1−1)]
and setting u1 = 1− u2.

– Case 4.4: If H ≥ a2, H +L > ψ1 + η(1− η)−1(ψ1−ψ2), then the optimal policy is given
by (OPT) with s1 = s2 = 0.
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1−1)

(1−η)(ρh
1−1)

(ψ̃1 − ψ̃2),

l23 : H + L = ψ1

1−η .

�������������
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�������������
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ψ̃1

l23

a2

L

H

Case 2.3Case 2.5 Case 2.6

l12
Case 2.4

Figure 2: Pictorial representation for the case Z1(0) ≤ θ1, Z2(0) ≥ θ2 and ψ̃1 ≤ ψ̃2, where l12 : L =
γ2(H − ψ̃1), l13 : L = γ3(H − ψ1), l23 : H + L = ψ1

1−η .

As mentioned above, we prove the optimality of this policy in Appendix B. However, in order
to give the reader an intuitive explanation, we consider one of the cases above, for example Case
3. We claim that if Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≤ ψ2, then the optimal policy is given by (OPT)
with s1 = s2 = 0. In order to see this, first consider the case H ≥ ψ1. Under the policy with
s1 = s2 = 0, class 1 fluid level reaches its threshold θ1 at time ψ1, and class 2 fluid level reaches its
threshold θ2 at time ψ2. Note that for any t ≥ ψ1, we have

µ1h1(t− ψ1) ≥ µ2h2(t− ψ2),

since ψ2 ≥ ψ1 ≥ 0 and µ1h1 > µ2h2. Thus, it is more profitable to give fixed priority to class 1
until the class 1 fluid level decreases to its threshold in the low period. If H < ψ1, then again the
optimal policy is given by (OPT) upon setting s1 = s2 = 0 (i.e. giving fixed priority to class 1 in
the high period), which yields a total cost of 0.

The following corollary follows from the description of the optimal policy.

Corollary 2. If
(i) Z1(0) ≥ θ1 or,
(ii) Z1(0) ≤ θ1, Z1(0) ≤ θ2 and 0 ≤ ψ1 ≤ ψ2,
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Case 4.4

a1 a2

l23

H

L

l11

Case 4.2

Case 4.3 Case 4.1

Figure 3: Pictorial representation for the case Z1(0) ≤ θ1, Z2(0) ≤ θ2 and ψ2 ≤ ψ1, where l11 : L =
γ1(H − a1), l13 : L = γ3(H − ψ1), l23 : H + L = ψ1 + η

1−η (ψ1 − ψ2).

then the policy with

∀t ∈ (0,H) Ṫ1(t) = 1, Ṫ2(t) = 0;
∀t ∈ (H,H + L) Low-period-policy

is optimal for all H ≥ 0 and L ≥ 0.

Note that if the initial fluid levels satisfy the conditions in (i) or (ii), the policy described in
Corollary 2 is optimal even when the length of the high period and the length of the low period
are random variables.

3.2 The case ρh > 1, ρh
1 ≤ 1, ρl ≤ 1.

In this case the optimal policy has the following structure:

∀t ∈ (0, s1) : Ṫ2(t) = 1, Ṫ1(t) = 0;

∀t ∈ (s1, s2) : Ṫ2(t) = ρ2 − (θ2 − Z2(s1))/µ2

a1(s1)
, Ṫ1(t) = 1− Ṫ2(t);

∀t ∈ (s2, s3) : Ṫ2(t) = 0, Ṫ1(t) = 1;
∀t ∈ (s3, H) : Ṫ2(t) = 1− ρh

1 , Ṫ1(t) = ρh
1 ;

∀t ∈ (H, H + L) : Low-period-policy;

where
a1(s1) =

(θ1 − Z1(s1))/µ1 + (θ2 − Z2(s1))/µ2

ρh
1 + ρ2 − 1

,

and s1, s2, s3 are given as

s1 = max{t : 0 ≤ t ≤ H,Z2(t) ≥ θ2, Z1(t) ≤ θ1},
s2 = max{t : s1 ≤ t ≤ H,Z1(t) ≤ θ1},
s3 = max{t : s2 ≤ t ≤ H,Z1(t) ≥ θ1}.

with the convention that max{t : x ≤ t ≤ y, t ∈ A} = x if A = ∅.
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3.3 The case ρh ≤ 1, ρl ≤ 1

In this case the optimal policy has the following structure:

∀t ∈ (0, H) Low-period-policy except replace ρl
1 by ρh

1 ;
∀t ∈ (H, H + L) Low-period-policy.

Remark 3. The policies described in Sections 3.2 and 3.3 can be implemented without knowing the
length of the high and the low periods. Hence, these policies are also optimal when the length of
the high period and the length of the low period are random variables.

4 Discrete review policies in the stochastic case

Throughout the rest of this paper, we shall consider the stochastic instance of the fluid model
described in Section 2. Recall that the system starts with a high period, followed by a low period.
The duration of the high period H, and the duration of the low period L are independent random
variables. For this stochastic fluid control problem, the optimal policy when ρh > 1, ρh

1 ≤ 1, ρl ≤ 1
is given in Section 3.2 and the optimal policy when ρh ≤ 1, ρl ≤ 1 is given in Section 3.3 (see
Remark 3). We therefore focus only on the case when

ρh
1 > 1, ρl ≤ 1.

To specify the control policy in this case, we shall always consider the following four subcases which
were first introduced in Section 3 and are summarized below:

Case 1: Z1(0) ≥ θ1, (20)
Case 2: Z1(0) < θ1, Z2(0) > θ2, (21)
Case 3: Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≤ ψ2, (22)
Case 4: Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≥ ψ2. (23)

In this section, we present a discrete review policy that is asymptotically optimal as the expected
length of the high period tends to infinity. Under our discrete review policy, the state of the system
is observed at intervals of length τ which is a predetermined positive number. Note that no
assumptions are imposed on τ . Given τ , the distribution of the high period and the mean of the
low period, the discrete review policy is implemented as follows. Let H0 and L0 denote the actual
values of the high period and the low period respectively. The state of the system is observed at
times t = 0, τ, 2τ, . . . ,Mτ , where

M = min{n ∈ IN : nτ ≥ H0}.
Note that we do not assume that we know H0 initially. We assume that the system can detect the
end of the high period by observing a sudden drop in the arrival rate of class 1 fluid. At each time
t, we observe the fluid level of both classes, i.e., Z1(t) and Z2(t). We then predict the remaining
high period H̃(t) and the low period L̃(t) using one of the methods described below. If t < Mτ ,
we implement the policy described in Section 3 from t to t + τ using H̃(t) as the length of the
high period, L̃(t) as the length of the low period, and Z1(t) and Z2(t) as the initial fluid levels. If
t = Mτ , we implement the Low-period-policy from t until the end of the low period.

At time t, we either set

H̃(t) = E[H|H > t]− t, (24)
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or

H̃(t) = min{x ≥ 0 : P(H > x + t|H > t) = p}, (25)

where p will be specified later. Note that in (24) remaining high period is estimated by its expected
value, and in (25) remaining high period is set equal to x which guarantees that the probability
that the remaining high period is larger than x is p. While implementing the discrete review policy
in the numerical examples of Section 6, we use both of these methods to estimate the remaining
high period and we set p = 0.25, 0.5 and 0.75. On the other hand, the remaining low period is
always set equal to its mean. Hence, L̃(t) = E[L].

We now show that our discrete review policy is asymptotically optimal as the expected length of
the high period tends to infinity. Given the actual values of the high and low periods, let c(H0, L0)
be the holding cost under the optimal policy described in Section 3. The closed form expression
for c(H0, L0) is given in Appendix C. Similarly, let cDR(H0, L0) denote the holding cost under our
discrete review policy when the length of the high period is H0 and the length of the low period is
L0.

Proposition 4. There exist D > 0 and β1 ≥ 0 (which depend on the arrival rates, service rates,
initial fluid levels, threshold values and holding costs per unit time) such that if

H̃(0) ≥ D,

then the discrete review policy is equivalent to giving fixed priority to class 1 in the high period, and
we have

cDR(H0, L0)− c(H0, L0) ≤ β1 (26)

for all H0 ≥ 0 and L0 ≥ 0.

Proof. We provide the proof for the discrete review policy where H̃(t) is calculated based on the
method given in (24). The proof for the discrete review policy implemented with the method given
in (25) is similar.

With a slight abuse of notation, we use di(t) and ψi(t), i = 1, 2 to denote the quantities defined
in (6) and (7) at time t when fluid levels are Zi(t), i = 1, 2. Similarly, let ai(t), i = 1, 2 denote the
corresponding quantities given in (8) at time t. Hence, di(0) = di, ψi(0) = ψi and ai(0) = ai for
i = 1, 2. Let

D = max
{

a2(0), ψ1(0) +
η

1− η
(ψ1(0)− ψ2(0))

}
. (27)

We first show by induction that for all 0 ≤ n ≤ M − 1, the discrete review policy sets Ṫ1(t) =
1, Ṫ2(t) = 0 for all t ∈ [nτ, (n + 1)τ). Hence the discrete review policy is equivalent to giving fixed
priority to class 1 in the high period [0,H0).

First consider t = 0. Note that for Case 1 and Case 3, it follows immediately from Corollary
2 that the discrete review policy gives fixed priority to class 1, i.e. Ṫ1(t) = 1, Ṫ2(t) = 0 for all
t ∈ [0, τ).

For Case 2, note that ψ2 = ψ2(0) ≤ 0, then D ≥ a2 and D ≥ ψ1 + η(1− η)−1ψ1 = (1− η)−1ψ1.
Hence, H̃(t) ≥ D (where D is given in (27)) which implies that the condition of Case 2.6 in Section
3.1 is satisfied, where the discrete review policy gives fixed priority to class 1 in the interval [0, τ).

For Case 4, H̃(t) ≥ D (where D is given in (27)) which implies that the condition of Case 4.4
in Section (3.1) is satisfied, where the discrete review policy gives fixed priority to class 1 in [0, τ).
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Therefore the claim is true for n = 0. Now assume that under the discrete review policy fixed
priority is given to class 1 until t = nτ for 1 ≤ n ≤ M − 1. Then the fluid levels of the two classes
at time t = nτ are Z1(nτ) = Z1(0) + nτ(λh

1 − µ1), and Z2(nτ) = Z2(0) + nτλ2, respectively. It is
easily checked from (6),(7) and (8) that

ψ1(nτ) = ψ1(0)− nτ, ψ2(nτ) = ψ2(0)− nτ, a2(nτ) = a2(0)− nτ.

To specify the discrete review policy at time t = nτ , again we consider Cases 1 to 4 given in
(20) to (23) separately. Note that the conditions of these four cases should now be evaluated at
time t = nτ based on Zi(nτ) and ψi(nτ), i = 1, 2.

Again under Case 1 and Case 3, Corollary 2 applies, hence, the discrete review policy sets
Ṫ1(t) = 1, Ṫ2(t) = 0 and gives fixed priority to class 1 for all t ∈ [nτ, (n + 1)τ).

Under Case 2, since H̃(0) = E[H] and

H̃(nτ) ≥ E[H]− nτ ≥ D − nτ = max{a2(nτ), ψ1(nτ) +
η

1− η
(ψ1(nτ)− ψ2(nτ))}, (28)

it follows from Case 2.6 in Section 3.1 that the discrete review policy gives fixed priority to class 1
in the interval [nτ, (n + 1)τ).

Similarly, for Case 4, (28) implies that conditions of Case 4.4 in Section (3.1) hold, hence the
discrete review policy gives fixed priority to class 1 in the interval [nτ, (n + 1)τ).

This then completes the induction and we therefore conclude that the discrete review policy
sets Ṫ1(t) = 1, Ṫ2(t) = 0 for all 0 ≤ t ≤ H0. The result in (26) then follows from Proposition 6 in
Section 5.

Remark 5. The proof for other methods are the same except E[H] is replaced by H̃(0) in (28).

5 Other policies that are asymptotically optimal

Throughout this section, we assume that ρh
1 > 1 and ρl ≤ 1. We are interested in two heavy traffic

regimes. In the first one, the expected length of the high period tends to infinity. In the second one,
traffic intensity of class 2 (i.e. ρ2) tends to 1− ρl

1 when ρl
1 is fixed and the low period is infinitely

long. Under both these regimes, we are interested in finding the asymptotically optimal policies.
Consider the policy that gives fixed priority to class 1 in the high period and uses the Low-

period-policy in the low period. For the rest of the paper, we will refer to this policy as FP1. We
shall use cFP1(H0, L0) to denote the holding cost of the FP1 policy when the length of the high
period is H0 and the length of the low period is L0. Recall that c(H0, L0) denotes the holding cost
of the optimal control policy (as specified in Section 3) when the lengths of the high and the low
periods are known and equal to H0 and L0, respectively. We have the following proposition.

Proposition 6. There exists β2 ≥ 0, which does not depend on the duration of the high period and
low period, such that

cFP1(H0, L0)− c(H0, L0) ≤ β2.

for all H0 ≥ 0 and L0 ≥ 0.

Proof. We need to consider the holding costs under Cases 1 to 4 separately. Note that for Case 1
and Case 3, Corollary 2 applies and the optimal policy is FP1, hence we can take β2 = 0 for these
two cases.

13



Now consider Case 4. Note that the optimal policy (as described in Section 3) is the same as
FP1 policy in Case 4.4, and differs from FP1 only under Cases 4.1, 4.2 and 4.3; that is, the two
costs differ only when (H0, L0) belongs to ∆1 or ∆2 where

∆1 =
{

(h, l) ∈ R2
+ : a1 ≤ h, h + l ≤ ψ1 +

η

1− η
(ψ1 − ψ2), l ≤ γ1(h− a1)

}

⋃{
(h, l) ∈ R2

+ : a1 ≤ h ≤ a2, γ1(h− a1) ≤ l ≤ γ4(h− a1)
}

,

∆2 =
{

(h, l) ∈ R2
+ : a1 < h < a2, l > γ4(h− a1)

}⋃ {
(h, l) ∈ R2

+ : h < a1

}
,

and γ4 = (ρh
1 + ρ2 − 1)(1− ρ2 − ρl

1)
−1.

Expressions for cFP1(H0, L0) and c(H0, L0) are given in Appendix C. Suppose (H0, L0) ∈ ∆1.
Note that holding cost function is quadratic in H0 and L0 under both the optimal policy and the
FP1 policy (See Appendix C). Moreover, since ∆1 is a bounded region, the difference between the
holding cost of these two policies must be bounded.

Now suppose that (H0, L0) ∈ ∆2. Since ψ̃2 < 0 in Case 4, it follows from the holding cost
expressions in (OPT:12) and (OPT:15) in Appendix C that c(H0, L0) depends only on H0. Then
since H0 is bounded, c(H0, L0) is bounded. Consider the cost function cFP1(H0, L0) when (H0, L0) ∈
∆2. Note that since ψ2 ≤ a1 in Case 4, and H, L are always nonnegative, ∆2 can be written as
∆21 ∪∆22 where

∆21 =
{
(h, l) ∈ R2

+ : ψ2 ≤ h ≤ a2, l ≥ γ4(h− a1)
}

and
∆22 =

{
(h, l) ∈ R2

+ : h ≤ ψ2

}
.

If (H0, L0) ∈ ∆22, cFP1(H0, L0) = 0 (see the holding cost expression in (FP1:9) in Appendix C).
When ψ2 ≤ a1 ≤ ψ1, ∆21 is a subset of

{
(h, l) ∈ R2

+ : ψ1 ≤ h, l ≥ γ4(h− a1)
}

⋃ {
(h, l) ∈ R2

+ : ψ̂ ≤ h ≤ ψ1, l ≥ γ4(h− a1)
}

⋃ {
(h, l) ∈ R2

+ : ψ2 ≤ h ≤ ψ̂, l ≥ γ4(h− a1)
}

,

which correspond to the conditions given in (FP1:1), (FP1:4) and (FP1:7) (note that γ5 ≥ γ4)
respectively. In these three cases, the cost function cFP1(H0, L0) is a quadratic function of H0

only (not a function of L0). But since H0 ≤ a2, cFP1(H0, L0) and c(H0, L0) are bounded when
(H0, L0) ∈ ∆21.

Therefore, if (H0, L0) ∈ ∆1 or (H0, L0) ∈ ∆2, the difference between cFP1(H0, L0) and c(H0, L0)
is bounded and the result of Proposition 6 holds for Case 4.

The proof for Case 2 is similar and thus omitted.

We next consider the case that the traffic intensify of class 2 tends to 1 − ρl
1 (i.e. the system

is always heavily loaded) and the expected length of the low period tends to infinity. Again we
consider Cases 1 to 4 given in (20) to (23), separately. We know from Corollary 2 that in Cases 1
and 3, FP1 policy is optimal. Hence, we only consider Cases 2 and 4. We start with Case 4.
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Definition 7. Assume conditions of Case 4. We define the πa1 policy as follows:

∀t ∈ (0, a1 ∧H), Ṫ2(t) = ρ2 − θ2 − Z2(0)
a1µ1

, Ṫ1(t) = 1− Ṫ2(t);

∀t ∈ (a1 ∧H, H), Ṫ2(t) = 0, Ṫ1(t) = 1;
∀t ∈ (H,H + L), Low-period-policy.

Under Case 4, since initially both class 1 and class 2 fluid levels are below their threshold values,
πa1 policy starts with processor sharing. In the processor sharing serving scheme, Ṫ1(t) and Ṫ2(t)
are chosen such that the time that class 2 fluid level reaches its threshold is delayed while ensuring
that the cost accumulated from class 1 in the high period is not too high. Moreover, this choice of
Ṫ1(t) and Ṫ2(t) guarantees that class 1 and class 2 reach their thresholds from below at the same
time if H is long enough to do so. Thus, during the processor sharing period, the πa1 policy gives as
much proportion of service as possible to class 2 while maintaining class 1 below its threshold. Note
that if the traffic intensity in the low period is close to 1 and the low period is long, the holding cost
for class 2 fluid in the low period can be high. Hence, it is important to reduce the amount of class
2 fluid at the beginning of the low period without incurring too much cost from class 1 fluid. We
will show in Proposition 10 that when ρ2 → 1− ρl

1 and E[L] → ∞, πa1 is strongly asymptotically
optimal under the assumptions of Case 4. We use a notion of strongly asymptotically optimal (as
introduced in [15]) in the following sense:

Definition 8. Consider a control problem where the performance measure J(u, α) is a function
of the control policy u and parameter α. Let the optimal control policy be u∗(α), and suppose
J(u∗(α), α) → ∞ as α → α0. A control policy û is called strongly asymptotically optimal if there
exists K < ∞ such that

J(û(α), α)− J(u∗(α), α) ≤ K, as α → α0.

We will also use the following notation.

Definition 9. For f : R→ R, we write

f(r) = O(1) as r → r0

to mean that there exists a constant M > 0 such that |f(r)| < M as r → r0.

Let ca1(H, L) denote the holding cost under policy πa1 when the length of the high period is
H and the length of the low period is L. The closed form expression for ca1(H, L) is given in
Appendix C.

Proposition 10. Assume conditions of Case 4. Suppose H and L are random variables with
E[H2] < ∞. If E[L] →∞ and ρ2 → (1− ρl

1) (where ρl
1 is fixed), then

E[ca1(H,L)− c(H, L)] = O(1),

and πa1 is strongly asymptotically optimal.

Proof. We start with characterizing the difference between ca1(H,L) and c(H, L). We have the
following cases based on the regions that (H, L) belongs to.
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• If H ≥ a2 and L ≥ γ3(H−a1) (note that a2 ≥ a1), then (H, L) either satisfies the condition of
(a1 : 1) or (a1 : 2) (for holding cost under πa1 policy given in Appendix C). If (H,L) satisfies
the condition of (a1 : 1), then (H, L) satisfies the condition of (OPT:1)(for holding cost under
the optimal policy given in Appendix C). If (H,L) satisfies the condition of (a1 : 2), then
(H, L) satisfies the condition of (OPT:2). When we compare the cost difference, we either
compare ca1(H, L) given by (a1 : 1) and c(H, L) given by (OPT:1) or we compare ca1(H,L)
given by (a1 : 2) and c(H, L) given by (OPT:2). These two cases bear the same difference,
which is

ca1(H,L)− c(H, L)

=
1
2
µ2h2

{[
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)

]
[(H − a1)2 − (H − ψ1)2]

+
ρ2(ρh

1 − ρl
1)

2

(1− ρl
1)(1− ρl

1 − ρ2)
(H − a1)2 − ρ2(ρh

1 − 1)2

(1− ρl
1)(1− ρl

1 − ρ2)
(H − ψ1)2

−2ρ2(ρh
1 − 1)

1− ρ2 − ρl
1

(H − ψ2)(H − ψ1)− ρ2(1− ρl
1)

1− ρ2 − ρl
1

(H − ψ2)2
}

.

The items that possibly go to infinity are those that have (1− ρ2 − ρl
1) in the denominator.

We next show that (1 − ρ2 − ρl
1) is cancelled off from the denominator after combining all

these items. First, consider the last three terms. Factoring out ρ2[(1 − ρl
1)(1 − ρl

1 − ρ2)]−1

and applying the formula a2 + 2ab + b2 = (a + b)2, we can combine them into

− ρ2

(1− ρl
1)(1− ρl

1 − ρ2)
[(ρh

1 − 1)(H − ψ1) + (1− ρl
1)(H − ψ2)]2.

Adding this value to the second term (i.e. [ρ2(ρh
1 − ρl

1)
2][(1− ρl

1)(1− ρl
1 − ρ2)]−1(H − a1)2),

taking the common factor ρ2[(1− ρl
1)(1− ρl

1− ρ2)]−1 out and applying the formula a2− b2 =
(a + b)(a− b), we can combine all the terms with (1− ρ2 − ρl

1) in the denominator into

ρ2

(1− ρl
1)(1− ρl

1 − ρ2)

{
[(ρh

1 − ρl
1)(H − a1) + (ρh

1 − 1)(H − ψ1) + (1− ρl
1)(H − ψ2)]

×[(ρh
1 − ρl

1)(H − a1)− (ρh
1 − 1)(H − ψ1)− (1− ρl

1)(H − ψ2)]
}

.

From the definitions of a1, ψ1, and ψ2, we know that a1 = ((ρh
1 − 1)ψ1 + ρ2ψ2)(ρh

1 + ρ2 −
1)−1. Plugging in this expression of a1, we can further simplify the second line of the above
expression into

−(ρh
1 − 1)(1− ρ2 − ρl

1)
(ρh

1 + ρ2 + 1)
(ψ1 − ψ2).

Thus, (1− ρ2 − ρl
1) is cancelled off from the denominator and we have

ca1(H,L)− c(H, L)

=
1
2
µ2h2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(2H − a1 − ψ1)(ψ1 − a1)

− ρ2(ρh
1 − ρl

1)(ρ
h
1 − 1)

(1− ρl
1)(ρ

h
1 + ρ2 − 1)

(2H − a1 − (ρh
1 − 1)ψ1 + (1− ρl

1)ψ2

ρh
1 − ρl

1

)(ψ1 − ψ2)
}

.

≤ 1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(2H − a1 − ψ1)(ψ1 − a1)

}
,
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where the inequality follows from the fact that the second term is not positive since 0 ≤ ψ2 ≤
a1 ≤ ψ1 ≤ a2 and H ≥ a2. At the same time, since 0 ≤ ψ1−a1 ≤ H and 0 ≤ (2H−a1−ψ1) ≤
2H, we obtain

ca1(H, L)− c(H, L) ≤ 1
2
h2µ2

(
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)

)
2H2

=
1
2
h1µ1

(
(ρh

1 − 1)(ρh
1 − ρl

1)
(1− ρl

1)

)
2H2 (29)

where the equality follows from the definition of η.

• If a1 ≤ H ≤ a2 and L ≥ γ3(H − a1), then (H, L) either satisfies the condition given by
(a1 : 1) or (a1 : 2) (for holding cost under πa1 policy) since γ3 ≥ γ1. If (H,L) satisfies (a1 : 1),
then it satisfies (OPT:12) (for holding cost under the optimal policy in case 4). If (H,L)
satisfies (a1 : 2), then it satisfies (OPT:13) (for holding cost under the optimal policy in case
4). When we compare the cost difference, we either compare ca1(H,L) given by (a1 : 1) and
c(H, L) given by (OPT:12) or we compare ca1(H, L) given by (a1 : 2) and c(H, L) given by
(OPT:13). Note that ca1(H,L) under (a1 : 2) is different from that under (a1 : 1) by the same
amount as c(H, L) under (OPT:13) from (OPT:12). Hence, these two cases bear the same
cost difference. We are going to compare the holding cost under the conditions of (a1 : 1)
with that one under the conditions of (OPT:12).

First, we simplify the holding cost expression for (OPT:12). Note that conditions of Case 4
imply that ψ̃2 = 0. Hence

c(H, L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + ρ2(t2 − s2)2

+ (1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}

where t2 and s2 are given in Appendix C. Using these expressions of t2 and s2, we obtain

t2 −H =
η(ρh

1 − 1)(ρh
1 + ρ2 − 1)

(1− ρl
1)(ρ2 + η(ρh

1 − 1)) + (1− η)ρ2(ρh
1 − 1)

(H − a1),

t2 − a1 = t2 −H + H − a1

=
(ρh

1 − ρl
1)[ρ2 + η(ρh

1 − 1)]
(1− ρl

1)(ρ2 + η(ρh
1 − 1)) + (1− η)ρ2(ρh

1 − 1)
(H − a1),

t2 − s2 =
(ρh

1 + ρ2 − 1)
ρ2 + η(ρh

1 − 1)
(t2 − a1)

=
(ρh

1 − ρl
1)(ρ

h
1 + ρ2 − 1)

(1− ρl
1)(ρ2 + η(ρh

1 − 1)) + (1− η)ρ2(ρh
1 − 1)

(H − a1).

For notational convenience, let γ1d denote the denominator in the above expressions. We
have

c(H, L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)η(ρh
1 − 1)(ρh

1 + ρ2 − 1)2

γ2
1d

(H − a1)2

+
ρ2(ρh

1 − ρl
1)

2(ρh
1 + ρ2 − 1)2

γ2
1d

(H − a1)2
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+
ρ2
2(ρ

h
1 − ρl

1)
2(ρh

1 + ρl
1 − 1)2

(1− ρl
1 − ρ2)γ2

1d

(H − a1)2
}

=
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)(ρ
h
1 + ρ2 − 1)2

(1− ρl
1 − ρ2)γ1d

(H − a1)2
}

.

Then the difference between ca1(H,L) and c(H,L) is given as

ca1(H, L)− c(H,L)

=
1
2
µ2h2

{(
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

ρ2(ρh
1 − ρl

1)
2

(1− ρl
1)(1− ρl

1 − ρ2)

)
(H − a1)2

−
((1− ρl

1)(ρ
h
1 − ρl

1)(ρ
h
1 + ρ2 − 1)2

(1− ρl
1 − ρ2)γ1d

)
(H − a1)2

}
.

Note that

ρ2(ρh
1 − ρl

1)
2

(1− ρl
1)(1− ρl

1 − ρ2)
− (1− ρl

1)(ρ
h
1 − ρl

1)(ρ
h
1 + ρ2 − 1)2

(1− ρl
1 − ρ2)γ1d

=
ρh
1 − ρl

1

(1− ρl
1)(1− ρl

1 − ρ2)γ1d

(
ρ2(ρh

1 − ρl
1)γ1d − (1− ρl

1)
2(ρh

1 + ρ2 − 1)2
)
.

Plugging in the expression of γ1d, we simplify the expression in the parentheses above as
follows

ρ2(ρh
1 − ρl

1)γ1d − (1− ρl
1)

2(ρh
1 + ρ2 − 1)2

= ρ2(ρh
1 − ρl

1)[(1− ρl
1)(ρ2 + η(ρh

1 − 1)) + (1− η)ρ2(ρh
1 − 1)]− (1− ρl

1)
2(ρh

1 + ρ2 − 1)2

= ρ2
2(ρ

h
1 − ρl

1)(1− ρl
1) + ρ2(ρh

1 − ρl
1)(1− ρl

1)η(ρh
1 − 1)

+ρ2
2(ρ

h
1 − ρl

1)(ρ
h
1 − 1)− ρ2

2(ρ
h
1 − ρl

1)η(ρh
1 − 1)

−(1− ρl
1)

2(ρh
1 + ρ2 − 1)2

=
(
ρ2
2(ρ

h
1 − ρl

1)
2 − (1− ρl

1)
2(ρh

1 + ρ2 − 1)2
)

+
(
ρ2(ρh

1 − ρl
1)(1− ρl

1)η(ρh
1 − 1)− ρ2

2(ρ
h
1 − ρl

1)η(ρh
1 − 1)

)

=
(
− [ρ2(ρh

1 − ρl
1) + (1− ρl

1)(ρ
h
1 + ρ2 − 1)](1− ρl

1 − ρ2)(ρh
1 − 1)

)

+
(
ρ2(ρh

1 − ρl
1)(ρ

h
1 − 1)η(1− ρl

1 − ρ2)
)

= −(1− ρ2 − ρl
1)(ρ

h
1 − 1)[ρ2(ρh

1 − ρl
1)(1− η) + (1− ρl

1)(ρ
h
1 + ρ2 − 1)].

Again plugging in the expression of γ1d, we finally have

ca1(H, L)− c(H,L)

=
1
2
µ2h2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − a1)2

−(ρh
1 − ρl

1)(ρ
h
1 − 1)[ρ2(ρh

1 − ρl
1)(1− η) + (1− ρl

1)(ρ
h
1 + ρ2 − 1)]

(1− ρl
1)[(1− ρl

1)(ρ2 + η(ρh
1 − 1)) + (1− η)ρ2(ρh

1 − 1)]
(H − a1)2

}

≤ 1
2
µ2h2

(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − a1)2.
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Since in this case 0 ≤ H − a1 ≤ H,

ca1(H,L)− c(H, L) ≤ 1
2
µ2h2

(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

H2

=
1
2
µ1h1

(ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

H2 (30)

where the last equality follows from the definition of η.

• If H ≥ a1, L ≤ γ3(H − a1), then (H,L) satisfies the condition given by (a1 : 3). Plugging in
the corresponding cost expressions, we have

ca1(H, L)− c(H,L) ≤ ca1(H, L)

=
1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − a1)2 + ρ2(H + L− a1)2

−(1− ρl
1)

η

[
ρh
1 − 1

1− ρl
1

(H − a1)− L

]2 }

≤ 1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − a1)2 + ρ2(H + L− a1)2
}

.

Since H ≥ a1 and 0 ≤ L ≤ γ2(H − a1), 0 ≤ (H + L− a1) ≤ (1 + γ3)(H − a1). Then

ca1(H,L)− c(H, L) ≤ 1
2
h2µ2

((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+ (1 + γ3)
)
(H − a1)2.

Moreover, since 0 ≤ H − a1 ≤ H, and 1 + γ3 = (ρh
1 − ρl

1)(1− ρl
1)
−1,

ca1(H, L)− c(H, L) ≤ 1
2
h2µ2

((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
ρh
1 − ρl

1

1− ρl
1

)
H2

≤ 1
2
h1µ1

((ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

+
ρh
1 − ρl

1

1− ρl
1

)
H2 (31)

where the second inequality follows from the definition of η and our assumption that h2µ2 <
h1µ1.

• If H ≤ a1, we have from the cost expressions under (OPT:15) (note that ψ̃2 < 0 in Case 4)
and (a1 : 4),

ca1(H, L) = c(H, L) = 0. (32)

Putting these cases together, from (29) to (32) and our assumption that E[H2] ≤ ∞, we have
the desired result.

We next consider Case 2 given in (21) and we define the following policy.

Definition 11. Assume conditions of Case 2. We define the FP2-FP1 policy as follows:

∀t ∈ (0,H), if Z2(t) > θ2, Z1(t) < θ1 then Ṫ2(t) = 1, Ṫ1(t) = 0;
∀t ∈ (0,H) if Z2(t) = θ2, Z1(t) < θ1 then Ṫ2(t) = ρ2, Ṫ1(t) = 1− ρ2;
∀t ∈ (0,H) if Z1(t) ≥ θ1 then Ṫ2(t) = 0, Ṫ1(t) = 1;

∀t ∈ (H, H + L) Low-period-policy.
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Note that FP2-FP1 policy is similar to the πa1 policy. However, since initially class 2 fluid
is above its threshold level, FP2-FP1 policy starts with giving fixed priority to class 2. Let
cFP2−FP1(H, L) denote the holding cost under the FP2-FP1 policy when the length of the high
period is H and the length of the low period is L. The closed form expression for cFP2−FP1(H,L)
is given in Appendix. C.

Proposition 12. Assume conditions of Case 2. Suppose H and L are random variables with
E[H2] < ∞. If E[L] →∞ and ρ2 → 1− ρl

1 (where ρl
1 is fixed), then

E[cFP2−FP1(H, L)− c(H,L)] = O(1),

and FP2-FP1 policy is strongly asymptotically optimal.

Proof. First suppose ψ̃1 ≤ ψ̃2, then B ≤ a1 ≤ ψ̃1 ≤ ψ̃2 ≤ a2. Define

∆1 =
{

(h, l) ∈ R2
+ : h ≥ a2, l ≥ γ3(h− ψ̃1)

}
,

∆2 =
{

(h, l) ∈ R2
+ : ψ̃1 ≤ h ≤ a2, l ≥ γ3(h− ψ̃1)

}
,

∆3 =
{

(h, l) ∈ R2
+ : h ≤ ψ̃1

}
,

∆4 =
{

(h, l) ∈ R2
+ : ψ̃1 ≤ h, l ≤ γ3(h− ψ̃1)

}
.

Clearly, ∆1 ∪∆2 ∪∆3 ∪∆4 = R2
+.

• If (H,L) ∈ ∆1, then a2 ≥ ψ̃1, and (H, L) belongs to either the region considered in (FP2-
FP1:1) or the region in (FP2-FP1:2) for FP2-FP1 policy (see Appendix C). Comparing the
conditions of (FP2-FP1:1) with those of (OPT:1) and conditions of (FP2:FP1:2) with those
of (OPT:2), one can conclude that if (H, L) belongs to the region given by (FP2-FP1:1), then
(H, L) belongs to the region given by (OPT:1); if (H,L) belongs to the region given by (FP2-
FP1:2), then (H, L) belongs to the region given by (OPT:2) since ψ̃1 ≤ ψ1. To compare the
cost difference under the optimal policy and the FP2-FP1 policy, we either compare the cost
under FP2-FP1 policy given by (FP2-FP1:1) with the optimal cost given by (OPT:1), or the
cost under FP2-FP1 policy given by (FP2-FP1:2) with the optimal cost given by (OPT:2).
Note that the cost under FP2-FP1 policy in (FP2-FP1:2) is different from that in (FP2:FP1:1)
by the same amount as optimal cost in (OPT:2) is different from that in (OPT:1). These two
cases yield the same cost difference between FP2-FP1 policy and the optimal policy. The cost
difference is equal to cFP2−FP1(H, L)− c(H,L) where cFP2−FP1(H,L) is given in (FP2-FP1:1)
and cFP2−FP1(H,L) is given in (OPT:1), respectively. Note that in this case, ψ−1 = 0 and
ψ−2 = −ψ2 (where a− = max{−a, 0} for a real number a). We have

c(H,L) =
1
2
h2µ2

{ (ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ1)2

︸ ︷︷ ︸
f3

−ρ2ψ
2
2

+
(1− ρ2 − ρl

1)
2

ρ2

(ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ1)
)2

︸ ︷︷ ︸
f2

(1− ρl
1 − ρ2)

(ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
)2

︸ ︷︷ ︸
f1

}
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and

cFP2−FP1(H, L) =
1
2
h2µ2

{ (ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2

︸ ︷︷ ︸
g3

+(1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+2
(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2

(ρh
1 − ρl

1

1− ρl
1

(H − ψ̃1)
)2

︸ ︷︷ ︸
g2

+(1− ρ2 − ρl
1)

(ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ̃1)
)2

︸ ︷︷ ︸
g1

}
.

With some algebra, we have

g1 − f1 = −
((ρh

1 − 1)
(1− ρl

1)
(ψ1 − ψ̃1)

)

(
2(ρh

1 + ρ2 − 1)(H − a− 1)− (1− ρ2 − ρl
1)(ρ

h
1 − 1)

(1− ρl
1)

(2H − ψ1 − ψ̃1)
)
.

From the definitions of a1, ψ1 and ψ2, we have (ρh
1 + ρ2 − 1)(H − a1) = (ρh

1 − 1)(H − ψ1) +
ρ2(H − ψ2). Plugging in this expression, we obtain

g1 − f1 =
(1− ρl

1 − ρ2)(ρh
1 − 1)2

(1− ρl
1)2

(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

−2(ρh
1 − 1)2

(1− ρl
1)

(H − ψ1)(H − ψ̃1)− 2ρ2(ρh
1 − 1)

(1− ρl
1)

(H − ψ2)(ψ1 − ψ̃1).

Similarly,

g2 − f2

=
1
ρ2

(ρ2(ρh
1 − 1)

1− ρl
1

(H − ψ̃1) + (ρh
1 + ρ2 − 1)(H − a1)− (1− ρ2 − ρl

1)(ρ
h
1 − 1)

1− ρl
1

(H − ψ1)
)

×
(ρ2(ρh

1 − 1)
1− ρl

1

(H − ψ̃1)− (ρh
1 + ρ2 − 1)(H − a1) +

(1− ρ2 − ρl
1)(ρ

h
1 − 1)

1− ρl
1

(H − ψ1)
)
.

Since (ρh
1 + ρ2 − 1)(H − a1) = (ρh

1 − 1)(H − ψ1) + ρ2(H − ψ2),

g2 − f2 =
ρ2(ρh

1 − 1)2

(1− ρl
1)2

(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

−2ρ2(ρh
1 − 1)

(1− ρl
1)

(H − ψ1)(H − ψ2)− ρ2(H − ψ2)2.

Finally,

g3 − f3 =
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1).
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Then

(g1 − f1) + (g2 − f2) + (g3 − f3)

=
((ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

(ρh
1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)− ρ2(H − ψ2)2

− 2ρ2(ρh
1 − 1)

(1− ρl
1)

(H − ψ2)(H − ψ̃1)− 2(ρh
1 − 1)2

(1− ρl
1)

(H − ψ1)(ψ1 − ψ̃1).

Note that ψ1 ≥ ψ̃1. We also have a2 ≥ ψ1 ≥ ψ̃1 and H ≥ a2 which imply that H − ψ̃1 ≥ 0
and (H − ψ2)(H − ψ̃1) ≥ −ψ2(H − ψ̃1). Then

(g1 − f1) + (g2 − f2) + (g3 − f3)

≤
((ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

(ρh
1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

−ρ2(H − ψ2)2 +
2ρ2(ρh

1 − 1)
(1− ρl

1)
ψ2(H − ψ̃1).

Note that

cFP2−FP1(H,L)− c(H, L) =
1
2
h2µ2

{
(g1 − f1) + (g2 − f2) + (g3 − f3) + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+
2(1− ρ2)(ρh

1 − ρl
1)

(1− ρl
1)

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2ψ
2
2

≤ 1
2
h2µ2

{
(g1 − f1) + (g2 − f2) + (g3 − f3) + 2(1− ρ2)ψ̃2ψ̃1

+
2(1− ρ2)(ρh

1 − ρl
1)

(1− ρl
1)

ψ̃2(H − ψ̃1) + ρ2ψ
2
2

}
.

Plugging in the upper bound for (g1 − f1) + (g2 − f2) + (g3 − f3), we obtain

cFP2−FP1(H, L)− c(H, L)

≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

−ρ2(H − ψ2)2 +
2ρ2(ρh

1 − 1)
(1− ρl

1)
ψ2(H − ψ̃1)

+2(1− ρ2)ψ̃2ψ̃1

+
2(1− ρ2)(ρh

1 − ρl
1)

(1− ρl
1)

ψ̃2(H − ψ̃1) + ρ2ψ
2
2

}
.

Since (1− ρ2)ψ̃2 = −ρ2ψ2, we can simplify the above upper bound as follows

1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)− ρ2H

2
}

.

Then we have

cFP2−FP1(H,L)− c(H, L)
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≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

}

≤ 1
2
h1µ1

{((ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

}

where the last inequality follows from the definition of η and our assumption that h1µ1 > h2µ2.

• If (H, L) ∈ ∆2, since B ≤ ψ̃1 and γ3 ≥ γ2, (H, L) belongs to the union of the regions con-
sidered in (FP2-FP1:1) and (FP2-FP1:2) for FP2-FP1 policy (see Appendix C). If (H, L)
belongs to ∆2 and the region considered in (FP2-FP1:1), then (H, L) belongs to the region
considered in (OPT:4) for the optimal policy; if (H, L) belongs to ∆2 and the region con-
sidered in (FP2-FP1:2), then (H, L) belongs to the region considered in (OPT:5) for the
optimal policy. Note that the cost under FP2-FP1 policy in (FP2-FP1:2) is different from
that in (FP2:FP1:1) by the same amount as optimal cost in (OPT:5) is different from that in
(OPT:4). Thus, it suffices to compare the cost under FP2-FP1 policy when (H, L) belongs
to the region in (FP2-FP1:1) with the cost under the optimal policy when (H, L) belongs to
the region given by (OPT:4).

Note that if (H,L) belongs to ∆2 and the region given in (FP2-FP1:1), we have H − ψ̃1 ≥ 0
and 0 ≤ ψ̃1. Hence, from the cost expressions given in Appendix C, we have

cFP2−FP1(H, L) ≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
ρ2(ρh

1 − ρl
1)

2

(1− ρl
1)2

)
(H − ψ̃1)2

+2(1− ρ2)ψ̃2ψ̃1 +
2(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

ψ̃2(H − ψ̃1)

+(1− ρ2 − ρl
1)

((ρh
1 + ρ2 − 1)

(1− ρ2 − ρl
1)

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ̃1)
)2}

.

Plugging in the above upper bound for cFP2−FP1:1(H, L), we have

cFP2−FP1(H, L)− c(H, L)

≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
ρ2(ρh

1 − ρl
1)

2

(1− ρl
1)2

)
(H − ψ̃1)2

+2(1− ρ2)ψ̃2ψ̃1 +
2(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

ψ̃2(H − ψ̃1)

+(1− ρ2 − ρl
1)

((ρh
1 + ρ2 − 1)

(1− ρ2 − ρl
1)

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ̃1)
)2

−
(

(1− ρl
1)(ρ

h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + ρ2(t2 − s)2

+(1− ρ2)(2ψ̃2 − s)s + 2(1− ρ2)(ψ̃2 − s)(t2 − s)

+(1− ρ2 − ρl
1)

(ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
)2

) }

where s = s1 = s2 and t2 are computed through solving equations (12) to (19) and are given
in Appendix C as

s =
d1/µ1 − (ρh

1 − 1)(1− η)t2
1 + η(ρh

1 − 1)
,
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t2 =
(ρh

1 − ρl
1)(1 + η(ρh

1 − 1)H − η(ρh
1 − 1)d1/µ1

γ2d
,

where γ2d = (1− ρl
1)(1 + η(ρh

1 − 1)) + (1− η)(ρh
1 − 1). The above upper bound can be further

simplified as

cFP2−FP1(H,L)− c(H, L)

≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
ρ2(ρh

1 − ρl
1)

2

(1− ρl
1)2

)
(H − ψ̃1)2

+2(1− ρ2)ψ̃2ψ̃1 +
2(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

ψ̃2(H − ψ̃1)

+ (1− ρ2 − ρl
1)

((ρh
1 + ρ2 − 1)

(1− ρ2 − ρl
1)

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ̃1)
)2

︸ ︷︷ ︸
g1

−(1− ρ2)(2ψ̃2 − s)s− 2(1− ρ2)(ψ̃2 − s)(t2 − s)

− (1− ρ2 − ρl
1)

(ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
)2

︸ ︷︷ ︸
f1

}
.

We begin with simplifying g1 − f1 as

g1 − f1 =
(
(t2 −H)− ρh

1 − 1
1− ρl

1

(H − ψ̃1)
)

×
(
2(ρh

1 + ρ2 − 1)(H − a1)− (1− ρ2 − ρl
1)

(ρh
1 − 1

1− ρl
1

(H − ψ̃1) + (t2 −H)
))

With some algebra, we obtain

t2 −H =
ηρh

1(ρh
1 − 1)

γ2d
(H − ψ̃1) = γ2(H − ψ̃1),

and

(t2 −H)− ρh
1 − 1

1− ρl
1

(H − ψ̃1) = −(1− η)(ρh
1 − ρl

1)(ρ
h
1 − 1)

γ2d(1− ρl
1)

(H − ψ̃1) ≤ 0.

Since (ρh
1 + ρ2 − 1)(H − a1) = (ρh

1 − 1)(H − ψ1) + ρ2(H − ψ2), we have

g1 − f1 = −(1− η)(ρh
1 − ρl

1)(ρ
h
1 − 1)

γ2d(1− ρl
1)

(H − ψ̃1)(2(ρh
1 − 1)(H − ψ1) + 2ρ2(H − ψ2))

−(1− ρ2 − ρl
1)

(
(t2 −H)− ρh

1 − 1
1− ρl

1

(H − ψ̃1)
)(

(t2 −H) +
ρh
1 − 1

1− ρl
1

(H − ψ̃1)
)

≤ −2(1− η)(ρh
1 − ρl

1)(ρ
h
1 − 1)2

γ2d(1− ρl
1)

(H − ψ̃1)(H − ψ1)

−2(1− η)(ρh
1 − ρl

1)(ρ
h
1 − 1)ρ2

γ2d(1− ρl
1)

(H − ψ̃1)(H − ψ2)

+
(1− ρ2 − ρl

1)(ρ
h
1 − 1)2

(1− ρl
1)2

(H − ψ̃1)2.
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Since (H − ψ̃1)(H − ψ2) ≥ −ψ2(H − ψ̃1),

g1 − f1 ≤ −2(1− η)(ρh
1 − ρl

1)(ρ
h
1 − 1)2

γ2d(1− ρl
1)

(H − ψ̃1)(H − ψ1)

+
2(1− η)(ρh

1 − ρl
1)(ρ

h
1 − 1)ρ2

γ2d(1− ρl
1)

ψ2(H − ψ̃1)

+
(1− ρ2 − ρl

1)(ρ
h
1 − 1)2

(1− ρl
1)2

(H − ψ̃1)2.

Plugging in this expression into the upper bound of cFP2−FP1(H, L)− c(H, L), we get

cFP2−FP1(H, L)− c(H, L) ≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − ρl
1)

2

(1− ρl
1)

)
(H − ψ̃1)2

−2(1− η)(ρh
1 − ρl

1)(ρ
h
1 − 1)2

γ2d(1− ρl
1)

(H − ψ̃1)(H − ψ1)

+
(2(1− η)(ρh

1 − ρl
1)(ρ

h
1 − 1)ρ2

γ2d(1− ρl
1)

ψ2(H − ψ̃1)

+2(1− ρ2)ψ̃2ψ̃1 +
2(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

ψ̃2(H − ψ̃1)

−(1− ρ2)(2ψ̃2 − s)s− 2(1− ρ2)(ψ̃2 − s)(t2 − s)
)}

.

Since s = (t2 −H) + H − (t2 − s), we can further simplify the last line of the above upper
bound as

−(1− ρ2)(2ψ̃2 − s)s− 2(1− ρ2)(ψ̃2 − s)(t2 − s)
= −2(1− ρ2)ψ̃2(t2 −H)− 2(1− ρ2)ψ̃2H + (1− ρ2)s2 + 2(1− ρ2)s(t2 − s)
= −2(1− ρ2)γ2ψ̃2(H − ψ̃1)− 2(1− ρ2)ψ̃2H + (1− ρ2)s2 + 2(1− ρ2)s(t2 − s).

Plugging in this result, the expressions for γ2 and γ2d and noting that ρ2ψ2 = −(1−ρ2)ψ̃2, we
can simplify the part in the parenthesis of the above upper bound of cFP2−FP1(H, L)−c(H,L)
and get

(2(1− η)(ρh
1 − ρl

1)(ρ
h
1 − 1)ρ2

γ2d(1− ρl
1)

ψ2(H − ψ̃1)

+2(1− ρ2)ψ̃2ψ̃1 +
2(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

ψ̃2(H − ψ̃1)

−(1− ρ2)(2ψ̃2 − s)s− 2(1− ρ2)(ψ̃2 − s)(t2 − s)
)

= (1− ρ2)s2 + 2(1− ρ2)s(t2 − s).

Hence,

cFP2−FP1(H, L)− c(H, L) ≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − ρl
1)

2

(1− ρl
1)

)
(H − ψ̃1)2

−2(1− η)(ρh
1 − ρl

1)(ρ
h
1 − 1)2

γ2d(1− ρl
1)

(H − ψ̃1)(H − ψ1)
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+(1− ρ2)s2 + 2(1− ρ2)s(t2 − s)

≤ 1
2
h1µ1

{((ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

+
(ρh

1 − ρl
1)

2

(1− ρl
1)

)
(H − ψ̃1)2

+
2(1− η)(ρh

1 − ρl
1)(ρ

h
1 − 1)2

γ2d(1− ρl
1)

(H − ψ̃1)|(H − ψ1)|

+(1− ρ2)s2 + 2(1− ρ2)s(t2 − s)
}

.

Since s and t2 are finite linear functions of H as ρ2 → 1 − ρl
1, the above upper bound is a

finite quadratic function of H as ρ2 → 1− ρl
1.

• If (H,L) ∈ ∆3, then (H, L) belongs to the union of the regions considered in (FP2-FP1:4),
(FP2-FP1:5), (FP2-FP1:6), (FP2-FP1:7) and (FP2-FP1:8) for FP2-FP1 policy given in Ap-
pendix C. If (H, L) belongs to the region in (FP2-FP1:4), then (H, L) is in the region
considered in (OPT:9) for the optimal policy. If (H,L) belongs to the region in (FP2-FP1:5),
then (H, L) is in the region given in (OPT:10). If (H, L) belongs to the region in (FP2-FP1:6),
then (H, L) is in the region considered in (OPT:11). If (H,L) belongs to the region in (FP2-
FP1:7), then (H, L) is in the region given in (OPT:7). Finally, if (H, L) belongs to the region
in (FP2-FP1:8), then (H, L) is in the region given in (OPT:8). Using the corresponding
holding cost expressions, we have

cFP2−FP1(H, L)− c(H,L) = 0.

• Finally, if (H,L) ∈ ∆4, then from the holding cost expression in (FP2-FP1:3) given in Ap-
pendix C, we have

cFP2−FP1(H,L) =
1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2 + ρ2(H + L− ψ̃1)2

+(1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1 + 2(1− ρ2)(ψ̃2 − ψ̃1)(H + L− ψ̃1)

−1− ρl
1

η

[
ρh
1 − 1

1− ρl
1

(H − ψ̃1)− L

]2 }

≤ 1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2 + ρ2(H + L− ψ̃1)2

+2(1− ρ2)ψ̃2ψ̃1 + 2(1− ρ2)ψ̃2(H − ψ̃1) + 2(1− ρ2)ψ̃2L
}

. (33)

Note that L ≤ γ3(H − ψ̃1). For notational convenience define

g4 = 2(1− ρ2)ψ̃2ψ̃1 + 2(1− ρ2)(1 + γ3)ψ̃2(H − ψ̃1).

Then

cFP2−FP1(H, L) ≤ 1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2 + ρ2(H + L− ψ̃1)2 + g4

}
.

If (H, L) ∈ ∆4, then ψ̃1 ≤ ψ̃2. Since a2 ≥ ψ1 > ψ̃1 ≥ a1, γ3 ≤ γ4, and γ1(H−a1) ≤ γ3(H−ψ̃1),
one can conclude that (H, L) belongs to the union of the regions considered in (OPT:2),
(OPT:3), (OPT:5) and (OPT:6) of Appendix C. We are going to compare the cost difference
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between the FP2-FP1 policy and the optimal policy by employing the cost expressions for
each region separately.

If (H, L) is in the region given in (OPT:2), then

(1− ρ2 − ρl
1)

(
ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ1)
)2

≥ (1− ρ2 − ρl
1)

(
ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− L

)2

.

Since in this case ψ−1 = 0 and ψ−2 = −ψ2,

c(H, L) ≥ 1
2
h2µ2

{
− ρ2ψ

2
2 +

(1− ρ2 − ρl
1)

2

ρ2

(ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ1)
)2}

.

Replacing (ρh
1 + ρ2 − 1)(H − a1) by (ρh

1 − 1)(H − ψ1) + ρ2(H − ψ2), we have

(
(ρh

1 + ρ2 − 1)(H − a1)− (1− ρ2 − ρl
1)(ρ

h
1 − 1)

1− ρl
1

(H − ψ1)
)2

= ρ2
2

(ρh
1 − 1

1− ρl
1

(H − ψ1) + (H − ψ2)
)2

.

Thus,

c(H, L) ≥ 1
2
h2µ2

{
− ρ2ψ

2
2 + ρ2(H − ψ2)2 +

2ρ2(ρh
1 − 1)

1− ρl
1

(H − ψ2)(H − ψ1)
}

≥ 1
2
h2µ2

{
− 2ρ2ψ2H +

2ρ2(ρh
1 − 1)

1− ρl
1

(H − ψ2)(H − ψ1)
}

Note that in the region considered in (OPT:2), H ≥ a2 ≥ ψ1. Moreover since H − ψ1 ≥ 0,
(H − ψ2)(H − ψ1) ≥ −ψ2(H − ψ1) and

c(H, L) ≥ 1
2
h2µ2

{
− 2ρ2ψ2H − 2ρ2(ρh

1 − 1)
1− ρl

1

ψ2(H − ψ1)
}

=
1
2
h2µ2f4,

where

f4 = −2ρ2ψ2H − 2ρ2(ρh
1 − 1)

1− ρl
1

ψ2(H − ψ1).

Since ρ2ψ2 = −(1− ρ2)ψ̃2, with some algebra one can verify that g4 − f4 = 0 and

cFP2−FP1(H, L)− c(H,L) ≤ 1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2 + ρ2(H + L− ψ̃1)2
}

≤ 1
2
h1µ1

{(ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

(H − ψ̃1)2 + (1 + γ3)2(H − ψ̃1)2
}

,
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which is a finite quadratic function of H as ρ2 → 1− ρl
1.

If (H, L) is in the region given in (OPT:3), then since ψ−1 = 0 and ψ−2 = −ψ2, we have

c(H,L) ≥ 1
2
h2µ2

{
ρ2(H + L− ψ2)2 − ρ2ψ

2
2 −

1− ρl
1

η

(ρh
1 − 1

1− ρl
1

(H − ψ1)− L
)2}

≥ 1
2
h2µ2

{
− 2ρ2ψ2(H + L)− 1− ρl

1

η

(ρh
1 − 1

1− ρl
1

(H − ψ1)− L
)2}

.

From this result, the upper bound given in (33) and the fact that ρ2ψ2 = −(1 − ρ2)ψ̃2, we
have

cFP2−FP1(H,L)− c(H, L) ≤ 1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2 + ρ2(H + L− ψ̃1)2

+
1− ρl

1

η

(ρh
1 − 1

1− ρl
1

(H − ψ1)− L
)2}

.

Note that 0 ≤ L ≤ γ3(H − ψ̃1). Plugging in the expression of γ3, we can further simplify the
above upper bound as

cFP2−FP1(H,L)− c(H, L) ≤ 1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2 +
ρ2(ρh

1 − ρl
1)

2

(1− ρl
1)2

(H − ψ̃1)2

+
(ρh

1 − 1)2

η(1− ρl
1)

((H − ψ1)2 + (H − ψ̃1)2)
}

.

Note that η = h2µ2(h1µ1)−1 ≤ 1 and ρ2 ≤ 1. Then

cFP2−FP1(H, L)− c(H, L) ≤ 1
2
h1µ1

{(ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

(H − ψ̃1)2 +
(ρh

1 − ρl
1)

2

(1− ρl
1)2

(H − ψ̃1)2

+
(ρh

1 − 1)2

(1− ρl
1)

((H − ψ1)2 + (H − ψ̃1)2)
}

.

If (H, L) is in the region given in (OPT:5), we have

(1− ρ2 − ρl
1)

(ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
)2

− (1− ρ2 − ρl
1)

(ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− L
)2

= (H + L− t2)
(
2(ρh

1 + ρ2 − 1)(H − a1)− (1− ρ2 − ρl
1)(t2 −H + L)

)

= 2ρ2(H + L− t2)(H − ψ2) + 2(ρh
1 − 1)(H + L− t2)(H − ψ1)

+(1− ρ2 − ρl
1)((t2 −H)2 − L2)

≥ −2ρ2ψ2(H + L− t2) + 2(ρh
1 − 1)(H + L− t2)(H − ψ1)− (1− ρ2 − ρl

1)L
2,

where the inequality follows from the fact that H + L − t2 ≥ 0 since t2 − H = γ2(H − ψ̃1)
and L ≥ γ2(H − ψ̃1) in (OPT:5). Thus,

c(H,L) ≥ 1
2
h2µ2

{
(1− ρ2)(2ψ̃2 − s)s + 2(1− ρ2)(ψ̃2 − s)(t2 − s)

−2ρ2ψ2(H + L− t2) + 2(ρh
1 − 1)(H + L− t2)(H − ψ1)− (1− ρ2 − ρl

1)L
2
}

.
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Plugging in the upper bound for cFP2−FP1(H, L) given in (33) and noting that ρ2ψ2 = −(1−
ρ2)ψ̃2, we have

cFP2−FP1(H,L)− c(H, L) ≤ 1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2 + ρ2(H + L− ψ̃1)2

+(1− ρ2)s2 + 2(1− ρ2)s(t2 − s)

−2(ρh
1 − 1)(H + L− t2)(H − ψ1) + (1− ρ2 − ρl

1)L
2
}

≤ 1
2
h1µ1

{(ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

(H − ψ̃1)2 + (H + L− ψ̃1)2

+(1− ρ2)s2 + 2(1− ρ2)s(t2 − s)

−2(ρh
1 − 1)(H + L− t2)(H − ψ1) + (1− ρ2 − ρl

1)L
2
}

.

Note that s and t2 are all finite linear functions of H as ρ2 → 1−ρl
1. Moreover, γ2(H− ψ̃1) ≤

L ≤ γ2(H − ψ̃1) since (H, L) ∈ ∆4 and (OPT:5). Thus, cFP2−FP1(H, L)− c(H,L) is bounded
by a quadratic function of H as ρ2 → 1− ρl

1.

Finally, if (H,L) is in the region given in (OPT:6), then

c(H, L) ≥ 1
2
h2µ2

{
(1− ρ2)(2ψ̃2 − s)s + 2(1− ρ2)(ψ̃2 − s)(H + L− s)

−1− ρl
1

η

(ρh
1 − 1

1− ρl
1

(H − t1)− L
)2}

.

Plugging in the upper bound of cFP2−FP1(H,L) given in (33), we obtain

cFP2−FP1(H,L)− c(H, L) ≤ 1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − ψ̃1)2 + ρ2(H + L− ψ̃1)2

+(1− ρ2)s2 + 2(1− ρ2)s(H + L− s)

+
1− ρl

1

η

(ρh
1 − 1

1− ρl
1

(H − t1)− L
)2}

≤ 1
2
h1µ1

{(ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

(H − ψ̃1)2 + ρ2(H + L− ψ̃1)2

+(1− ρ2)s2 + 2(1− ρ2)s(H + L− s)

+
1− ρl

1

η

(ρh
1 − 1

1− ρl
1

(H − t1)− L
)2}

.

Note that s and t2 are all finite linear functions of H as ρ2 → 1− ρl
1. Moreover, since (H,L)

belongs to (OPT:6) (and also ∆4), γ2(H − ψ̃1) ≤ L ≤ γ2(H − ψ̃1). Thus, cFP2−FP1(H, L) −
c(H, L) is bounded by a quadratic function of H as ρ2 → 1− ρl

1.

Note that since 0 ≤ ρ2 ≤ 1 and L is bounded, the above upper bounds could be further simplified so
that they do not depend on ρ2 and L. Therefore, since E[H2] < ∞, the proof for the case ψ̃1 ≤ ψ̃2

is complete. The proof for the case ψ̃1 ≥ ψ̃2 is similar and it is omitted
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6 Numerical results

In this section, we provide numerical examples to demonstrate the performance of the discrete
review policy described in Section 4 in systems with random high and low periods. Ideally, once
the exact lengths of the high and low periods (H and L) are known, one can follow the optimal
policy in the deterministic case described in Section 3. Recall that c(H, L) denotes the total
holding cost under the optimal policy when the lengths of the high and low periods are known.
Since one can not observe the true lengths of the either periods until they end, such a policy is not
implementable. However, the quantity E[c(H,L)] can be used as a lower bound of the cost function
since no other policy can outperform such a policy with perfect knowledge of H and L. We will
use this lower bound (which will be referred as LB) as a guideline to evaluate the performance of
other implementable policies.

While implementing the discrete review policy, we use both of the methods given in (24) and
(25) to estimate the remaining high period and set p = 0.25, 0.5 and 0.75. Recall that the remaining
low period is always set equal to its mean. The discrete review policy implemented with the method
in (24) (i.e. the remaining high period is set equal to its expected value) will be called DSview1,
and the discrete review policies implemented with the method given in (25) with p = 0.25, 0.5
and 0.75 will be called DSview2, DSview3, and DSview4, respectively. We compare the expected
holding cost of these four policies with the lower bound LB, the expected holding cost of the FP1
policy and the expected holding cost of the πa1 policy.

Even though we have considered several systems, in the interest of space we report our findings
from two sets of examples referred as System I and System II respectively. In System I, parameters
are set as follow: θ1 = 50, θ2 = 100, h1 = 2, h2 = 1, Z1(0) = 0, Z2(0) = 90, ρh

1 = 2, ρl
1 = 0.1 and

ρ2 = 0.4. In System II, ρl
1 = 0 and ρ2 = 0.95 and the remaining parameters remain the same. We

consider four different distributions (referred as Case A, Case B, Case C and Case D respectively)
for the length of the high (H) and the low (L) periods, In Case A, both H and L are Erlang-2
random variables. In Case B, both H and L are exponential random variables. In Cases C and D,
both H and L are hyper-exponential random variables with squared coefficient of variation 2 and
10, respectively. Note that the squared coefficient of variation of the distributions in Case A and
Case B are 1/2 and 1, respectively. In our experiments, E[H] attains the values: 5, 12.5, 25, 37.5
and 50 and E[L] attains the values: 12.5, 25, 50 and 1000.

Under a specified distribution with fixed values of E[H] and E[L], we generate 500,000 sets of
H and L values. For each set of H and L values, we compute c(H, L) (lower bound), cFP1(H,L),
ca1(H,L) and the holding costs of the four discrete review policies. We then compute the average
holding costs over 500,000 replications. In all our numerical experiments, while implementing the
discrete review policies, we set τ equal to 0.1. The value of τ is determined by simulating the
systems that we consider under the discrete review policies with different τ values and eventually
picking the τ value which yields a good holding cost performance while keeping the run times
reasonably short. Tables 1 through 4 display the average value of the lower bound on holding
cost and the percentage difference off the lower bound of the average holding cost of the FP1, πa1 ,
DSview1, DSview2, DSview3 and DSview4 policies.

As Tables 1 through 4 show, discrete review policies have a good holding cost performance.
The largest percentage difference between the holding cost of discrete review policies and the lower
bound on the holding cost is approximately 21%. Moreover, the discrete review policies are more
robust than the FP1 and the πa1 policies. Note that the average holding cost under the discrete
review policies is much less than the average holding cost under the FP1 policy in Cases A and B
when E[H] is small to moderate. The same result also holds for Case C when ρl

1 = 0 and ρ2 = 0.95.
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However, as the variability increases, FP1 policy outperforms all other policies. In particular, in
Case D the holding cost under the FP1 policy is less than the holding cost under all discrete review
policies except when E[L] is large (see Table 4). Discrete review policies outperform πa1 policy in
Cases C and D. When the system variability is low, for systems with ρl

1 = 0.1 and ρ2 = 0.4, the
discrete review policies outperform the πa1 policy. For systems with ρl

1 = 0 and ρ2 = 0.95, the
same observation holds for the DSview1, DSview3 and DSview4 policies. If ρl

1 = 0 and ρ2 = 0.95,
DSview2 has higher holding cost than πa1 policy in Cases A and B when E[H] is small and E[L] is
not large or when E[L] is large.

In systems with ρl
1 = 0.1 and ρ2 = 0.4, in general DSview4 policy has a poor performance

compared to the other discrete review policies. It performs well only for small values of E[H] in
Case A. On the other hand, DSview2 significantly outperforms DSview1 and DSview3 policies in
Cases A and B and in Case C when E[H] is not large. In Case C, as E[H] increases, DSview1 policy
starts dominating the other discrete review policies. On the other hand, in Case D, DSview1 policy
always outperforms the other discrete review policies in systems with ρl

1 = 0.1 and ρ2 = 0.4. The
same assertion holds for systems with ρl

1 = 0 and ρ2 = 0.95 except when E[L] and E[H] are both
large (see Table 4).

In systems with ρl
1 = 0 and ρ2 = 0.95, the performances of DSview2 and DSview4 policies

depend on the expected length of the low period. Even though the DSview4 policy shows poor
performance (compared to the other discrete review policies) when E[L] is small, its performance
improves (in particular in Cases A and B) as E[L] gets large. On the other hand, even though
DSview2 policy has one of the best performances among the discrete review policies when E[L]
is small, its performance deteriorates in Cases A and B as E[L] gets large. However, in Cases C
and D, DSview1 and DSview2 policies always have better holding cost performance than the other
discrete review policies.

In conclusion, discrete review policies yield good holding cost performance and they are robust
with respect to the system parameters. Among the discrete review policies, one can employ the
DSview2 policy (in order to reduce the total holding cost) if class 2 is not heavily loaded and the
coefficient of variation of the high period is not large. However, if the coefficient of variation of the
high period is large, DSview1 policy seems to outperform the other discrete review policies. On
the other hand, if class 2 is heavily loaded, DSview1 policy has a good overall policy. If the system
variability is high (as in Case D), FP1 policy has the best performance among all policies.

7 Summary and conclusions

We studied the dynamic scheduling of different classes of service in a fluid model of computing
paradigms for Internet services that may be overloaded for a transient period. We focused on
minimizing the penalty of the hosting service provider by scheduling its server resources among
various e-commerce sites under Service-Level-Agreement (SLA) contracts with specific Quality-of-
Service (QoS) performance guarantees for each class of service.

Our focus in this paper was on a system with two fluid classes and a single server whose capacity
can be shared arbitrarily among the two classes. To capture the QoS performance guarantees in
the SLA contracts, we introduced a threshold value for each fluid class such that a holding cost
is incurred only if the amount of fluid of a certain class exceeds its threshold value. We assumed
that the class 1 arrival rate changes with time and the class 1 fluid can more efficiently reduce the
holding cost. Under these assumptions, our objective is to specify the optimal server allocation
policy that minimizes the total holding cost.

We first considered the case that the arrival rate function for class 1 fluid is known. In this
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deterministic setting we could completely characterize the optimal server allocation policy that min-
imizes the holding cost. We then studied the stochastic fluid system when the arrival rate function
for class 1 is random. Using the key insights gained from the optimal policy in the deterministic
setting, we developed simple (heuristic) server allocation policies. These policies called “discrete
review policies” are not only easy to implement but also shown to be strongly asymptotically op-
timal for the two heavy traffic regimes considered in this paper. Moreover, numerical studies have
also demonstrated that discrete review policies yield good holding cost performance in general (not
only in the asymptotic sense) and they are robust with respect to the system parameters such as
load and class 1 arrival rate function.

Appendices

A An Optimal policy if h1µ1 ≤ h2µ2

Under the assumption that the class 2 has constant arrival rate λ2 and ρ2 < 1, if h1µ1 ≤ h2µ2,
the optimal policy is a generalization of the cµ rule. Such an optimal policy is given below. The
optimality of this policy can be proven using the techniques in Appendix B as is done when the
assumption in (5) holds.

• If Z2(t) > θ2, full capacity is given to class 2, i.e. Ṫ1(t) = 0, Ṫ2(t) = 1.

• If Z2(t) = θ2 and Z1(t) > θ1, enough capacity is given to class 2 such that class 2 fluid level is
kept at θ2 and the remaining capacity is used to serve class 1, i.e. Ṫ1(t) = 1− ρ2, Ṫ2(t) = ρ2.

• If Z2(t) < θ2 and Z1(t) ≥ θ1, full capacity is given to class 1, i.e. Ṫ1(t) = 1, Ṫ2(t) = 0.

• If Z2(t) < θ2 and Z1(t) < θ1, and the system is in the high load period (t < H), full capacity
is given to class 1, i.e. Ṫ1(t) = 1, Ṫ2(t) = 0.

• If Z2(t) ≤ θ2 and Z1(t) ≤ θ1, and the system is in the low period (H < t < H + L), enough
capacity is given to each class such that the fluid levels of both classes are kept below their
threshold values. We have multiple choices in this case, one is to let Ṫ1(t) ≥ ρl

1, Ṫ2(t) ≥ ρ2

such that Ṫ1(t) + Ṫ2(t) ≤ 1.

B Proofs for the optimality of the policies in Section 3

Before we prove the optimality of the policies given in Section 3, we provide a lemma related to the
Pontryagin maximum principle. Originally, this lemma was given in Seierstad and Sydsaeter [14]
but the version stated here was tailored for our problem. For completeness, we also provide the
proof of the lemma.

Consider an optimal control problem as follows,

max
∫ B1

B0

f0(x(t), u(t), t) dt (34)

such that
ẋ(t) = f(x(t), u(t), t), (35)
x(B0) = x0, (36)
x(B1) ≥ x1, (37)
u(t) ∈ U where U ⊂ Rr and (x(t), u(t)) ∈ Rn × Rr, (38)
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where f0(x(t), u(t), t), and f(x(t), u(t), t) are continuous functions of t over [B0, B1] except at finite
number of points.

We say that (x(t), u(t)) is an admissible pair if x(t) is absolutely continuous, u(t) is piecewise
continuous, and they satisfy (35) to (38). We want to find an optimal admissible pair (x(t), u(t))
that maximizes integral in (34). In the following lemma, for vectors a and b, a · b denotes the usual
inner product of a and b.

Lemma 13. Let (x̄(t), ū(t)) be an admissible pair for the problem given in (34) to (38). Suppose
there exists a continuous function p(t) = (p1(t), p2(t), . . . , pn(t)) on [B0, B1] such that it has a
piecewise continuous derivative ṗ(t), the continuity of ṗ(t) is violated only at finite number of points,
and p(t) satisfies

pi(B1) ≥ 0, and pi(B1) = 0 if x̄i(B1) > xi
1, ∀i = 1, . . . , n. (39)

In addition, the Hamiltonian function

H(x(t), u(t), p(t), t) = f0(x(t), u(t), t) + p(t) · f(x(t), u(t), t) (40)

satisfies the following

H(x̄(t), ū(t), p(t), t)−H(x(t), u(t), p(t), t) ≥ ṗ(t) · (x(t)− x̄(t)) (41)

for all admissible pairs (x(t), u(t)), for all t ∈ [B0, B1] except at finite number of points. Then
(x̄(t), ū(t)) is an optimal pair for problem (34) to (38).

Proof. We use ∆ to denote the following

∆ =
∫ B1

B0

f0(x̄(t), ū(t), t)dt−
∫ B1

B0

f0(x(t), u(t), t) dt.

Then the optimality of (x̄(t), ū(t)) is equivalent to ∆ ≥ 0 for all admissible pairs (x(t), u(t)).
According to (40) we have

∆ =
∫ B1

B0

[H(x̄(t), ū(t), p(t), t)−H(x(t), u(t), p(t), t)] dt

+
∫ B1

B0

p(t) · [f(x(t), u(t), t)− f(x̄(t), ū(t), t)] dt.

It then follows from (35) and (41) that

∆ ≥
∫ B1

B0

ṗ(t) · [x(t)− x̄(t)] dt +
∫ B1

B0

p(t) · [ẋ(t)− ˙̄x(t)] dt.

Assume that B0 = ξ0 < ξ1 < · · · ξk < ξk+1 = B1, are all the possible discontinuity points of
ṗ(t), ẋ(t) and ˙̄x(t). So the right hand side of the above inequality can be written as

k∑

i=0

{∫ ξi+1

ξi

ṗ(t) · [x(t)− x̄(t)]dt +
∫ ξi+1

ξi

p(t) · [ẋ(t)− ˙̄x(t) dt]
}

=
k∑

i=0

∫ ξi+1

ξi

d

dt
[p(t) · (x(t)− x̄(t))]
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=
k∑

i=0

[
p(ξi+1) · (x(ξi+1)− x̄(ξi+1))− p(ξi) · (x(ξi)− x̄(ξi))

]

= p(B1) · (x(B1)− x̄(B1))
≥ 0,

where the last equality is due to the continuity of p(t), x(t), x̄(t) and (36), and the last inequality
is based on (37) and (39). Hence, ∆ ≥ 0, and the optimality of (x̄(t), ū(t)) is proven.

We next prove that the policy specified in Section 3 is optimal for our original problem described
in Section 2 with deterministic high and low periods. First, replacing Ṫi(t) by ui(t), notice that
our original control problem is equivalent to

max
∫ H+L

0

2∑

i=1

−hi (Zi(t)− θi)
+ dt. (42)

such that Żi(t) = λi(t)− µiui(t) i = 1, 2 (43)
Zi(t) ≥ 0 ∀t ∈ [0,H + L], i = 1, 2 (44)
ui(t) ≥ 0 ∀t ∈ [0, H + L], i = 1, 2 (45)
u1(t) + u2(t) ≤ 1 ∀t ∈ [0,H + L], (46)

where λ1(t) = λh
1 , ∀t ∈ (0, H), and λ1(t) = λl

1, ∀t ∈ (H,H + L), and λ2(t) = λ2, ∀t ∈ (0, H + L).
Hereafter, we are going to use u∗(t) to denote the proposed policy given in Section 3, and Z∗(t)

to denote the fluid level under this policy.
Based on Lemma 13, in order to prove the optimality of (Z∗, u∗), it suffices to construct con-

tinuous functions pi(t), i = 1, 2, with piecewise continuous derivatives such that (Z∗(t), u∗(t), p(t))
satisfies (39) and (41). In what follows, we illustrate the basic idea of the construction and proof
by focusing on only one special case in Section 3. Notice that other cases can be proved similarly.

B.1 Proof for the optimality of the policy in section 3.1.

Before introducing our construction of p’s, we first describe the fluid level evolution of both classes
under the policy u∗ specified in Section 3.1.

Notice that under the policy u∗, class 1 will have higher priority starting from time s2 until
time t in the low period such that Z∗1 (t) ≤ θ1. Corresponding to this policy, we define two critical
time instances for class 1 as follow

t1 = max{t : s2 ≤ t ≤ H, Z∗1 (t) ≤ θ1}, (47)
t2 = max{t : H ≤ t ≤ H + L, Z∗1 (t) ≥ θ1}, (48)

where t1 is the time that class 1 increases to its threshold from below in the high period if the
duration of high period is long enough and t2 is the time that class 1 decreases to its threshold
from above in the low period if the duration of the low period is long enough.

Similarly, we define two critical time instances for class 2

s̃2 = max{t : s2 ≤ t ≤ t2, Z∗2 (t) ≤ θ2}, (49)
t̃2 = max{t : t2 ≤ t ≤ H + L, Z∗2 (t) ≥ θ2}, (50)
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where s̃2 is the time that class 2 increases to its threshold from below during the time interval that
class 1 has higher priority, i.e. during interval [s2, t2] and t̃2 is the time that class 2 decreases to its
threshold from above in the low period if the duration of the low period is long enough. Note that
after class 1 decreases to its threshold from above in the low period at t2, the Low-period-policy
gives enough capacity to class 2 to decrease class 2 fluid level.

Based on the definition of s1, s2 (described in Section 3) and the definition of t1, t2, s̃2, t̃2, we
claim the following holds:

Claim 1:

s1 ≤ s2 ≤ t1 ≤ H ≤ t2 ≤ H + L,

s1 ≤ s2 ≤ s̃2 ≤ t2 ≤ t̃2 ≤ H + L,

Claim 2:

∀t ∈ (0, s1) Z∗1 (t) < θ1, Z∗2 (t) > θ2,

∀t ∈ (s1, s2) Z∗1 (t) < θ1, Z∗2 (t) ≤ θ2,

∀t ∈ (s2, t1) Z∗1 (t) < θ1,

∀t ∈ (t1, t2) Z∗1 (t) > θ1,

∀t ∈ (t2, H + L) Z∗1 (t) ≤ θ1,

∀t ∈ (s2, s̃2) Z∗2 (t) < θ2,

∀t ∈ (s̃2, t̃2) Z∗2 (t) > θ2,

∀t ∈ (t̃2, H + L) Z∗2 (t) ≤ θ2.

For ease of readability, we defer the proof of the claims to the end and next show how to
construct the auxiliary functions p(t).

It follows from the Pontryagin maximal principle that the optimal policy has to satisfy ṗi(t) =
∂

∂Zi
H(Z(t), p(t), t) at the differentiable points, where the Hamiltonian function is given by

H(Z(t), u(t), p(t), t) =
2∑

i=1

(−hi (Zi(t)− θi)
+ + pi(t)(λi(t)− µiui(t))

)
. (51)

We therefore construct pi(t), i = 1, 2 (in a backward fashion) as follows:

pi(H + L) = 0; i = 1, 2,

∀t ∈ (t̃2, H + L) : ṗ1(t) = 0, ṗ2(t) = 0,

∀t ∈ (t2, t̃2) : ṗ1(t) =
µ2h2

µ1
, ṗ2(t) = h2,

∀t ∈ (t1, t2) : ṗ1(t) = h1,

∀t ∈ (s2, t1) : ṗ1(t) = 0,

∀t ∈ (s̃2, t2) : ṗ2(t) = h2,

∀t ∈ (s2, s̃2) : ṗ2(t) = 0,
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∀t ∈ (s1, s2) : ṗ1(t) = 0; ṗ2(t) = 0,
∀t ∈ (0, s1) : ṗ1(t) = 0; ṗ2(t) = h2.

Based on the above construction, we have the following properties stated as Claim 3, whose proof
is also deferred to the end of this subsection.

Claim 3:

∀t ∈ (t2, H + L) : µ1p1(t) = µ2p2(t) ≤ 0;
∀t ∈ (s2, t2) : µ1p1(t) < µ2p2(t) ≤ 0;
∀t ∈ (s1, s2) : µ1p1(t) = µ2p2(t) ≤ 0;
∀t ∈ (0, s1) : 0 ≥ µ1p1(t) > µ2p2(t).

Based on Lemma 13, the optimality follows once we show that (Z∗(t), u∗(t), p(t)) satisfies (39)
and (41). From the construction of pi(t), (39) holds immediately. It remains to show that (41)
holds in each time interval throughout (0,H + L) under all four cases given in (20) to (23). Here,
we focus only on Case 2.1 to illustrate the basic idea. The other cases can be proved similarly.

Consider, for example, the first time interval (0, s1). The policy in this period is u∗1(t) =
0, u∗2(t) = 1, and from Claim 2 we have Z∗1 (t) < θ1, Z∗2 (t) > θ2. Note that no other admissible
policy can reduce more class 2 fluid level than u∗, thus under any admissible policy ui(t), the fluid
level will satisfy Z1(t) < θ1 and Z2(t) > θ2 for t ∈ (0, s1). Plugging this in (51), we have the left
hand side of (41) equal to

h2(Z2(t)− Z∗2 (t)) +
2∑

i=1

−µipi(t)(u∗i (t)− ui(t)).

Based on Claim 3, for all t in (0, s1), we have −µ2p2(t) ≥ −µ1p1(t) ≥ 0. Therefore,

2∑

i=1

−µipi(t)(u∗i (t)− ui(t)) ≥ −µ1p1(t)(u∗1(t) + u∗2(t)− u1(t)− u2(t)).

Note that u∗1(t) + u∗2(t) = 1, and the admissible ui(t), i = 1, 2 satisfies u1(t) + u2(t) ≤ 1, so the
right hand side of the above inequality is non-negative. It follows immediately that (41) holds for
all time t in the interval (0, s1).

Repeating this procedure for the remaining intervals, we can similarly prove that (41) holds for
all time t in (0,H + L). Hence the optimality of the proposed policy is guaranteed.

We now prove the three claims we made earlier. Again, we focus only on Case 2.1 to illustrate
the basic idea. The other cases can be proved similarly.

• Proof for Claim 1 and Claim 2 in Case 2.1. Recall that in Case 2.1, we assume that
Z∗1 (0) < θ1, Z∗2 (0) > θ2, and condition (10) holds.

In this case, s1 and s2 are solved using the equations given in (11) to (19). Simultaneously, we
also compute u1, u2, t1 and t2. They can all be expressed in terms of initial fluid levels Z∗i (0), i =
1, 2, durations of the high and low periods H and L, the arrival rates λh

1 , λl
1, and λ2, service rates

µi, i = 1, 2, and holding cost rates hi, i = 1, 2.
Since Z∗2 (0) > θ2 and ρ2 < 1 (i.e λ2 < µ2), it follows from (11) that s1 > 0 (s1 is the time that

class 2 decreases to its threshold when it has higher priority). Since Z∗2 (s1) = θ2, it follows from
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(13) that u2 = ρ2 > 0. Hence, from (15) u1 = 1 − ρ2 > 0. One can check that the requirement
t2 ≤ H + L is equivalent to L ≥ γ1(H − a1). In addition, t1 ≤ H ≤ t2 is equivalent to a1 ≤ H, and
s1 ≤ s2 is equivalent to H ≤ B. So, in Case 2.1 of Section 3.1, condition (10) guarantees that we
have 0 ≤ s1 ≤ s2 ≤ t1 ≤ H ≤ t2 ≤ H + L and u1 > 0, u2 > 0.

Under the proposed policy, we know that λh
1 > µ1. Hence, the fluid level Z∗1 (t) increases in the

interval (0,H) and Z∗1 (0) < θ1 and Z∗1 (t1) = θ1 (see (16)). Thus, for any t ∈ (0, t1), we know that
Z∗1 (t) < θ1 and for any t ∈ (t1, H), Z∗1 (t) > θ1. Under the proposed policy, in the low period, the
fluid level Z∗1 (t) decreases until it hits its threshold at t2 (see (18)). Hence, for any t ∈ (t1, t2),
Z∗1 (t) > θ1. Then we can see that t1 and t2 obtained from the set of equations of Case 2.1 coincide
with their definitions given in (47) and (48). Hence, the first inequality of claim 1 holds. From the
definition of s̃2 and t̃2, we can immediately see that the second inequality of claim 1 also holds.

We now prove Claim 2. While proving Claim 1, we have already shown that Z∗1 (t) satisfies the
inequalities in Claim 2 for all t < t2. Since λ2 < µ2 and u2 = ρ2, under the proposed policy, Z∗2 (t)
decreases in the interval (0, s1), until it reaches θ2 at s1 (see (11)). It is kept at its threshold θ2

in the interval (s1, s2) since λ2 = µ2u2. Then it increases in the interval (s2, H) since class 1 has
higher priority. Since Z∗1 (t) > θ1 in the interval (H, t2), under the proposed Low-period-policy,
class 1 still has higher priority and class 2 fluid continues to increase until class 1 fluid decreases
to its threshold at t2. Hence,

∀t ∈ (0, s1), Z∗2 (t) > θ2, Z∗2 (s1) = θ2,

∀t ∈ (s1, s2), Z∗2 (t) = θ2, Z∗2 (s2) = θ2,

∀t ∈ (s2, t2), Z∗2 (t) > θ2, Z
∗
2 (t2) ≥ θ2.

After t2, under the proposed Low-period-policy, if Z∗2 (t2) > θ2, then class 1 fluid is going to be
kept at its threshold by setting u∗1(t) = ρl

1, and class 2 fluid is going to decrease by holding service
capacity at u∗2(t) = 1 − ρl

1 > ρ2 until class 2 fluid reaches its threshold from above at t̃2 (see the
definition of t̃2 given in (50)). After t̃2, u∗1(t) > ρl

1 and u∗2(t) > ρ2. So, fluid levels of both classes
are going to decrease and are maintained below their thresholds. Hence,

∀t ∈ (t2, t̃2), Z∗2 (t) > θ2, Z∗1 (t) = θ1,

∀t ∈ (t̃2, H + L), Z∗2 (t) ≤ θ2, Z∗1 (t) ≤ θ1.

This completes the proofs of Claims 1 and 2.

• Proof for Claim 3 in Case 2.1. From the proofs of Claims 1 and 2, we know that in this
case s̃2 = s2.

From the construction of pi(t), i = 1, 2, we know that they are piecewise linear functions. To
compare their values, it is sufficient to compare them at the end points of each interval. Since
pi(H + L) = 0 and ṗi(t) ≥ 0 at all differentiable points, we know pi(t) ≤ 0, i = 1, 2, for all
t ∈ [0,H +L]. Note that since p1(H +L) = p2(H +L) = 0 and µ1ṗ1(t) = µ2ṗ2(t) for t ∈ (t2,H +L),
we have µ1p1(t) = µ2p2(t) for t ∈ [t2, H + L]. Based on the derivatives, we then have

∀t ∈ [t1, t2], µipi(t) = µipi(t2) + µihi(t− t2), i = 1, 2.

Using the fact that µ1h1 > µ2h2, µ1p1(t2) = µ2p2(t2) and noting t− t2 < 0 for t ∈ (t1, t2), we have

∀t ∈ (t1, t2), µ2p2(t) > µ1p1(t).
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Based on the derivatives of p(t), we have

∀t ∈ [s2, t1], µ1p1(t) = µ1p1(t1),
∀t ∈ [s2, t2], µ2p2(t) = µ2p2(t2) + µ2h2(t− t2).

¿From (19) and µ1p1(t2) = µ2p2(t2), we have µ1p1(s2) = µ2p2(s2). Combining this with µ1p1(t1) ≤
µ2p2(t1), we have

∀t ∈ (s2, t1), µ1p1(t) ≤ µ2p2(t).

¿From µ1p1(s2) = µ2p2(s2) and ṗi(t) = 0, i = 1, 2, for t ∈ (s1, s2), we can immediately see that

∀t ∈ [s1, s2], µ1p1(t) = µ2p2(t) = µ2p2(s2).

For t ∈ (0, s1), based on the derivatives of p(t), we have

∀t ∈ [0, s1], µ2p2(t) = µ2p2(s1) + µ2h2(t− s1),
∀t ∈ [0, s1], µ1p1(t) = µ1p1(s1).

Note that µipi(t) has the same value at s1 for i = 1, 2 and for t ∈ (0, s1), ṗ2(t) = h2 > 0 = ṗ1(t),
then we have

∀t ∈ (0, s1), µ1p1(t) > µ2p2(t).

This completes the proof of Claim 3.

B.2 Proof for the optimality of the policy in Section 3.2

We will only construct the auxiliary function pi(t), i = 1, 2. To complete the proof of (41), one
only needs to go through the routine procedure as described in Section B.1. We define t2, s̃2 and
t̃2 in the same way as in (48), (49) and (50) but now they are defined under the policy given in
Section 3.2. According to the definition of the break points si, i = 1, 2, 3, s̃2, t2, and t̃2, we can
specify the fluid level evolution for each time interval, and the derivatives of pi(t), i = 1, 2. In
the equations given below, if the right hand side of an interval is not strictly larger than the left
side of the interval, then that interval does not exist but this does not affect our definition of the
derivatives of pi(t) and the fluid level description Z∗i (t) for i = 1, 2. We have

∀t ∈ (0, s1) : Z∗1 (t) < θ1, Z∗2 (t) > θ2, ṗ1(t) = 0, ṗ2(t) = h2,

∀t ∈ (s1, s2) : Z∗1 (t) < θ1, Z∗2 (t) ≤ θ2, ṗ1(t) = 0, ṗ2(t) = 0,

∀t ∈ (s2, s̃2) : Z∗2 (t) < θ2, ṗ2(t) = 0,

∀t ∈ (s̃2, t̃2) : Z∗2 (t) > θ2, ṗ2(t) = h2,

∀t ∈ (s2, s3) : Z∗1 (t) > θ1, ṗ1(t) = h1,

∀t ∈ (s3, H) : Z∗1 (t) = θ1, ṗ1(t) = µ2ṗ2(t)/µ1,

∀t ∈ (H, t2) : Z∗1 (t) > θ1, ṗ1(t) = h1,

∀t ∈ (t2, t̃2) : Z∗1 (t) = θ1, ṗ1(t) = µ2ṗ2(t)/µ1,

∀t ∈ (t̃2, H + L) : Z∗1 (t) ≤ θ1, Z∗2 (t) ≤ θ2, ṗi(t) = 0, i = 1, 2,

and we let pi(H+L) = 0, i = 1, 2. Thus, we can construct continuous and piecewise linear functions
pi(t), i = 1, 2 which have the specified derivatives in each interval and satisfy (39).

38



B.3 Proof for the optimality of the policy in Section 3.3

As in the proof of the optimality of the policies given in Sections 3.1 and 3.2, the proof involves
constructing the functions pi(t), i = 1, 2 based on the Pontryagin maximal principle and is omitted.

C Holding cost expressions

In this section, we provide expressions for the holding cost under various policies when the length of
the high period is H and the length of the low period is L. These expressions are used extensively
in Section 5. We only consider the cases given in Section 3, i.e., we assume ρh

1 > 1 and ρl
1 + ρ2 < 1.

We know from Corollary 2 that for Case 1 and Case 3, specified in (20) and (22) respectively,
FP1 policy is optimal. Hence, we focus only on Cases 2 and 4 given in (21) and (23) respectively.
In order to see the performance of the policies considered in Section 5, we first provide the holding
cost expressions under the optimal policy. These expressions serve as the lower bound for all the
other policies. Then we also provide the holding cost expressions under FP1 policy for Cases 2
and 4. In addition, we also provide the holding cost expressions under FP2-FP1 policy for Case 2,
and the holding cost expressions under πa1 policy for Case 4. These expressions help evaluate the
performance of these two policies when ρ2 + ρl

1 → 1.
When H and L are known, the optimal policy is given in Section 3.1. In order to compute the

holding cost expression under a given policy, we observe the evolution of the fluid levels of both
classes under this policy. Given the fluid levels, holding cost incurred by class 1 and class 2 can
be computed easily. For example, for Case 2, when H and L satisfy the conditions of Case 2.6 (in
Section 3.1), i.e., H > a2, H + L > ψ1(1 − η)−1, the optimal policy is to set s1 = s2 = 0 which is
equivalent to the FP1 policy. We know that fluid levels of both classes will increase, and at t1 = ψ1,
class 1 fluid reaches its threshold from below and starts to incur cost. Fluid levels of both classes
continue to increase linearly until the beginning of the low period. In the low period, fluid level
of class 1 begins to decrease and class 2 fluid continues to increase until class 1 fluid decreases to
its threshold, which happens at t2. After t2, class 1 fluid is kept at its threshold and class 2 fluid
begins to decrease and reaches its threshold at t̃2. We know that after t̃2, both classes will be kept
below their thresholds. Note that when H > a2, under the optimal policy, L ≥ t̃2−H is equivalent
to L ≥ γ4(H − a1) (which is OPT:1 below) and H ≥ a2, L ≥ γ4(H − a1) imply that the conditions
of Case 2.6, i.e., H ≥ a2, H + L > ψ1(1− η)−1 are satisfied. So, we can compute the holding cost
when H ≥ a2 and L ≥ γ4(H − a1). We obtain the holding cost expressions for the other cases in a
similar way.

C.1 Cost under the optimal policy

While computing the holding cost under the optimal policy, we combine Cases 2 and 4 whenever
ψ−2 = 0 (in Case 4), where a− = max{−a, 0}. However, we have to divide each case into several
subcases in order to obtain closed form expressions for the holding cost. As a result, we have 17
subcases labeled (OPT:1) to (OPT:17). Recall that t1 is the time that class 1 increases to its
threshold from below in the high period, and t2 is the time that class 1 decreases to its threshold
from above in the low period if the low period is long enough, and t̃2 is the time that class 2
decreases to its threshold from above if the low period is long enough. Also, recall that ψ̃1 ≥ ψ̃2 is
equivalent to B ≥ a1 ≥ ψ̃1 ≥ ψ̃2.

1. Assume that the conditions of Case 2.6 (or Case 4.4) are satisfied and L ≥ t̃2. In Case 2.6
(and Case 4.4), the optimal policy sets s1 = s2 = 0, i.e. implements the FP1 policy. If L ≥ t̃2
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is also satisfied, then the low period is long enough so that the fluid levels of both classes
reach their thresholds. This is equivalent to

(OPT:1) H ≥ a2, L ≥ γ4(H − a1),

where γ4 is given in the proof of Proposition 6 in Section 5, and the holding cost is

c(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 − (ρh

1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
]2

}
.

2. Assume that the conditions of Case 2.6 (or Case 4.4) are satisfied and t2 ≤ L ≤ t̃2. As
mentioned above, in Case 2.6 (and Case 4.4), the optimal policy implements the FP1 policy.
If t2 ≤ L ≤ t̃2, then the low period is long enough such that class 1 fluid level reaches its
threshold, but class 2 fluid is still above its threshold when the low period is over. This is
equivalent to

(OPT:2) H ≥ a2, γ3(H − ψ1) ≤ L ≤ γ4(H − a1),

and the holding cost is

c(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 − (ρh

1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
]2

}

−1
2
h2µ2(1− ρ2 − ρl

1)
[(ρh

1 + ρ2 − 1)
(1− ρ2 − ρl

1)
(H − a1)− L

]2
.

3. Assume that the conditions of Case 2.6 (or Case 4.4) are satisfied and L ≤ t2. The optimal
policy sets s1 = s2 = 0, i.e. implements the FP1 policy. Since L ≤ t2, at the end of the low
period, both classes will be above their thresholds. This is equivalent to

(OPT:3) H ≥ a2, L ≤ γ3(H − ψ1), H + L ≥ ψ+
1 +

η

1− η
(ψ+

1 − ψ+
2 ),

and the optimal cost is

c(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 + ρ2(H + L− ψ2)2

−1− ρl
1

η

[ρh
1 − 1

1− ρl
1

(H − ψ1)− L
]2
− (ρh

1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2
}

.
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4. Assume that the conditions of Case 2.3 are satisfied and L ≥ t̃2 − H. In Case 2.3 optimal
policy sets s1 = s2. Let s1 = s2 = s. Note that L ≥ t̃2 −H is equivalent to L > γ4(H − a1),
which means that the low period is long enough so that fluid levels of both classes reach their
thresholds. Thus, if

(OPT:4) max(ψ̃1, B) ≤ H ≤ a2, L ≥ γ4(H − a1),

then the holding cost is

c(H, L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + ρ2(t2 − s)2

+(1− ρ2)(2ψ̃2 − s)s + 2(1− ρ2)(ψ̃2 − s)(t2 − s)

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}
,

where

s =
d1/µ1 − (ρh

1 − 1)(1− η)t2
1 + η(ρh

1 − 1)
,

t1 =
(1− η)t2 + ηd1/µ1

1 + η(ρh
1 − 1)

,

t2 =
(ρh

1 − ρl
1)H − η(ρh

1 − 1)d1(µ1(1 + η(ρh
1 − 1)))−1

(1− ρl
1) + (1− η)(ρh

1 − 1)(1 + η(ρh
1 − 1))−1

,

5. Assume that the conditions of Case 2.3 are satisfied and L ≤ t̃2 −H. When H and L satisfy
the conditions of Case 2.3, it implies that L ≥ t2, i.e., the low period is long enough so that
class 1 reaches its threshold. However, since L ≤ t̃2 −H, the low period is not long enough
for class 2 to reach its threshold. At the end of the low period, class 2 fluid is still above its
threshold, but class 1 is below its threshold. Hence, if

(OPT:5) max(ψ̃1, B) ≤ H ≤ a2, γ2(H − ψ̃1) ≤ L ≤ γ4(H − a1)

then the holding cost is

c(H,L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + ρ2(t2 − s)2

+(1− ρ2)(2ψ̃2 − s)s + 2(1− ρ2)(ψ̃2 − s)(t2 − s)

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}

−1
2
h2µ2(1− ρ2 − ρl

1)
[(ρh

1 + ρ2 − 1)
(1− ρ2 − ρl

1)
(H − a1)− L

]2
,

where t2, t1, s are the same as in the previous case.

6. Assume that the conditions of Case 2.4 are satisfied. In Case 2.4, the optimal policy sets
s1 = s2 = s and t2 = H + L. In this case, at the end of the low period the fluid levels of both
classes are above their thresholds. Thus, if

(OPT:6) L ≤ γ2(H − ψ̃1), max{ψ̃1, ψ̃1 +
1 + η(ρh

1 − 1)
(1− η)(ρh

1 − 1)
(ψ̃1 − ψ̃2)} ≤ H + L ≤ ψ1

1− η
,
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then the holding cost is

c(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − t1)2 + (1− ρ2)(2ψ̃2 − s)s

+2(1− ρ2)(ψ̃2 − s)(H + L− s) + ρ2(H + L− s)2

−(1− ρl
1)

η

[(ρh
1 − 1)

(1− ρl
1)

(H − t1)− L
]2

}
,

where

s =
d1/µ1 − (1− η)(ρh

1 − 1)(H + L)
1 + η(ρh

1 − 1)
,

t1 =
ηd1/µ1 + (1− η)(H + L)

1 + η(ρh
1 − 1)

.

7. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, class 2 decreases to its threshold
before class 1 increases to its threshold, and the low period is long enough to decrease class
2 fluid to its threshold. When conditions of Case 2.5 are satisfied, and ψ̃1 ≤ ψ̃2, we have
H ≤ ψ̃1 ≤ ψ̃2 and the optimal policy sets s1 = s2 = H. In the high period, class 2 has
higher priority and in the low period, class 2 has higher priority until class 1 fluid increases
to its threshold or class 2 fluid decreases to its threshold. Under this policy, let t′1 be the time
that class 1 fluid increases to its threshold in the low period if the low period is long enough.
Then, t′1 = H + ρh

1/ρl
1(ψ̃1 − H). If ψ̃2 ≤ t′1, then class 2 fluid decreases to its threshold in

the low period, at ψ̃2, before class 1 fluid increases to its threshold. In this case, after ψ̃2, no
class will incur cost under the Low-period-policy. Hence, if

(OPT:7) H ≤ ψ̃1 ≤ ψ̃2 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H, H + L > ψ̃2,

then the holding cost is

c(H, L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

8. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, class 2 fluid decreases to its
threshold before class 1 fluid increases to its threshold, but the low period is not long enough
for class 2 fluid to reach its threshold. Hence, H + L ≤ ψ̃2. If

(OPT:8) H ≤ ψ̃1 ≤ ψ̃2 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H, H + L ≤ ψ̃2,

then the holding cost is

c(H, L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).

9. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, class 1 fluid level increases to
its threshold before class 2 fluid level decreases to its threshold, and the low period is long
enough for class 2 fluid to reach its threshold. Since the conditions of Case 2.5 are satisfied
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and ψ̃1 ≤ ψ̃2, we have H ≤ ψ̃1 ≤ ψ̃2. Following the optimal policy, we set s1 = s2 = H. Class
2 has higher priority in the high period and also in the low period before class 1 fluid reaches
its threshold at t′1. So, if ψ̃2 ≥ t′1, it means that class 2 is still above its threshold when class
1 increases to its threshold in the low period. Based on the Low-period-policy after t′1, server
will spend just enough effort (u1 = ρl

1) to keep class 1 at its threshold, and use the remaining
effort (u2 = 1− ρl

1 > ρ2) to serve class 2. Let t̃2 be the time that class 2 fluid level decreases
to its threshold, then L + H ≥ t̃2, which is equivalent to L ≥ γ4(H − a1). So, if

(OPT:9) H ≤ ψ̃1 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H ≤ ψ̃2, L ≥ γ4(H − a1),

then the holding cost is

c(H, L) =
1
2
h2µ2

{
(1− ρ2)

[
2ψ̃2 − ρh

1

ρl
1

(ψ̃1 −H)−H
][ρh

1

ρl
1

(ψ̃1 −H) + H
]

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− ρh
1

ρl
1

(ψ̃1 −H)
]2

}
.

10. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, class 1 fluid level increases to
its threshold before class 2 fluid level decreases to its threshold, and the low period is not
long enough for class 2 fluid to reach its threshold, but long enough for class 1 fluid to reach
its threshold. Hence, H + L ≥ t′1, which is equivalent to L ≥ ρh

1/ρl
1(ψ̃1 −H). If

(OPT:10) H ≤ ψ̃1 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H ≤ ψ̃2,
ρh
1

ρl
1

(ψ̃1 −H) ≤ L ≤ γ4(H − a1),

then the holding cost is

c(H, L) =
1
2
h2µ2

{
(1− ρ2)

[
2ψ̃2 − ρh

1

ρl
1

(ψ̃1 −H)−H
][ρh

1

ρl
1

(ψ̃1 −H) + H
]

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− ρh
1

ρl
1

(ψ̃1 −H)
]2

}

−1
2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2

.

11. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, the low period is neither long
enough for class 1 fluid to increase to its threshold nor long enough for class 2 fluid to decrease
to its threshold. However, if the low period were long enough class 1 fluid would increase to
its threshold before class 2 would decrease to its threshold. Hence, H + L ≤ t′1. If

(OPT:11) H ≤ ψ̃1 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H ≤ ψ̃2, L ≤ ρh
1

ρl
1

(ψ̃1 −H),

then the holding cost is

c(H, L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).
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12. Assume that the conditions of Case 2.1 (or Case 4.1) are satisfied and the low period is long
enough for class 2 fluid to decrease to its threshold. Recall that when conditions of Case 2.1
(or Case 4.1) are satisfied, we denote the time that class 2 decreases to its threshold as ψ̃2.
Moreover, H + L ≥ ψ̃2 is equivalent to L > γ4(H − a1) which implies that L ≥ γ1(H − a1).
In this case, at the end of the low period, fluid levels of both classes will be below their
thresholds. Notice that a1 ≤ B implies that ψ̃2 < ψ̃1. Hence, if

(OPT:12) a1 ≤ H ≤ B, L ≥ γ4(H − a1), for Case 2
a1 ≤ H ≤ a2, L ≥ γ4(H − a1), for Case 4

then the holding cost is

c(H, L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + (1− ρ2)s2

1 + ρ2(t2 − s2)2

+ (1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}
,

where

s1 = ψ̃+
2 ,

s2 =
(d1/µ1 + d2/µ2)− (ρh

1 − 1)(1− η)t2
ρ2 + η(ρh

1 − 1)
,

t1 =
η(d1/µ1 + d2/µ2) + ρ2(1− η)t2

ρ2 + η(ρh
1 − 1)

,

t2 =
(ρh

1 − ρl
1)H − (ρh

1 − 1)η(d1/µ1 + d2/µ2)(ρ2 + η(ρh
1 − 1))−1

(1− ρl
1) + (ρh

1 − 1)(1− η)ρ2(ρ2 + η(ρh
1 − 1))−1

.

13. Assume that the conditions of Case 2.1 (or Case 4.1) are satisfied but the low period is not
long enough for class 2 fluid to decrease to its threshold. Hence, L ≤ γ4(H − a1). At the end
of the low period, class 2 is still above its threshold but class 1 is below its threshold. Hence,
if

(OPT:13) a1 ≤ H ≤ B, γ1(H − a1) ≤ L ≤ γ4(H − a1), for Case 2
a1 ≤ H ≤ a2, γ1(H − a1) ≤ L ≤ γ4(H − a1), for Case 4

then

c(H, L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + (1− ρ2)s2

1 + ρ2(t2 − s2)2

+ (1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}

− 1
2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2

where s1, s2, t1, t2 are the same as given in Case 2.1 (Case 4.1).
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14. Assume that conditions of Case 2.2 (or Case 4.2) are satisfied. Note that

ψ̃1 + (1 + η(ρh
1 − 1))((1− η)(ψ̃1 − ψ̃+

2 )(ρh
1 − 1))−1 ≥ a1

implies that ψ̃1 ≥ ψ̃2. Since the low period is not long enough for class 1 fluid to decrease to
its threshold, t2 = H + L. With some algebra we have

(OPT:14) a1 ≤ H, L ≤ γ1(H − a1), H + L ≤ ψ̃1 +
1 + η(ρh

1 − 1)
(1− η)(ρh

1 − 1)
(ψ̃1 − ψ̃+

2 )− η

1− η
ψ+,

and the holding cost is

c(H, L) =
{

(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − t1)2 + (1− ρ2)s2
1

+ρ2(H + L− s2)2 − (1− ρl
1)

η

[ρh
1 − 1

1− ρl
1

(H − t1)− L
]2

}

where

s1 = ψ̃+
2 ,

s2 =
(d1/µ1 + d2/µ2)− (ρh

1 − 1)(1− η)t2
ρ2 + η(ρh

1 − 1)
,

t1 =
η(d1/µ1 + d2/µ2) + ρ2(1− η)t2

ρ2 + η(ρh
1 − 1)

,

t2 = H + L.

15. Assume that conditions of Case 2.5 are satisfied, ψ̃2 ≤ ψ̃1 and class 2 reaches its threshold
from below in the high period or conditions of Case 4.3 are satisfied. Recall that ψ̃2 ≤ ψ̃1

implies that ψ̃2 ≤ ψ̃1 ≤ a1. Since conditions of Case 2.5 and ψ̃2 ≤ ψ̃1 are satisfied, we have
H ≤ a1. According to the optimal policy, class 2 has higher priority in the high period as
long as its fluid level is above its threshold, and class 2 fluid reaches its threshold at ψ̃2. After
ψ̃2, server will allocate enough capacity to keep class 2 fluid level below its threshold and the
remaining capacity will be allocated to class 1. In this case, class 1 fluid will never reach its
threshold in the high period. Similarly, for Case 4.3, under the optimal policy class 1 and
class 2 fluids will stay below their thresholds in the high period. Hence, if

(OPT:15) ψ̃2 ≤ ψ̃1, ψ̃2 ≤ H ≤ a1,

then the holding cost is

c(H,L) =
1
2
h2µ2(1− ρ2)s2

1.

16. Assume that conditions of Case 2.5 are satisfied, ψ̃2 ≤ ψ̃1, and class 2 fluid does not reach its
threshold in the high period, but it reaches its threshold in the low period. If

(OPT:16) ψ̃2 ≤ ψ̃1, H ≤ ψ̃2 ≤ H + L,

then the holding cost is

c(H, L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.
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17. Assume that conditions of Case 2.5 are satisfied ψ̃2 ≤ ψ̃1, and class 2 fluid does not reach its
threshold in the low period. Hence, if

(OPT:17) ψ̃2 ≤ ψ̃1, H + L ≤ ψ̃2, (52)

then the holding cost is

c(H, L) =
1
2
h2µ2(2ψ̃2 −H − L)(H + L).

C.2 Cost under the FP1 policy when ψ2 < ψ1 (Case 2 and Case 4)

Note that when ψ2 < ψ1, under the FP1 policy, class 2 fluid increases to its threshold before class
1 fluid increases to its threshold in the high period if the high period is long enough, i.e. if H ≥ ψ2.
In order to compute the holding cost under the FP1 policy, we consider 9 different cases labeled
(FP1:1) to (FP1:9).

1. Assume that class 1 fluid increases to its threshold in the high period and decreases to its
threshold in the low period and class 2 fluid also decreases to its threshold in the low period.
Hence, if

(FP1:1) H ≥ ψ1, L ≥ γ4(H − a1)

then the holding cost under FP1 policy is

cFP1(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 − (ρh

1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
]2

}
.

2. Assume that class 1 fluid increases to its threshold in the high period and decreases to its
threshold in the low period but class 2 fluid does not decrease to its threshold at the end of
the low period. Hence, if

(FP1:2) H ≥ ψ1, γ3(H − ψ1) ≤ L ≤ γ4(H − a1)

the holding cost under FP1 policy is

cFP1(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 − (ρh

1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)− (ρh
1 − 1)

(1− ρl
1)

(H − ψ1)
]2

}

−1
2
h2µ2(1− ρ2 − ρl

1)
[(ρh

1 + ρ2 − 1)
(1− ρ2 − ρl

1)
(H − a1)− L

]2
.
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3. Assume that class 1 fluid increases to its threshold in the high period but does not decrease
to its threshold in the low period. Hence, if

(FP1:3) H ≥ ψ1, L ≤ γ3(H − ψ1), (53)

then the holding cost under FP1 policy is

cFP1(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 + ρ2(H + L− ψ2)2

−(ρh
1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2 − 1− ρl
1

η

[ρh
1 − 1

1− ρl
1

(H − ψ1)− L
]2

}
.

4. Assume that class 1 fluid does not increase to its threshold in the high period, but class 2
fluid increases to its threshold in the high period. In the low period, before class 2 fluid
decreases to its threshold, class 1 fluid increases to its threshold, and the server allocates
enough capacity to maintain class 1 fluid at its threshold until class 2 fluid decreases to its
threshold. The low period is long enough for class 2 fluid to decrease to its threshold. At the
end of the low period, fluid levels of both classes are below their thresholds. Hence, if

(FP1:4) ψ̂ ≤ H ≤ ψ1, L ≤ γ4(H − a1)

where

ψ̂ =
(ρh

1 − 1)(1− ρ2)
ρ2ρl

1 + (ρh
1 − 1)(1− ρ2)

ψ1 +
ρ2ρ

l
1

ρ2ρl
1 + (ρh

1 − 1)(1− ρ2)
ψ2,

then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
−ρ2(ψ−2 )2 +

ρ2(1− ρl
1)

1− ρl
1 − ρ2

(H − ψ2)2

+
2ρ2(ρh

1 − 1)
1− ρ2 − ρl

1

(H − ψ1)(H − ψ2)

+
(1− ρ2)(ρh

1 − 1)2

ρl
1(1− ρ2 − ρl

1)
(H − ψ1)2

}
.

5. Assume that class 1 fluid does not increase to its threshold in the high period, but class 2 fluid
increases to its threshold in the high period. In the low period, before class 2 fluid decreases
to its threshold, class 1 fluid increases to its threshold, and the server allocates just enough
capacity to maintain class 1 fluid at its threshold until class 2 fluid decreases to its threshold.
The low period is not long enough for class 2 fluid to decrease to its threshold. At the end of
the low period, class 1 fluid is below its threshold and class 2 fluid is still above its threshold.
Hence, if

(FP1:5) ψ̂ ≤ H ≤ ψ1, −γ5(ψ1 −H) ≤ L ≤ γ4(H − a1)

where γ5 = −(ρh
1 − 1)(ρl

1)
−1 then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
−ρ2(ψ−2 )2 +

ρ2(1− ρl
1)

1− ρl
1 − ρ2

(H − ψ2)2
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+
2ρ2(ρh

1 − 1)
1− ρ2 − ρl

1

(H − ψ1)(H − ψ2)

+
(1− ρ2)(ρh

1 − 1)2

ρl
1(1− ρ2 − ρl

1)
(H − ψ1)2

}

−1
2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2

.

6. Assume that class 1 does not increase to its threshold in the high period, but class 2 increases
to its threshold in the high period. If the low period were long enough, class 1 fluid would
increase to its threshold before class 2 fluid decreases to its threshold. However, the low
period is not long enough and class 1 fluid is still below its threshold and class 2 is above its
threshold at the end of the low period. Hence, if

(FP1:6) ψ̂ ≤ H ≤ ψ1, L ≤ −γ5(ψ1 −H)

then the holding cost under FP1 policy is

cFP1(H, L) =
1
2
h2µ2

{
ρ2

1− ρ2
(H − ψ2)2 − ρ2(ψ−2 )2

}

−1
2
h2µ2(1− ρ2)

[ ρ2

1− ρ2
(H − ψ2)− L

]2
.

7. Assume that class 1 fluid does not increase to its threshold in the high period, but class 2
fluid increases to its threshold in the high period. In the low period, class 2 fluid decreases to
its threshold before class 1 fluid increases to its threshold. The low period is long enough such
that at the end of the low period, both class 1 and class 2 fluids are below their thresholds.
Hence, if

(FP1:7) ψ2 ≤ H ≤ ψ̂, L ≥ γ6(H − ψ2),

where γ6 = ρ2(1− ρ2)−1 then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{ ρ2

1− ρ2
(H − ψ2)2 − ρ2(ψ−2 )2

}
.

8. Assume that class 1 fluid does not increase to its threshold in the high period, but class 2
fluid increases to its threshold in the high period. If the low period were long enough, class 2
fluid would decrease to its threshold before class 1 fluid increases to its threshold. However,
the low period is not long enough. So, at the end of the low period, class 2 fluid is still above
its threshold and class 1 fluid is below its threshold. Hence, if

(FP1:8) ψ2 ≤ H ≤ ψ̂, L ≤ γ6(H − ψ2),

then the holding cost under FP1 policy is

cFP1(H, L) =
1
2
h2µ2

{
ρ2

1− ρ2
(H − ψ2)2 − ρ2(ψ−2 )2

}

−1
2
h2µ2(1− ρ2)

[ ρ2

1− ρ2
(H − ψ2)− L

]2
.
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9. Assume that neither class 1 fluid nor class 2 fluid reaches its threshold in the high period.
Hence, if

(FP1:9) H ≤ ψ2,

then the cost under FP1 policy is

cFP1(H, L) = 0.

C.3 Cost under the πa1 policy when 0 ≤ ψ2 < ψ1 (Case 4)

Note that in this case if the high period is long enough (i.e. if H ≥ a1), under the πa1 policy, class
1 and class 2 fluids reach their thresholds at the same time, namely, at a1. In order to compute
the holding cost under the πa1 policy, we consider 4 different cases labeled (a1:1) to (a1:4).

1. Assume that fluid levels of both classes increase to their thresholds at the same time in the
high period, and the low period is long enough to decrease fluid levels of both classes below
their thresholds. Thus, at the end of the low period, both class 1 and class 2 fluids are below
their thresholds. Hence, if

(a1:1) H ≥ a1, L ≥ γ4(H − a1),

then the holding cost under πa1 policy is

ca1(H, L) =
1
2
h2µ2

(
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

ρ2(ρh
1 − ρl

1)
2

(1− ρl
1)(1− ρl

1 − ρ2)

)
(H − a1)2.

2. Assume that both classes increase to their thresholds at the same time in the high period but
the low period is not long enough for class 2 fluid to decrease to its threshold. At the end of
the low period, class 1 fluid is below its threshold but class 2 fluid is still above its threshold.
Hence, if

(a1:2) H ≥ a1, γ3(H − a1) ≤ L ≤ γ4(H − a1),

then the holding cost under πa1 policy is

ca1(H, L) =
1
2
h2µ2

(
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

ρ2(ρh
1 − ρl

1)
2

(1− ρl
1)(1− ρl

1 − ρ2)

)
(H − a1)2

−1
2
h2µ2(1− ρ2 − ρl

1)
[
ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− L

]2

.

3. Assume that fluid levels of both classes increase to their thresholds at the same time in the
high period but the low period is not long enough for either class 1 or class 2 fluid to decrease
to its threshold. At the end of the low period, both class 1 and class 2 fluids are above their
thresholds. Hence, if

(a1:3) H ≥ a1, L ≤ γ3(H − a1),

then the cost under πa1 policy is

ca1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − a1)2 + ρ2(H + L− a1)2

−(1− ρl
1)

η

[ρh
1 − 1

1− ρl
1

(H − a1)− L
]2

}
.
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4. Assume that fluid levels of both classes are still below their thresholds at the end of the high
period. Hence, if

(a1:4) H ≤ a1,

then the holding cost under πa1 policy is

ca1(H, L) = 0.

C.4 Cost under the FP2-FP1 policy when ψ2 < 0 < ψ1 (Case 2)

Case 2 has two subcases: ψ̃1 ≤ ψ̃2 and ψ̃1 ≥ ψ̃2. Recall that ψ̃1 (ψ̃2) is the time that class 1 fluid
increases (class 2 fluid decreases) to its threshold from below (from above) in the high period if
class 2 has higher priority and if the high period is long enough. So, if ψ̃1 ≤ ψ̃2 ≤ H, class 1 fluid
increases to its threshold before class 2 fluid decreases to its threshold. However, if ψ̃2 ≤ ψ̃1 ≤ H,
then class 1 fluid is still below its threshold when class 2 fluid reaches its threshold in the high
period.

1. Assume that in the high period class 1 fluid increases to its threshold (at ψ̃1) before class
2 fluid decreases to its threshold, after ψ̃1, class 1 has higher priority in the high period.
Suppose that the low period is long enough to reduce fluid levels of both classes below their
thresholds. Thus, at the end of the low period, fluid levels of both classes are below their
thresholds. Hence, if

(FP2-FP1:1) ψ̃1 ≤ ψ̃2, H ≥ ψ̃1, L ≥ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ̃1)2 + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+2
(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − ψ̃1)
]2

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ̃1)
]2

}
.

2. Assume that in the high period class 1 fluid increases to its threshold (at ψ̃1) before class
2 fluid decreases to its threshold, after ψ̃1, class 1 has higher priority in the high period.
Suppose that the low period is long enough for class 1 fluid to decrease below its threshold,
but not long enough for class 2 fluid to decrease to its threshold. Thus, at the end of the
low period, class 1 fluid level is at its threshold but class 2 fluid is still above its threshold.
Hence, if

(FP2-FP1:2) ψ̃1 ≤ ψ̃2, H ≥ ψ̃1, γ3(H − ψ̃1) ≤ L ≤ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ̃1)2 + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+2
(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − ψ̃1)
]2
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+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− ρh
1 − 1

1− ρl
1

(H − ψ̃1)
]2

}

−1
2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2

.

3. Assume that in the high period class 1 fluid increases to its threshold (at ψ̃1) before class 2
fluid decreases to its threshold, after ψ̃1, class 1 has higher priority in the high period. Suppose
that low period is not long enough for class 1 or class 2 fluid to reach its threshold. Thus,
at the end of the low period, both class 1 and class 2 fluid levels are above their thresholds.
Hence, if

(FP2-FP1:3) ψ̃1 ≤ ψ̃2, H ≥ ψ̃1, L ≤ γ3(H − ψ̃1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ̃1)2 + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+ρ2(H + L− ψ̃1)2 + 2(1− ρ2)(ψ̃2 − ψ̃1)(H + L− ψ̃1)

−1− ρl
1

η

[ρh
1 − 1

1− ρl
1

(H − ψ̃1)− L
]2

}
.

4. Assume that if the high period were long enough, class 1 fluid would increase to its threshold
(at ψ̃1) before class 2 fluid decreases to its threshold. However, the length of the high period
is shorter than ψ̃1. Thus, at the end of the high period, class 2 fluid is above its threshold but
class 1 fluid is still below its threshold. In the low period, according to FP2-FP1 policy, class
1 fluid increases to its threshold at ρh

1(ψ̃1−H)(ρl
1)
−1 + H. Suppose that this happens before

class 2 fluid decreases to its threshold. Then the server allocates enough capacity to class 1
to maintain class 1 fluid it at its threshold level and the remaining capacity is allocated to
serving class 2. Moreover, assume that L ≥ γ4(H − a1), i.e. the low period is long enough for
class 2 fluid to reach its threshold. Hence, if

(FP2-FP1:4) H ≤ ψ̃1 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H ≤ ψ̃2, L ≥ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(1− ρ2)

[
2ψ̃2 − ρh

1

ρl
1

(ψ̃1 −H)−H
][ρh

1

ρl
1

(ψ̃1 −H) + H
]

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− ρh
1

ρl
1

(ψ̃1 −H)
]2

}
.

5. Assume that all the assumptions of (FP2-FP1:4) hold except L ≤ γ4(H − a1), i.e. the low
period is not long enough for class 2 fluid to reach its threshold. Thus, at the end of the low
period, class 1 fluid is at its threshold and class 2 fluid is still above its threshold. Hence, if

(FP2-FP1:5) H ≤ ψ̃1 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H ≤ ψ̃2,
ρh
1

ρl
1

(ψ̃1 −H) ≤ L ≤ γ4(H − a1),
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then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(1− ρ2)

[
2ψ̃2 − ρh

1

ρl
1

(ψ̃1 −H)−H
][ρh

1

ρl
1

(ψ̃1 −H) + H
]

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− ρh
1

ρl
1

(ψ̃1 −H)
]2

}

−1
2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2

.

6. Assume that the assumptions of (FP2-FP1:5) hold except the low period is not long enough
for either class 1 fluid or class 2 fluid to reach its threshold. Thus, at the end of the low
period, class 1 fluid is below its threshold and class 2 fluid is above its threshold. Hence, if

(FP2-FP1:6) H ≤ ψ̃1 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H ≤ ψ̃2, L ≤ ρh
1

ρl
1

(ψ̃1 −H),

then the cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).

7. Assume that if the high period were long enough, class 1 fluid would increase to its threshold
before class 2 fluid decreases to its threshold. However, the high period is not long enough
for class 1 fluid to increase to its threshold. Suppose that at the end of the high period, class
1 fluid is still below its threshold, and class 2 fluid is still above its threshold. Moreover,
assume that the low period is long enough for class 2 fluid to decrease to its threshold and in
the low period, class 2 fluid decreases to its threshold earlier than class 1 fluid increases to
its threshold. Hence, if

(FP2-FP1:7) H ≤ ψ̃1 ≤ ψ̃2 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H, L + H ≥ ψ̃2,

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H, L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

8. Assume that all the assumptions of (FP2-FP1:7) hold except that the low period is not long
enough for class 2 fluid to decrease to its threshold. Hence, if

(FP2-FP1:8) H ≤ ψ̃1 ≤ ψ̃2 ≤ ρh
1

ρl
1

(ψ̃1 −H) + H, L + H ≤ ψ̃2

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).
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9. Assume that class 2 fluid decreases to its threshold before class 1 fluid increases to its thresh-
old. Hence, ψ̃1 ≥ ψ̃2. After ψ̃2, the server allocates just enough capacity to keep class 2
fluid at its threshold, i.e. u2 = ρ2, and the remaining capacity is allocated to class 1, i.e
u1 = 1 − ρ2. If H ≥ a1, then class 1 fluid reaches its threshold at a1 and after a1, class 1
has higher priority until class 1 fluid decreases to its threshold again in the low period. After
class 1 fluid decreases to its threshold in the low period, we have u1 = ρl

1 and u2 = 1 − ρl
1.

Moreover, assume that L ≥ γ4(H − a1). Thus, at the end of the low period, fluid levels of
both classes are below their thresholds. Hence, if

(FP2-FP1:9) ψ̃1 ≥ ψ̃2, H ≥ a1, L ≥ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − a1)2 + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − a1)
]2

+(1− ρ2)ψ̃2
2 + (1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− ρh
1 − 1

1− ρl
1

(H − a1)
]2

}
.

10. Assume that all the assumptions of (FP2-FP1:9) hold except L ≤ γ4(H − a1). Thus, at
the end of the low period, class 1 fluid is below its threshold, but class 2 fluid is above its
threshold. Hence, if

(FP2-FP1:10) ψ̃1 ≥ ψ̃2, H ≥ a1, γ3(H − a1) ≤ L ≤ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − a1)2 + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − a1)
]2

+(1− ρ2)ψ̃2
2 + (1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− ρh
1 − 1

1− ρl
1

(H − a1)
]2

}

−1
2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2

.

11. Assume that all the assumptions of (FP2-FP1:10) hold except that the low period is not long
enough for class 1 fluid to decrease to its threshold, i.e. L ≤ γ3(H − a1) . Thus, at the end
of the low period, class 1 and class 2 fluids are above their thresholds. Hence, if

(FP2-FP1:11) ψ̃1 ≥ ψ̃2, H ≥ a1, L ≤ γ3(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H, L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − a1)2 + ρ2(H + L− a1)2

+(1− ρ2)ψ̃2
2 −

1− ρl
1

η

[ρh
1 − 1

1− ρl
1

(H − a1)− L
]2

}
.
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12. Assume that all the assumptions of (FP2-FP1:9) hold except H ≤ a1, i.e. high period is not
long enough for class 1 fluid to increase to its threshold. Thus, at the end of the high period,
class 2 and class 1 fluids are below their thresholds. Hence, if

(FP2-FP1:12) ψ̃1 ≥ ψ̃2, ψ̃2 ≤ H ≤ a1,

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H, L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

13. Assume that class 2 fluid decreases to its threshold before class 1 fluid increases to its threshold
but H ≤ ψ̃2. Then, at the end of the high period, class 2 fluid is above its threshold and
class 1 fluid is below its threshold. Suppose that in the low period class 2 has higher priority
and class 2 fluid decreases to its threshold at ψ̃2 and class 1 fluid remains below its threshold.
Thus, at the end of the low period both classes are below their thresholds. Hence, if

(FP2-FP1:13) ψ̃1 ≥ ψ̃2, H ≤ ψ̃2, H + L ≥ ψ̃2,

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H, L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

14. Assume that all assumptions of (FP2-FP1:13) hold except that the low period is not long
enough for class 2 fluid to decrease to its threshold. Hence, if

(FP2-FP1:14) ψ̃1 ≥ ψ̃2, H ≤ ψ̃2, H + L ≤ ψ̃2,

then the holding cost under the FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).
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Percentage Differences off the Lower Bound
System Case E[H] LB FP1 πa1 DSview1 DSview2 DSview3 DSview4

A 5 0.00 0.0026∗ 0.00 0.00 0.00 0.00 0.00
12.5 1.98 100.77 21.36 19.76 13.34 16.70 19.34

25 132.16 9.48 15.59 12.66 7.09 10.52 13.35
37.5 705.40 2.42 11.71 7.66 2.79 6.29 9.31

50 1883.35 0.90 9.24 3.73 1.36 3.30 6.67
B 5 0.03 332.61 22.97 16.94 15.29 18.56 21.09

I 12.5 20.68 17.92 16.70 10.53 8.99 12.12 14.67
25 407.05 2.43 10.90 4.90 3.50 6.41 8.88

37.5 1535.52 0.75 8.01 2.14 0.93 3.59 6.01
50 3516.83 0.33 6.32 0.61 0.35 1.95 4.33

C 5 29.51 3.27 11.36 5.58 4.29 7.03 9.41
12.5 523.38 0.33 5.65 2.05 1.84 3.01 4.26

25 2962.87 0.17 3.18 0.97 1.08 1.95 2.61
37.5 7544.71 0.11 2.34 0.45 0.54 1.32 1.88

50 14337.9 0.07 1.89 0.13 0.17 0.92 1.46
D 5 3230.38 0.0004 0.73 0.12 0.18 0.23 0.28

12.5 21190.3 0.002 0.30 0.07 0.18 0.22 0.26
25 86143.0 0.004 0.15 0.04 0.10 0.12 0.14

37.5 194926 0.004 0.10 0.02 0.05 0.08 0.10
50 347597 0.003 0.09 0.005 0.03 0.06 0.07

A 5 0.00 67296.6 14.87 13.84 15.74 11.54 12.75
12.5 14.68 452.27 21.58 18.18 15.69 15.18 18.19

25 344.88 46.81 22.15 15.58 12.67 13.42 17.60
37.5 1332.03 12.86 19.44 10.78 8.82 9.61 14.29

50 3073.30 4.96 16.66 6.54 4.75 6.14 11.05
B 5 0.43 2061.88 18.97 13.30 14.39 13.82 16.32

II 12.5 67.00 104.28 21.63 13.29 13.74 14.41 17.90
25 756.57 15.74 18.41 8.85 8.76 10.35 14.30

37.5 2404.51 5.11 14.96 5.19 4.84 6.79 10.82
50 5085.14 2.27 12.41 2.71 2.31 4.27 8.29

C 5 59.54 21.69 18.05 9.19 8.99 10.56 14.23
12.5 747.00 4.34 11.20 5.02 4.82 6.92 9.12

25 3870.27 2.01 6.82 2.77 2.95 4.53 5.79
37.5 9600.58 1.06 5.12 1.54 1.67 3.07 4.20

50 17991.4 0.62 4.19 0.81 0.88 2.18 3.28
D 5 3908.27 0.01 1.62 0.36 0.56 0.71 0.87

12.5 25373.9 0.05 0.67 0.23 0.49 0.58 0.63
25 102840.0 0.05 0.35 0.12 0.23 0.29 0.32

37.5 232504.0 0.04 0.25 0.06 0.13 0.18 0.22
50 414419.0 0.02 0.20 0.03 0.07 0.13 0.17

Table 1: Average holding costs when E[L] = 12.5. * indicates the actual value of the average
holding cost for the FP1 policy.
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Percentage Differences off the Lower Bound
System Case E[H] LB FP1 πa1 DSview1 DSview2 DSview3 DSview4

A 5 0.00 0.0026∗ 0.00 0.00 0.00 0.00 0.00
12.5 2.36 86.93 20.92 19.43 13.34 16.57 19.04

25 160.28 8.03 15.49 12.69 7.13 10.62 13.35
37.5 847.81 2.06 11.68 7.73 2.62 6.37 9.35

50 2230.50 0.78 9.22 3.77 1.28 3.33 6.71
B 5 0.03 294.06 22.96 17.21 15.60 18.78 21.18

I 12.5 24.52 15.61 16.48 10.55 9.00 12.10 14.55
25 478.94 2.13 10.83 4.92 3.46 6.43 8.86

37.5 1774.28 0.67 7.98 2.13 0.85 3.60 6.01
50 3998.12 0.30 6.30 0.58 0.31 1.95 4.33

C 5 33.96 2.95 11.36 5.65 4.30 7.10 9.46
12.5 578.39 0.31 5.63 2.05 1.84 3.01 4.25

25 3174.51 0.17 3.19 0.97 1.08 1.95 2.61
37.5 7964.52 0.11 2.35 0.45 0.54 1.33 1.90

50 15003.8 0.07 1.92 0.13 0.17 0.94 1.48
D 5 3270.14 0.0004 0.73 0.12 0.18 0.23 0.29

12.5 21300.0 0.002 0.30 0.07 0.18 0.22 0.26
25 86382.7 0.004 0.15 0.04 0.10 0.12 0.14

37.5 195315 0.004 0.11 0.02 0.05 0.08 0.10
50 348157 0.003 0.09 0.005 0.03 0.06 0.07

A 5 0.01 65776 9.40 8.74 12.53 7.46 8.04
12.5 21.73 471.27 16.69 14.19 14.51 12.28 14.20

25 462.35 50.90 19.88 14.39 13.51 12.77 16.03
37.5 1687.87 14.39 18.44 10.73 9.88 9.76 13.79

50 3756.04 5.66 16.17 6.80 5.35 6.45 10.93
B 5 0.65 2113.81 14.14 10.65 12.36 10.62 12.25

II 12.5 91.84 112.58 18.42 12.36 13.64 12.82 15.39
25 949.06 17.91 17.16 9.07 9.56 10.13 13.49

37.5 2879.99 5.99 14.39 5.58 5.57 6.88 10.52
50 5914.70 2.72 12.11 3.06 2.76 4.43 8.18

C 5 74.93 23.78 16.53 9.07 9.29 10.06 13.17
12.5 852.74 5.35 10.81 5.10 4.93 6.78 8.83

25 4212.98 2.57 6.73 2.93 3.08 4.51 5.72
37.5 10251.4 1.37 5.11 1.70 1.82 3.09 4.19

50 18997.4 0.79 4.21 0.95 1.01 2.22 3.30
D 5 3962.43 0.014 1.63 0.37 0.56 0.71 0.87

12.5 25524.5 0.07 0.67 0.23 0.49 0.58 0.63
25 103166 0.07 0.35 0.13 0.23 0.29 0.32

37.5 233036 0.05 0.25 0.07 0.13 0.19 0.22
50 415185 0.03 0.20 0.04 0.08 0.13 0.17

Table 2: Average holding costs when E[L] = 25. * indicates the actual value of the average holding
cost for the FP1 policy.
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Percentage Differences off the Lower Bound
System Case E[H] LB FP1 πa1 DSview1 DSview2 DSview3 DSview4

A 5 0.00 0.0027∗ 0.00 0.00 0.00 0.00 0.00
12.5 2.69 76.98 20.01 18.63 12.91 15.96 18.26

25 191.80 6.78 14.76 12.16 6.84 10.22 12.77
37.5 1029.76 1.72 11.23 7.50 2.40 6.19 9.04

50 2712.54 0.65 8.95 3.69 1.18 3.26 6.55
B 5 0.04 264.86 22.08 16.66 15.12 18.14 20.41

I 12.5 28.61 13.63 15.88 10.28 8.77 11.76 14.07
25 570.02 1.82 10.47 4.80 3.33 6.28 8.61

37.5 2106.81 0.58 7.76 2.07 0.76 3.53 5.87
50 4708.96 0.26 6.16 0.54 0.27 1.92 4.25

C 5 39.83 2.57 11.18 5.61 4.25 7.06 9.35
12.5 659.90 0.28 5.55 2.03 1.82 2.98 4.20

25 3511.68 0.15 3.16 0.96 1.08 1.94 2.60
37.5 8655.56 0.10 2.35 0.45 0.54 1.33 1.90

50 16120.7 0.06 1.93 0.13 0.17 0.94 1.50
D 5 3346.52 0.0004 0.73 0.12 0.18 0.23 0.29

12.5 21512.7 0.002 0.30 0.07 0.18 0.22 0.26
25 86834.6 0.004 0.15 0.04 0.10 0.12 0.14

37.5 196039 0.004 0.11 0.02 0.05 0.08 0.10
50 349187 0.003 0.09 0.006 0.03 0.06 0.08

A 5 0.01 60834.20 5.81 5.40 8.63 4.67 4.97
12.5 34.48 472.51 11.30 9.65 11.70 8.57 9.66

25 679.44 54.28 15.35 11.35 12.94 10.41 12.50
37.5 2336.96 16.06 15.52 9.46 10.62 8.84 11.76

50 4988.97 6.52 14.34 6.55 5.93 6.30 9.84
B 5 1.02 2040.44 9.61 7.63 9.41 7.37 8.36

II 12.5 137.10 116.42 13.77 10.06 12.01 9.93 11.59
25 1299.36 19.96 14.39 8.50 9.77 8.92 11.41

37.5 3739.20 7.00 12.77 5.71 6.30 6.49 9.43
50 7410.93 3.27 11.10 3.41 3.31 4.39 7.58

C 5 102.12 25.17 13.99 8.35 9.05 8.88 11.25
12.5 1044.08 6.34 9.93 4.98 4.87 6.34 8.15

25 4836.52 3.24 6.43 3.06 3.16 4.36 5.48
37.5 11441.8 1.77 4.98 1.90 1.97 3.06 4.10

50 20846.7 1.04 4.16 1.14 1.19 2.23 3.26
D 5 4605.41 0.02 1.62 0.37 0.56 0.71 0.87

12.5 25815.6 0.11 0.66 0.24 0.50 0.58 0.63
25 103803 0.10 0.35 0.14 0.24 0.29 0.33

37.5 234065 0.07 0.25 0.08 0.14 0.19 0.23
50 416648 0.04 0.21 0.05 0.08 0.14 0.18

Table 3: Average holding costs when E[L] = 50. * indicates the actual value of the average holding
cost for the FP1 policy.
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Percentage Differences off the Lower Bound
System Case E[H] LB FP1 πa1 DSview1 DSview2 DSview3 DSview4

A 5 0.00 0.0027∗ 0.00 0.00 0.00 0.00 0.00
12.5 3.04 68.30 18.55 17.29 12.03 14.85 16.96

25 246.67 5.29 12.83 10.61 5.98 8.94 11.13
37.5 1463.13 1.21 9.39 6.32 1.91 5.22 7.59

50 4161.72 0.43 7.31 3.05 0.89 2.68 5.38
B 5 0.04 231.28 21.14 16.13 14.67 17.51 19.60

I 12.5 37.56 10.58 14.15 9.28 7.92 10.59 12.59
25 846.81 1.25 8.86 4.11 2.80 5.38 7.32

37.5 3386.34 0.36 6.41 1.70 0.53 2.96 4.88
50 7981.57 0.15 5.03 0.40 0.16 1.58 3.50

C 5 62.00 1.70 9.53 4.87 3.64 6.11 8.03
12.5 1174.26 0.16 4.61 1.71 1.53 2.51 3.52

25 6481.53 0.09 2.64 0.80 0.90 1.63 2.17
37.5 15825.0 0.06 1.98 0.36 0.45 1.13 1.60

50 28922.2 0.04 1.64 0.09 0.13 0.81 1.28
D 5 5151.63 0.0002 0.69 0.12 0.17 0.22 0.27

12.5 27731.1 0.001 0.29 0.07 0.17 0.22 0.25
25 101086 0.004 0.15 0.04 0.10 0.12 0.14

37.5 218685 0.004 0.11 0.02 0.05 0.08 0.10
50 380521 0.003 0.09 0.006 0.03 0.06 0.08

A 5 0.03 42604.30 2.25 2.09 3.43 1.80 1.92
12.5 158.84 297.99 2.56 2.19 3.30 1.99 2.19

25 4177.56 31.79 2.77 2.08 4.00 2.03 2.27
37.5 15194.7 9.47 2.80 1.85 4.69 1.89 2.14

50 31848.9 4.03 2.77 1.64 2.95 1.69 1.94
B 5 3.88 1275.31 2.75 2.33 3.15 2.16 2.40

II 12.5 721.66 69.32 3.03 2.57 3.69 2.30 2.57
25 7654.53 11.62 3.03 2.40 3.76 2.08 2.43

37.50 21436.6 4.30 2.90 2.10 3.41 1.74 2.18
50 40180.6 2.15 2.77 1.74 2.17 1.41 1.93

C 5 525.66 17.23 3.56 2.79 3.88 2.51 2.91
12.5 4768.37 4.52 3.15 1.94 1.97 2.11 2.61

25 18169.3 2.99 2.56 1.65 1.61 1.80 2.20
37.5 37865.5 1.91 2.25 1.39 1.33 1.45 1.87

50 62926.3 1.25 2.05 1.13 1.10 1.18 1.62
D 5 6885.53 0.03 1.38 0.32 0.48 0.61 0.74

12.5 34368.7 0.29 0.63 0.28 0.47 0.55 0.60
25 123211 0.36 0.34 0.24 0.24 0.29 0.32

37.5 265930 0.25 0.26 0.19 0.16 0.19 0.23
50 462363 0.17 0.21 0.15 0.12 0.15 0.18

Table 4: Average holding costs when E[L] = 1000. * indicates the actual value of the average
holding cost for the FP1 policy.
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