
Asymptotics of Closed Fork and Join Queues with

Subexponential Service Times1

Hayriye Ayhan

School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332-0205 U.S.A

May 23, 2005

Abstract

We consider a closed fork and join queueing network where several lines feed a single assembly

station. Under the assumption that at least one service time distribution is subexponential, we

obtain the tail asymptotics of transient cycle times and waiting times. We also discuss under

which conditions these results can be generalized to the tail asymptotics of stationary cycle

times and waiting times.
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1 Introduction

Recent research has shown that in many queueing networks service times have subexponential

distributions. For example in telecommunications setting, Fowler [15] argue that FTP (File Trans-

fer Protocol) transfers have session sizes and session durations with subexponential distributions.

Similar observations are made for the TELNET sessions in Paxson and Floyd [20] even though

TELNET is an application qualitatively quite different from FTP. Feldmann, Gilbert, Willinger

and Kurtz [14] argue that these observations remain valid for today’s World Wide Web (WWW)

applications. Similarly, Arlitt and Williamson [1], Crovella and Bestavros [11] and Crovella and

Lipsky [12] have shown evidence that the file sizes in Web have subexponential distributions.

In this paper, we focus on a closed fork and join queueing network with subexponential service

time distributions. Fork and join queues arise in many telecommunication and manufacturing

applications (see Ko and Serfozo [18] for an excellent review of the literature on these networks).

We consider a cyclic fork and join type queueing network with L lines feeding a single assembly

station (see Figure 1). Line l (l = 1, . . . , L) has Kl stations and the (Kl + 1)th station in each line

1Research was supported by the National Science Foundation under Grants DMI-9908161, and DMI-9984352
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Figure 1: Closed fork and join queueing network.

is the assembly station which will be denoted by A. There is a single server at each station and the

service discipline at all stations is First Come First Served. The capacity of the buffer between any

two consecutive stations is infinite. There are N ≥ 1 customers in each line l ∈ {1, . . . , L}, who

sequentially visit station 1 to station Kl + 1 in line l. Note that for the assembly operation to take

place, we need at least one customer from each line to be present in front of the assembly station.

We assume that at time zero there are Nk,l customers in front of station k ∈ {1, . . . , Kl} in line l and

there are NA,l customers waiting in front of the assembly station who come from line l ∈ {1, . . . , L}.

Hence,
∑Kl

k=1 Nk,l + NA,l = N for all l ∈ {1, . . . , L}. Service times at station k ∈ {1, . . . , Kl} in line

l are independent and identically distributed random variables {Bk,l
n } with distribution function

Bk,l(·) and the service times at the assembly station are independent identically distributed random

variables {BA
n } with distribution function BA(·). The sequence of service times at each station

is independent of the service times at the other stations. Furthermore, we assume that there

exists a subexponential distribution F (·) (F ∈ S) and there exist constants ck,l, cA ∈ [0,∞) with

cA +
∑L

l=1

∑Kl

k=1 ck,l > 0 such that for all k ∈ {1, . . . , Kl} and l ∈ {1, . . . , L}

lim
x→∞

Bk,l(x)

F (x)
= ck,l,

and

lim
x→∞

BA(x)

F (x)
= cA

where F (x) = 1 − F (x). In the remainder of the paper, if limx→∞ f(x)/g(x) = 1 for two functions

f(·) and g(·), we will denote this by f(x) ∼ g(x) as x → ∞.

For the network described above, we are interested in the tail behavior of transient and station-

ary cycle times (time between successive departures of the same customer from a given station)
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and waiting times at station k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L} and at the assembly station.

We start our analysis by obtaining upper and lower bounds on the transient cycle times and wait-

ing times. These bounds are sufficient to compute the tail asymptotics of these two performance

measures. Since the fork and join network depicted in Figure 1 is an example of an autonomous

(max,+) linear system, using the results on the existence of a stationary regime for autonomous

(max,+) linear systems in Chapter 7 of Baccelli, Cohen, Olsder and Quadrat [7], we show that

under certain conditions on service times, tail asymptotics for transient characteristics also hold for

their stationary counter parts. We would like to point out that general (max,+) linear systems and

(max,+) algebra are beyond the scope of this paper. The interested reader is referred to Baccelli,

Cohen, Olsder and Quadrat [7] for more details on this formalism.

In the last few decades, there has been a growing interest in queues with subexponential service

times. However, majority of the existing research has focused on single stage queues; see for

example Asmussen, Kluppelberg and Sigman [2], Asmussen and Moller [3], Asmussen, Schmidli

and Schmidt [4], Embrechts and Veraverbeke [13], Jelenkovic and Lazar [17], Pakes [19], Rolski,

Schmidli, Schmidt and Teugels [21], Willekens and Teugels [23] and Xia and Liu [24].

There are not many existing results on the asymptotics of queueing networks with subexpo-

nential service times. Baccelli, Schlegel and Schmidt [10] consider the tail behavior of stationary

response times in open (max,+) linear systems. In a similar paper, Huang and Sigman [16] focus

on the asymptotics of sojourn times and queue lengths in open tandem queues and split-match

queues. Baccelli and Foss [8] compute upper and lower bounds for the tail asymptotics of the sta-

tionary maximal dater in more general monotone-separable stochastic networks. Baccelli, Foss and

Lelarge [9] compute the exact tail asymptotics of stationary response times for both irreducible and

reducible open stochastic event graphs under the assumptions that the arrival process is a renewal

process and the service times have subexponential distributions. To the best of our knowledge,

the only paper that studies closed networks with subexponential processing times is the one by

Ayhan, Palmowski and Schlegel [5]. In [5], the authors analyze the tail distribution of transient

and stationary cycle times and waiting times in closed tandem queues with subexponential service

times. Our objective is to generalize these results to the more complicated closed fork and join

network described above. Clearly, when L = 1, our results reduce to the ones given in [5].

The paper is organized as follows. In Section 2, we introduce the notation used in our analysis.

In Section 3, we derive upper and lower bounds on transient cycle times and waiting times. Using

these bounds, we obtain the tail asymptotics of transient cycle times and waiting times in Section 4.

In Section 5, we first argue that under certain conditions on service times a stationary regime exists

and the results of Section 4 can be generalized to stationary cycle times and waiting times. For the

sake of completeness, in the Appendix we provide some properties of subexponential distributions

that are used in our analysis.
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2 Notation

In this section, we introduce the notation used throughout our developments. Let Xk,l
n be the

departure time of the nth customer from station k ∈ {1, . . . , K} in line l ∈ {1, . . . , L}. Similarly,

XA
n denotes the departure time of the nth customer from the assembly station. Moreover, we set

X [j],l
n =

{

XA
n if j mod Kl + 1 = 0

Xj mod Kl+1,l
n if j mod Kl + 1 6= 0

,

B[j],l
n =

{

BA
n if j mod Kl + 1 = 0

Bj mod Kl+1,l
n if j mod Kl + 1 6= 0

,

and

N[j],l =

{

NA,l if j mod Kl + 1 = 0

Nj mod Kl+1,l if j mod Kl + 1 6= 0
.

Recall that Kl is the number of stations in line l. One can easily see that for the type of closed

fork and join network that we consider for all n ≥ 1

Xk,l
n = max{Xk,l

n−1, X
[k−1],l
n−Nk,l

} + Bk,l
n for all k ∈ {1, . . . , Kl} and l ∈ {1, . . . , L}, (1)

XA
n = max{XA

n−1, max
l=1,...,L

XKl,l
n−NA,l

} + BA
n . (2)

Throughout our developments we set Xk,l
n = XA

n = 0 and Bk,l
n = BA

n = 0 for n ≤ 0.

Note that the performance measures that we are interested in, namely, the cycle time and the

waiting time of the nth customer at each station can be expressed in terms of the departure times.

Let Ck,l
n denote the nth cycle time at station k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L} and similarly

let CA
n denote the nth cycle time at the assembly station. Since the cycle time is the time between

two successive departures of the same customer from a given station, cycle time expressions are

given as

Ck,l
n = Xk,l

n+N − Xk,l
n for all l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl}, (3)

CA
n = XA

n+N − XA
n (4)

for all n ≥ 1. Similarly, let W k,l
n denote the waiting time of the nth customer until the start of his

service at station k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L} and let W A,l
n denote the waiting time of the

nth arriving customer from line l ∈ {1, . . . , L} at the assembly station. Then for n ≥ 1

W k,l
n = max{Xk,l

n−1 − X
[k−1],l
n−Nk,l

, 0} for all k ∈ {1, . . . , Kl} and l ∈ {1, . . . , L} , (5)

WA,l
n = max{XA

n−1 − XKl,l
n−NA,l

, max
i=1,...,L

i6=l

XKi,i
n−NA,i

− XKl,l
n−NA,l

, 0} for all l ∈ {1, . . . , L}. (6)

While obtaining upper and lower bounds on transient cycle times and waiting times, we use

pk,l
n to denote the nth customer served at station k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L} and pA

n to
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denote the nth customer served at the assembly station. Finally, we have the following expressions

for sojourn times

Sk,l
n sojourn time of customer pk,l

n at station k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L},

SA
n sojourn time of customer pA

n at the assembly station.

3 Bounds on Cycle Times and Waiting Times

In this section, we provide upper and lower bounds on transient cycle times and waiting times. We

start with an upper bound on the waiting time of the nth customer at each station.

Lemma 3.1 For l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} and n ≥ 1

W k,l
n ≤

n−1
∑

r=n−N+1

Bk,l
r , (7)

with the convention that summation over an empty set is 0 and for n ≥ 1

WA,l
n ≤

n−1
∑

r=n−N+1

BA
r +

L
∑

i=1
i6=l

Ki
∑

k=1

n−
∑Ki

q=k
N[q+1],i

∑

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r (8)

with the convention that summation over an empty set is 0.

Proof The bound on W k,l
n is obvious since the nth arriving customer at station k can find at most

N − 1 customers (namely, pk,l
n−N+1, . . . , p

k,l
n−N ) in front of him. Hence,

W k,l
n ≤

n−1
∑

r=n−N+1

Bk,l
r .

In order to see the upper bound on W A,l
n , note that the nth arriving customer from line l is

also the nth customer served at the assembly station (i.e. pA
n ). But pA

n = pk,l

n−
∑Kl

q=k
N[q+1],l

for all

k ∈ {1, . . . , Kl} and l ∈ {1, . . . , L}. Then, since the nth arriving customer from line l can find at

most N − 1 customers (namely, pA
n−N+1, . . . , p

A
n−N ) ahead of him at the time of his arrival

WA,l
n ≤ max

i=1,...,L

i6=l

Ki
∑

k=1

Sk,i

n−
∑Ki

q=k
N[q+1],i

+
n−1
∑

r=n−N+1

BA
r

≤
L

∑

i=1
i6=l

Ki
∑

k=1

Sk,i

n−
∑Ki

q=k
N[q+1],i

+
n−1
∑

r=n−N+1

BA
r . (9)

We know that

Sk,i

n−
∑Ki

q=k
N[q+1],i

= W k,i

n−
∑Ki

q=k
N[q+1],i

+ Bk,i

n−
∑Ki

q=k
N[q+1],i

≤

n−
∑Ki

q=k
N[q+1],i

∑

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r (10)
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where the inequality follows from (7). Plugging (10) into (9), we obtain (8). �

In the next lemma, we provide an upper bound on Ck,l
n for l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} and

CA
n for all n ≥ 1.

Lemma 3.2 For l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} and n ≥ 1

Ck,l
n ≤ U(Ck,l

n ) (11)

where

U(Ck,l
n ) =

k
∑

j=1

n+N−
∑k

q=j+1 Nq,l
∑

r=n+1−
∑k

q=j+1 Nq,l

Bj,l
r +

n+N−
∑k

q=1 Nq,l
∑

r=n+1−
∑k

q=1 Nq,l

BA
r +

Kl
∑

j=k+1

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l
∑

r=n+1−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

Bj,l
r +

L
∑

i=1
i6=l

Ki
∑

j=1

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i
∑

r=n+1−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

Bj,i
r

with the convention that summation over an empty set is 0 and for n ≥ 1

CA
n ≤ U(CA

n ) (12)

where

U(CA
n ) =

n+N
∑

r=n+1

BA
r +

L
∑

l=1

Kl
∑

k=1

n+N−
∑Kl

q=k
N[q+1],l

∑

r=n+1−
∑Kl

q=k
N[q+1],l

Bk,l
r

with the convention that summation over an empty set is 0.

Proof Note that

pk,l
n = pj,l

n+
∑Kl

q=k
N[q+1],l+

∑j
q=1 Nq,l

= pj,l

n+N−
∑k

q=j+1 Nq,l

for all j ∈ {1, . . . , k}

and

pk,l
n = pj,l

n+
∑j−1

q=k
N[q+1],l

= pj,l

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

for all j ∈ {k + 1, . . . , Kl}.

Similarly, pk,l
n = pA

n+
∑Kl

q=k
N[q+1],l

= pA

n+N−
∑k

q=1 Nq,l
. Then it follows from (3) that

Ck,l
n =

Kl
∑

j=k+1

Sj,l

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

+ SA

n+N−
∑k

q=1 Nq,l
+

k
∑

j=1

Sj,l

n+N−
∑k

q=j+1 Nq,l

. (13)

From (7), we have

Sj,l

n+N−
∑k

q=j+1 Nq,l

= W j,l

n+N−
∑k

q=j+1 Nq,l

+ Bj,l

n+N−
∑k

q=j+1 Nq,l

≤

n+N−
∑k

q=j+1 Nq,l
∑

r=n+1−
∑k

q=j+1 Nq,l

Bj,l
r for all j ∈ {1, . . . , k} (14)
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and

Sj,l

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

= W j,l

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

+ Bj,l

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

≤

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l
∑

r=n+1−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

Bj,l
r for all j ∈ {k + 1, . . . , Kl}.(15)

Finally, from (8), we know that

SA

n+N−
∑k

q=1 Nq,l
= WA

n+N−
∑k

q=1 Nq,l
+ BA

n+N−
∑k

q=1 Nq,l

≤

n+N−
∑k

q=1 Nq,l
∑

r=n+1−
∑k

q=1 Nq,l

BA
r +

L
∑

i=1
i6=l

Ki
∑

j=1

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i
∑

r=n+1−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

Bj,i
r . (16)

Plugging (14), (15) and (16) into (13) gives (11).

Next we obtain an upper bound on CA
n . Note that

pA
n = pk,l

n+
∑k

q=1 Nq,l

= pk,l

n+N−
∑Kl

q=k
N[q+1],l

for all k ∈ {1, . . . , Kl}, l ∈ {1, . . . , L}.

Then it follows from (4) that

CA
n = max

l=1,...,L
{

Kl
∑

k=1

Sk,l

n+N−
∑Kl

q=k
N[q+1],l

+ WA,l
n+N} + BA

n+N .

From (7), we have

Sk,l

n+N−
∑Kl

q=k
N[q+1],l

= W k,l

n+N−
∑Kl

q=k
N[q+1],l

+ Bk,l

n+N−
∑Kl

q=k
N[q+1],l

≤

n+N−
∑Kl

q=k
N[q+1],l

∑

r=n+1−
∑Kl

q=k
N[q+1],l

Bk,l
r for all k ∈ {1, . . . , Kl}, l ∈ {1, . . . , L}.

Similarly, we know from (8) that

WA,l
n+N ≤

n+N−1
∑

r=n+1

BA
r +

L
∑

i=1
i6=l

Ki
∑

k=1

n+N−
∑Ki

q=k
N[q+1],i

∑

r=n+1−
∑Ki

q=k
N[q+1],i

Bk,i
r for all l ∈ {1, . . . , L}.

Then

CA
n ≤ max

l=1,...,L
{

Kl
∑

k=1

n+N−
∑Kl

q=k
N[q+1],l

∑

r=n+1−
∑Kl

q=k
N[q+1],l

Bk,l
r +

L
∑

i=1
i6=l

Ki
∑

k=1

n+N−
∑Ki

q=k
N[q+1],i

∑

r=n+1−
∑Ki

q=k
N[q+1],i

Bk,i
r } +

n+N
∑

r=n+1

BA
r
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= max
l=1,...,L

{
L

∑

i=1

Ki
∑

k=1

n+N−
∑Ki

q=k
N[q+1],i

∑

r=n+1−
∑Ki

q=k
N[q+1],i

Bk,i
r } +

n+N
∑

r=n+1

BA
r

=
L

∑

i=1

Ki
∑

k=1

n+N−
∑Ki

q=k
N[q+1],i

∑

r=n+1−
∑Ki

q=k
N[q+1],i

Bk,i
r +

n+N
∑

r=n+1

BA
r .

�

In the next lemma, we provide a lower bound for Ck,l
n for l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} and

CA
n for all n ≥ 1.

Lemma 3.3 For l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} and n ≥ 1

Ck,l
n ≥ max{ max

j=1,...,k

n+N−
∑k

q=j+1 Nq,l
∑

r=n+1−
∑k

q=j+1 Nq,l

Bj,l
r ,

n+N−
∑k

q=1 Nq,l
∑

r=n+1−
∑k

q=1 Nq,l

BA
r , max

j=k+1,...,Kl

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l
∑

r=n+1−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

Bj,l
r ,

max
i=1,...,L

i6=l

max
j=1,...,Ki

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i
∑

r=n+1−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

Bj,i
r } − U(Ck,l

n−N ) − U(Ck,l
n−2N ) (17)

with the convention that the maximum of an empty set is −∞ and the summation over an empty

set is 0. For n ≥ 1

CA
n ≥ max{

n+N
∑

r=n+1

BA
r , max

l=1,...,L
max

k=1,...,Kl

n+N−
∑Kl

q=k
N[q+1],l

∑

r=n+1−
∑Kl

q=k
N[q+1],l

Bk,l
r } − U(CA

n−N ) (18)

with the convention that the maximum of an empty set is −∞ and the summation over an empty

set is 0.

Proof From (1) and (2), one can deduce that

Xk,l
n+N ≥ Xj,l

n+N−
∑k−1

q=j N[q+1],l
for all j ∈ {1, . . . , k}

Xk,l
n+N ≥ XA

n+N−
∑k

q=1 Nq,l

Xk,l
n+N ≥ Xj,l

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

for all j ∈ {k + 1, . . . , Kl}

Xk,l
n+N ≥ Xj,i

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

for all j ∈ {1, . . . , Ki} and i ∈ {1, . . . , L} \ {l}.

Similarly, we can obtain from (1) and (2) that for k ∈ {1, . . . , Kl} and l ∈ {1, . . . , L}

Xj,l

n−
∑k−1

q=j N[q+1],l
≥ Xk,l

n−N for all j ∈ {1, . . . , k}

XA

n−
∑k

q=1 Nq,l
≥ Xk,l

n−N

Xj,l

n−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

≥ Xk,l
n−N for all j ∈ {k + 1, . . . , Kl}

Xj,i

n−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

≥ Xk,l
n−2N for all j ∈ {1, . . . , Ki} and i ∈ {1, . . . , L} \ {l}.
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In the time interval from Xk,l
n to Xk,l

n+N , customers pk,l
n+1, pk,l

n+2,. . . , pk,l
n+N are served at station k in

line l. Therefore, for all k ∈ {1, . . . , Kl} and l ∈ {1, . . . , L},

Xk,l
n+N − Xk,l

n ≥
n+N
∑

r=n+1

Bk,l
r .

Similarly, in the interval from XA
n to XA

n+N , customers pA
n+1, pA

n+2,. . . , pA
n+N are served at the

assembly station and we have

XA
n+N − XA

n ≥
n+N
∑

r=n+1

BA
r . (19)

Putting all these together and using the cycle time expression in (3), we obtain the following bounds.

For all j ∈ {1, . . . , k}

Ck,l
n ≥ Xj,l

n+N−
∑k−1

q=j N[q+1],l
− Xj,l

n−
∑k−1

q=j N[q+1],l
− (Xk,l

n − Xj,l

n−
∑k−1

q=j N[q+1],l
)

≥ Xj,l

n+N−
∑k−1

q=j N[q+1],l
− Xj,l

n−
∑k−1

q=j N[q+1],l
− (Xk,l

n − Xk,l
n−N )

≥

n+N−
∑k

q=j+1 Nq,l
∑

r=n+1−
∑k

q=j+1 Nq,l

Bj,l
r − U(Ck,l

n−N ) (20)

and

Ck,l
n ≥ XA

n+N−
∑k

q=1 Nq,l
− XA

n−
∑k

q=1 Nq,l
− (Xk,l

n − XA

n−
∑k

q=1 Nq,l
)

≥ XA

n+N−
∑k

q=1 Nq,l
− XA

n−
∑k

q=1 Nq,l
− (Xk,l

n − Xk,l
n−N )

≥

n+N−
∑k

q=1 Nq,l
∑

r=n+1−
∑k

q=1 Nq,l

BA
r − U(Ck,l

n−N ). (21)

For all j ∈ {k + 1, . . . , Kl},

Ck,l
n ≥ Xj,l

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

− Xj,l

n−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

− (Xk,l
n − Xj,l

n−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

)

≥ Xj,l

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

− Xj,l

n−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

− (Xk,l
n − Xk,l

n−N )

≥

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l
∑

r=n+1−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

Bj,l
r − U(Ck,l

n−N ). (22)

Finally, for j ∈ {1, . . . , Ki} and i ∈ {1, . . . , L} \ {l}
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Ck,l
n ≥ Xj,i

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

− Xj,i

n−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

− (Xk,l
n − Xj,i

n−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

)

≥ Xj,i

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

− Xj,i

n−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

− (Xk,l
n − Xk,l

n−2N )

≥

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i
∑

r=n+1−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

Bj,i
r − (Xk,l

n − Xk,l
n−N + Xk,l

n−N − Xk,l
n−2N )

≥

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i
∑

r=n+1−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

Bj,i
r − U(Ck,l

n−N ) − U(Ck,l
n−2N ). (23)

The lower bound in (17) then follows from (20), (21), (22) and (23). Next we obtain the bound in

(18). From (2), we have

XA
n+N ≥ Xk,l

n+N−
∑Kl

q=k
N[q+1],l

for all k ∈ {1, . . . , Kl}, l ∈ {1, . . . , L},

and from (1), we have

Xk,l

n−
∑Kl

q=k
N[q+1],l

≥ XA
n−N for all k ∈ {1, . . . , Kl}, l ∈ {1, . . . , L}.

Then using the cycle time expression in (4), for all k ∈ {1, . . . , Kl}, l ∈ {1, . . . , L} we obtain

CA
n ≥ Xk,l

n+N−
∑Kl

q=k
N[q+1],l

− Xk,l

n−
∑Kl

q=k
N[q+1],l

− (XA
n − Xk,l

n−
∑Kl

q=k
N[q+1],l

)

≥ Xk,l

n+N−
∑Kl

q=k
N[q+1],l

− Xk,l

n−
∑Kl

q=k
N[q+1],l

− (XA
n − XA

n−N )

≥

n+N−
∑Kl

q=k
N[q+1],l

∑

r=n+1−
∑Kl

q=k
N[q+1],l

Bk,l
r − U(CA

n−N ). (24)

The result then follows from (19) and (24). �

Finally, the next lemma provides a lower bound on W k,l
n for l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} and

WA
n for all n ≥ 1.

Lemma 3.4 For l ∈ {1, . . . , L} and n ≥ 1

W 1,l
n ≥

n−1
∑

r=n−N+1

B1,l
r − U(CA

n−N−N1,l
) (25)

and for l ∈ {1, . . . , L}, k ∈ {2, . . . , Kl} and n ≥ 1

W k,l
n ≥

n−1
∑

r=n−N+1

Bk,l
r − U(Ck−1,l

n−N−Nk,l
) (26)
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with the convention that the summation over an empty set is 0. For l ∈ {1, . . . , L} and n ≥ 1

WA,l
n ≥ max{

n−1
∑

r=n−N+1

BA
r , max

i=1,...,L

i6=l

max
k=1,...,Ki

n−
∑Ki

q=k
N[q+1],i

∑

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r }

−
L

∑

i=1

U(CKi,i
n−2N−NA,i

) −
L

∑

i=1
i6=l

U(CKi,i
n−3N−NA,i

) − U(CKl,l
n−N−NA,l

) (27)

with the convention that the maximum of an empty set is −∞ and the summation over an empty

set is 0.

Proof We first consider W 1,l
n . We have from (5) that

W 1,l
n ≥ X1,l

n−1 − XA
n−N1,l

= X1,l
n−1 − X1,l

n−N + X1,l
n−N − XA

n−N1,l

≥ X1,l
n−1 − X1,l

n−N − (XA
n−N1,l

− XA
n−N−N1,l

)

where the last inequality follows from (1) since X1,l
n−N ≥ XA

n−N−N1,l
. Moreover, in the time interval

from X1,l
n−N to X1,l

n−1, customers p1,l
n−N+1, p1,l

n−N+2,. . . , p1,l
n−1 are served at station 1 in line l. Thus,

W 1,l
n ≥

n−1
∑

r=n−N+1

B1,l
r − U(CA

n−N−N1,l
).

Next consider k ∈ {2, . . . , Kl}. From (5),

W k,l
n ≥ Xk,l

n−1 − Xk−1,l
n−Nk,l

= Xk,l
n−1 − Xk,l

n−N + Xk,l
n−N − Xk−1,l

n−Nk,l

≥ Xk,l
n−1 − Xk,l

n−N − (Xk−1,l
n−Nk,l

− Xk−1,l
n−N−Nk,l

)

where the last inequality follows from (1) since Xk,l
n−N ≥ Xk−1,l

n−N−Nk,l
. Since in the time interval from

Xk,l
n−N to Xk,l

n−1, customers pk,l
n−N+1, pk,l

n−N+2,. . . , pk,l
n−1 are served at station k in line l, we have

W k,l
n ≥

n−1
∑

r=n−N+1

Bk,l
r − U(Ck−1,l

n−N−Nk,l
).

We next consider W A,l
n . It follows from (6) that

WA,l
n ≥ XA

n−1 − XKl,l
n−NA,l

= XA
n−1 − XA

n−N + XA
n−N − XKl,l

n−NA,l

≥ XA
n−1 − XA

n−N − (XKl,l
n−NA,l

− XKl,l
n−N−NA,l

)

11



where the last inequality follows from (2), since we know that XA
n−N ≥ XKl,l

n−N−NA,l
. Moreover,

customers pA
n−N+1, pA

n−N+2,. . . , pA
n−1 are served at the assembly station in the time interval from

XA
n−N to XA

n−1. Then

WA,l
n ≥

n−1
∑

r=n−N+1

BA
r − U(CKl,l

n−N−NA,l
). (28)

It again follows from (6) that for all i ∈ {1, . . . , L} \ {l}

WA,l
n ≥ XKi,i

n−NA,i
− XKl,l

n−NA,l

= XKi,i
n−NA,i

− XKi,i
n−N−NA,i

+ XKi,i
n−N−NA,i

− XKl,l
n−NA,l

≥ XKi,i
n−NA,i

− XKi,i
n−N−NA,i

− (XKl,l
n−NA,l

− XKl,l
n−2N−NA,l

)

= XKi,i
n−NA,i

− XKi,i
n−N−NA,i

− (XKl,l
n−NA,l

− XKl,l
n−N−NA,l

+ XKl,l
n−N−NA,l

− XKl,l
n−2N−NA,l

)

where the last inequality follows since we know from (1) and (2) that XKi,i
n−N−NA,i

≥ XKl,l
n−2N−NA,l

for all i ∈ {1, . . . , L} \ {l}. But from (17), for all i ∈ {1, . . . , L} \ {l}

XKi,i
n−NA,i

− XKi,i
n−N−NA,i

≥ max
k=1,...,Ki

n−NA,i−
∑Ki

q=k+1 Nq,i
∑

r=n−N+1−NA,i−
∑Ki

q=k+1 Nq,i

Bk,i
r − U(CKi,i

n−2N−NA,i
) − U(CKi,i

n−3N−NA,i
)

= max
k=1,...,Ki

n−
∑Ki

q=k
N[q+1],i

∑

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r − U(CKi,i

n−2N−NA,i
) − U(CKi,i

n−3N−NA,i
).

Thus, for all i ∈ {1, . . . , L} \ {l}

WA,l
n ≥ max

k=1,...,Ki

n−
∑Ki

q=k
N[q+1],i

∑

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r − U(CKi,i

n−2N−NA,i
) − U(CKi,i

n−3N−NA,i
)

−U(CKl,l
n−N−NA,l

) − U(CKl,l
n−2N−NA,l

).

Taking the maximum over all i ∈ {1, . . . , L} \ {l} yields

WA,l
n ≥ max

i=1,...,L

i6=l

max
k=1,...,Ki

n−
∑Ki

q=k
N[q+1],i

∑

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r −

L
∑

i=1

U(CKi,i
n−2N−NA,i

) −

L
∑

i=1
i6=l

U(CKi,i
n−3N−NA,i

)

−U(CKl,l
n−N−NA,l

). (29)

and the maximum of (28) and (29) yields (27).

4 Tail Asymptotics of Cycle Times and Waiting Times

Our objective in this section is to obtain the tail asymptotics of the nth cycle time and waiting

time at each station. Results follow immediately from the bounds in Section 3 and the properties
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of the subexponential distributions given in the Appendix. The following proposition provides the

tail asymptotics for the nth cycle time.

Proposition 4.1 For l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} and n ≥ max{N−N[k+1],l, max
i=1,...,L

i6=l

{
∑k

q=1 Nq,l+

N − N1,i}}

IP(Ck,l
n > x) ∼ N(

Kl
∑

k=1

L
∑

l=1

ck,l + cA)F (x) (30)

and for n ≥ max
l=1,...,L

{N − N1,l}

IP(CA
n > x) ∼ N(

Kl
∑

k=1

L
∑

l=1

ck,l + cA)F (x). (31)

Proof First consider the tail asymptotics of Ck,l
n for l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl}. From (11) and

Proposition 6.2, for n ≥ max{N − N[k+1],l, max
i=1,...,L

i6=l

{
k

∑

q=1

Nq,l + N − N1,i}},

lim sup
x→∞

IP(Ck,l
n > x)

F (x)
≤ lim sup

x→∞

IP(U(Ck,l
n ) > x)

F (x)
= lim sup

x→∞

IP(U(Ck,l
2N ) > x)

F (x)
= N(

Kl
∑

k=1

L
∑

l=1

ck,l + cA). (32)

Let

L(Ck,l
n ) = max{ max

j=1,...,k

n+N−
∑k

q=j+1 Nq,l
∑

r=n+1−
∑k

q=j+1 Nq,l

Bj,l
r ,

n+N−
∑k

q=1 Nq,l
∑

r=n+1−
∑k

q=1 Nq,l

BA
r ,

max
j=k+1,...,Kl

n+N−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l
∑

r=n+1−
∑k

q=1 Nq,l−
∑Kl

q=j N[q+1],l

Bj,l
r , max

i=1,...,L

i6=l

max
j=1,...,Ki

n+N−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i
∑

r=n+1−
∑k

q=1 Nq,l−
∑Ki

q=j N[q+1],i

Bj,i
r }.

Then (17) is equivalent to

Ck,l
n ≥ L(Ck,l

n ) − U(Ck,l
n−N ) − U(Ck,l

n−2N ).

Note that L(Ck,l
n ) is independent of U(Ck,l

n−N ) and U(Ck,l
n−2N ) since the service time terms that ap-

pear in the expression of L(Ck,l
n ) do not appear in the expressions of U(Ck,l

n−N ) and U(Ck,l
n−2N ). Then

from Propositions 6.1, 6.2 and 6.3, we have for n ≥ max{N − N[k+1],l, max
i=1,...,L

i6=l

{
k

∑

q=1

Nq,l + N − N1,i}},

lim inf
x→∞

IP(Ck,l
n > x)

F (x)
≥ lim inf

x→∞

IP(L(Ck,l
n ) − U(Ck,l

n−N ) − U(Ck,l
n−2N ) > x)

F (x)

= lim inf
x→∞

IP(L(Ck,l
3N ) − U(Ck,l

2N ) − U(Ck,l
N ) > x)

F (x)
= N(

L
∑

l=1

Kl
∑

k=1

ck,l + cA) (33)

13



and (32) together with (33) gives the tail asymptotics of Ck,l
n . Next we consider CA

n . It follows

from (12) and Proposition 6.2 that for n ≥ max
l=1,...,L

{N − N1,l}

lim sup
x→∞

IP(CA
n > x)

F (x)
≤ lim sup

x→∞

IP(U(CA
n ) > x)

F (x)
= lim sup

x→∞

IP(U(CA
N ) > x)

F (x)
= N(

Kl
∑

k=1

L
∑

l=1

ck,l + cA). (34)

Let

L(CA
n ) = max{

n+N
∑

r=n+1

BA
r , max

l=1,...,L
max

k=1,...,Kl

n+N−
∑Kl

q=k
N[q+1],l

∑

r=n+1−
∑Kl

q=k
N[q+1],l

Bk,l
r }.

Then (18) is equivalent to

CA
n ≥ L(CA

n ) − U(CA
n−N ).

Then since L(CA
n ) is independent of U(CA

n−N ), it follows from Propositions 6.1, 6.2 and 6.3 that

for n ≥ max
l=1,...,L

{N − N1,l}

lim inf
x→∞

IP(Ck,l
n > x)

F (x)
≥ lim inf

x→∞

IP(L(CA
n ) − U(CA

n−N ) > x)

F (x)

= lim inf
x→∞

IP(L(CA
2N ) − U(CA

N ) > x)

F (x)
= N(

L
∑

l=1

Kl
∑

k=1

ck,l + cA)

which together with (34) completes the proof. �

Note that since the convergence in (32) and (33) is uniform in n, one can conclude the uniformity

of convergence in n in (30). Similarly, the convergence in (31) is uniform in n.

The tail asymptotics of cycle times is the same for all stations (including the assembly station).

Hence, the cycle time asymptotics does not depend on at which station the cycle starts. Moreover,

as expected when L = 1, tail asymptotics of cycle times reduces to the one obtained by Ayhan,

Palmowski and Schlegel [5] for the cyclic tandem queue. The next proposition will demonstrate

that tail asymptotics of waiting times at the assembly station is different from that of station

k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L}.

Proposition 4.2 For l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} with Bk,l ∈ S and n ≥ N

IP(W k,l
n > x) ∼ (N − 1)ck,lF (x) (35)

and if BA ∈ S or Bk,i ∈ S for some i ∈ {1, . . . , L}\{l} and k ∈ {1, . . . , Ki} for n ≥ N + max
i=1,...,L

i6=l

{N − N1,i},

IP(WA,l
n > x) ∼

(

(N − 1)cA + N(
L

∑

i=1
i6=l

Ki
∑

k=1

ck,i)
)

F (x). (36)
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Proof We start with W k,l
n for l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl}. From (7) and Proposition 6.2 for

n ≥ N

lim sup
x→∞

IP{W k,l
n > x}

F (x)
≤ lim sup

x→∞

IP{
n−1
∑

r=n−N+1

Bk,l
r > x}

F (x)

= lim sup
x→∞

IP{
N−1
∑

r=1

Bk,l
r > x}

F (x)
= (N − 1)ck,l.

Note that
∑n−1

r=n−N+1 B1,l
r is independent of U(CA

n−N−N1,l
) since U(CA

n−N−N1,l
) is written in terms

of B1,l
n−2N+1, . . . , B

1,l
n−N . Then from (25) and Propositions 6.1 and 6.2, we obtain for n ≥ N ,

lim inf
x→∞

IP{W 1,l
n > x}

F (x)
≥ lim inf

x→∞

IP{
n−1
∑

r=n−N+1

B1,l
r − U(CA

n−N−N1,l
) > x}

F (x)

= lim inf
x→∞

IP{
2N−1
∑

r=N+1

B1,l
r − U(CA

N−N1,l
) > x}

F (x)
= (N − 1)c1,l.

Similarly,
∑n−1

r=n−N+1 Bk,l
r is independent of U(Ck−1,l

n−N−Nk,l
) for k ∈ {2, . . . , Kl} and l ∈ {1, . . . , Kl}

since U(Ck−1,l
n−N−Nk,l

) has only the Bk,l
n−2N+1, . . . , B

k,l
n−N terms. Thus, from (25) and Propositions 6.1

and 6.2, for n ≥ N

lim inf
x→∞

IP{W k,l
n > x}

F (x)
≥ lim inf

x→∞

IP{
n−1
∑

r=n−N+1

Bk,l
r − U(Ck−1,l

n−N−Nk,l
) > x}

F (x)

= lim inf
x→∞

IP{

2N−1
∑

r=N+1

Bk,l
r − U(Ck−1,l

N−Nk,l
) > x}

F (x)
= (N − 1)ck,l.

This completes the proof for the asymptotics of W k,l
n . Next consider W A,l

n . From Proposition 6.2

and (8), for n ≥ N + max
i=1,...,L

i6=l

{N − N1,i}

lim sup
x→∞

IP{WA,l
n > x}

F (x)
≤ lim sup

x→∞

IP{
n−1
∑

r=n−N+1

BA
r +

L
∑

i=1
i6=l

Ki
∑

k=1

n−
∑Ki

q=k
N[q+1],i

∑

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r > x}

F (x)
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= lim sup
x→∞

IP{

N−1
∑

r=1

BA
r +

L
∑

i=1
i6=l

Ki
∑

k=1

N
∑

r=1

Bk,i
r > x}

F (x)

= (N − 1)cA + N(
L

∑

i=1
i6=l

Ki
∑

k=1

ck,i).

in order to get a lower bound on the tail asymptotics of W A,l
n , we start with (27). Note that

∑n−1
r=n−N+1 BA

r and
∑n−

∑Ki
q=k

N[q+1],i

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r for i ∈ {1, . . . , L} \ {l}, k ∈ {1, . . . , Ki} are inde-

pendent of U(CKi,i
n−2N−NA,i

), i ∈ {1, . . . , L}, U(CKi,i
n−3N−NA,i

), i ∈ {1, . . . , L}\{l} and U(CKl,l
n−N−NA,l

).

In order to see this, note that the largest index for the Bk,i
· terms that appear in U(CKi,i

n−2N−NA,i
)

is n − N −
∑Ki

q=k N[q+1],i and the largest index for the BA
· terms that appear in U(CKi,i

n−2N−NA,i
) is

n−2N . Moreover, one can see that U(CKl,l
n−N−NA,l

) is written in terms of Bk,i

n+1−2N−
∑Ki

q=k
N[q+1],i

,. . .,

Bk,i

n−N−
∑Ki

q=k
N[q+1],i

for i ∈ {1, . . . , L}\{l}, k ∈ {1, . . . , Ki} and BA
n+1−2N , . . . , BA

n−N . For notational

convenience, set

L(WA,l
n ) = max{

n−1
∑

r=n−N+1

BA
r , max

i=1,...,L

i6=l

max
k=1,...,Ki

n−
∑Ki

q=k
N[q+1],i

∑

r=n−N+1−
∑Ki

q=k
N[q+1],i

Bk,i
r }.

Then from (27) and Propositions 6.1, 6.2 and 6.3, we have for all n ≥ N + maxi=1,...,L

i6=l
{N − N1,i}

lim inf
x→∞

IP{WA,l
n > x}

F (x)

≥ lim inf
x→∞

IP{L(WA,l
n ) −

L
∑

i=1

U(CKi,i
n−2N−NA,i

) −
L

∑

i=1
i6=l

U(CKi,i
n−3N−NA,i

) − U(CKl,l
n−N−NA,l

) > x}

F (x)

= lim inf
x→∞

IP{L(WA,l
4N ) −

L
∑

i=1

U(CKi,i
2N−NA,i

) −
L

∑

i=1
i6=l

U(CKi,i
N−NA,i

) − U(CKl,l
3N−NA,l

) > x}

F (x)

= (N − 1)cA + N(
L

∑

i=1
i6=l

Ki
∑

k=1

ck,i)

which completes the proof. �

From the proof of Proposition 4.2, one can see that the convergence in (35) and (36) is uniform

in n.

Tail asymptotics of the waiting time of the nth customer at station k ∈ {1, . . . , Kl} in line

l ∈ {1, . . . , L} is the same as the tail asymptotics of the waiting times in a closed tandem queue
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which is given in Ayhan, Palmowski and Schlegel [5]. However, the tail asymptotics of the waiting

time of the nth arriving customer from line l ∈ {1, . . . , L} at the assembly station is different and

it depends not only on the service time at the assembly station but also on the service times of all

stations in lines {1, . . . , L} \ {l}. However, as expected, if L = 1, tail asymptotics of the waiting

times at the assembly station also reduces to the one given in [5].

5 Stationary Results

In this section, our objective is to analyze the asymptotic tail behavior of stationary cycle times

and waiting times. Using the analysis in Section 7.5 of Baccelli, Cohen, Olsder and Quadrat [7], we

first derive a sufficient condition under which these stationary characteristics exist and then employ

Propositions 4.1 and 4.2 to determine the tail asymptotics of stationary cycle times and waiting

times. Let Ck,l denote the stationary cycle time at station k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L}

and CA denote the stationary cycle time at the assembly station. Similarly, W k,l is the stationary

waiting time at station k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L} and W A,l is the stationary waiting

time of an arbitrary customer coming from line l at the assembly station.

Assume that there exists l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl} such that Nk,l > 0 and Bk,l(·) has

infinite support or if NA,l > 0 for all l ∈ {1, . . . , L} and BA(·) has infinite support. Thus, we assume

that among the stations which are ready to start serving a customer at time 0, at least one of them

has service time distribution with infinite support. Clearly, this condition is satisfied if service time

distributions at all stations have infinite support. Note that the subexponential distributions have

infinite support. Under this condition it follows from Theorem 7.94 of Baccelli, Cohen, Olsder and

Quadrat [7] that

Xk,l
n − Xj,i

n−1 for all l, i ∈ {1, . . . , L} and for all k ∈ {1, . . . , Kl}, j ∈ {1, . . . , Ki}, (37)

Xk,l
n − XA

n−1 for all l ∈ {1, . . . , L} and for all k ∈ {1, . . . , Kl}, (38)

XA
n − Xk,l

n−1 for all l ∈ {1, . . . , L} and for all k ∈ {1, . . . , Kl}, (39)

XA
n − XA

n−1 (40)

admit a stationary regime. This stationary regime is unique, integrable, directly reachable, indepen-

dent of the initial condition and (37) to (40) couple with it in finite time. In order to see this, note

that the condition of Theorem 7.94 of [7] is satisfied if there exists l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl}

such that Nk,l > 0 and Bk,l(·) has infinite support or if NA,l > 0 for all l ∈ {1, . . . , L}, BA(·) has

infinite support (see Remark 7.91 of [7] and note that the matrix E of Theorem 7.94 of [7] has non-

negative entries). At this point one might notice that the state variables in Theorem 7.94 of [7] are

not necessarily the departure times. In particular, let Y k,l
n be the time that the nth customer starts

his service at station k ∈ {1, . . . , Kl} in line l ∈ {1, . . . , L}. Similarly, Y A
n denotes the beginning of

the nth service at the assembly station. Hence, Xk,l
n = Y k,l

n + Bk,l
n and XA

n = Y A
n + BA

n . Then the

state variables consist of Y k,l
n and Xk,l

n if Nk,l > 0 and N[k+1],l > 0, Y k,l
n if Nk,l > 0 and N[k+1],l = 0,
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Xk,l
n if Nk,l = 0, for l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl}, Y A

n and XA
n if NA,l > 0 for all l ∈ {1, . . . , L}

and if there exists l ∈ {1, . . . , L} such that N1,l > 0, Y A
n if NA,l > 0 for all l ∈ {1, . . . , L} and

N1,l = 0 for all l ∈ {1, . . . , L} and XA
n if there exists l ∈ {1, . . . , L} with NA,l = 0. Hence, for

example if Y k,l
n for some l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl}, X i,j

n for (i, j) 6= (k, l) and XA
n belong to

the state vector then Theorem 7.94 of [7] would imply that the differences of the form Y k,l
n −X i,j

n−1,

Y k,l
n −Y k,l

n−1, Y k,l
n −XA

n−1, . . . admit a stationary regime with which they couple in finite time. Using

the definition of coupling on page 87 of Baccelli and Brémaud [6] and the relationships between

Y k,l
n and Xk,l

n and Y A
n and XA

n , we can conclude that the quantities in (37) to (40) also admit a

unique stationary regime and they couple with this stationary regime in finite time.

We now know that if there exists l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl} such that Nk,l > 0 and

Bk,l(·) has infinite support or if NA,l > 0 for all l ∈ {1, . . . , L} and BA(·) has infinite support then

the process {Xk,l
n −Xk,l

n−1}n≥1 couples with a stationary process {Zn}n≥1 in finite time. Thus, there

exists a finite random variable T such that Xk,l
n − Xk,l

n−1 = Zn for all n ≥ T (see the definition of

coupling on page 87 of Baccelli and Brémaud [6]). Then for all x ≥ 0

∣

∣

∣
IP{

n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) ≤ x} − IP{
n+N
∑

i=n+1

Zi ≤ x}
∣

∣

∣

=
∣

∣

∣
IP{

n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) ≤ x,
n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) =
n+N
∑

i=n+1

Zi}

+IP{
n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) ≤ x,
n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) 6=
n+N
∑

i=n+1

Zi}

−IP{

n+N
∑

i=n+1

Zi ≤ x,

n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) =

n+N
∑

i=n+1

Zi}

−IP{

n+N
∑

i=n+1

Zi ≤ x,

n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) 6=

n+N
∑

i=n+1

Zi}
∣

∣

∣

=
∣

∣

∣
IP{

n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) ≤ x,
n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) 6=
n+N
∑

i=n+1

Zi}

−IP{
n+N
∑

i=n+1

Zi ≤ x,
n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) 6=
n+N
∑

i=n+1

Zi}
∣

∣

∣

≤ 2IP{
n+N
∑

i=n+1

(Xk,l
i − Xk,l

i−1) 6=
n+N
∑

i=n+1

Zi} ≤ 2P (T > n). (41)

Since T is a finite random variable, it follows from (41) that

lim
n→∞

∣

∣

∣
IP{Ck,l

n ≤ x} − IP{Ck,l ≤ x}
∣

∣

∣
= 0 (42)

for l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl}. Similarly, one can show that

lim
n→∞

∣

∣

∣
IP{CA

n ≤ x} − IP{CA ≤ x}
∣

∣

∣
= 0. (43)
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Since the convergence in (30) and (31) is uniform in n, combining (42) and (43) with Proposition

4.1, we have the following result.

Proposition 5.1 If there exists l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl} such that Nk,l > 0 and Bk,l(·)

has infinite support or if NA,l > 0 for all l ∈ {1, . . . , L} and BA(·) has infinite support, then for

l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl}

IP(Ck,l > x) ∼ N(

Kl
∑

k=1

L
∑

l=1

ck,l + cA)F (x)

and

IP(CA > x) ∼ N(

Kl
∑

k=1

L
∑

l=1

ck,l + cA)F (x).

Since W k,l
n for k ∈ {1, . . . , Kl}, l ∈ {1, . . . , L} and W A,l

n can also be expressed in terms of the

differences in (37) to (40) and since the convergence in (35) and (36) is uniform in n, we also have

the following proposition.

Proposition 5.2 If there exists l ∈ {1, . . . , L} and k ∈ {1, . . . , Kl} such that Nk,l > 0 and Bk,l(·)

has infinite support or if NA,l > 0 for all l ∈ {1, . . . , L} and BA(·) has infinite support, then for

l ∈ {1, . . . , L}, k ∈ {1, . . . , Kl} with Bk,l ∈ S

IP(W k,l > x) ∼ (N − 1)ck,lF (x)

and if BA ∈ S or Bk,i ∈ S for some i ∈ {1, . . . , L} \ {l} and k ∈ {1, . . . , Ki}

IP(WA,l > x) ∼
(

(N − 1)cA + N(
L

∑

i=1
i6=l

Ki
∑

k=1

ck,i)
)

F (x).
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6 Appendix

In this section, we go over some properties of subexponential distributions which are used in our

analysis. The interested reader is referred to Sigman [22] for a more detailed review of these

distributions.

A distribution function F on IR+ = [0,∞) with F (x) < 1 for all x > 0 is called subexponential

(F ∈ S) if

F ∗2(x) ∼ 2F (x) ,
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where F ∗2 denotes the convolution F ∗ F .

The following proposition is the same as Proposition 1.1 of Sigman [22].

Proposition 6.1 Let X and Y ≥ 0 be independent random variables with distribution functions

FX ∈ S and FY , respectively. Then

IP(X − Y > x) ∼ IP(X > x) as x → ∞.

The next proposition follows from Propositions 2.7 and 2.8 of Sigman [22] by induction.

Proposition 6.2 Let F ∈ S and let F1, . . . , Fn, n ≥ 1, and G1, . . . , Gm, m ≥ 1, be distributions on

IR+ such that F i(x) ∼ ciF (x) with ci > 0, 1 ≤ i ≤ n, and Gi(x) = o(F (x)) for 1 ≤ i ≤ m. Then,

F1 ∗ . . . ∗ Fn ∗ G1 ∗ . . . ∗ Gm(x) ∼
n

∑

i=1

ci F (x) .

Finally, we present the following standard result.

Proposition 6.3 Let F and G1, . . . , Gn, n ≥ 1, be distributions on IR+ such that Gi(x) ∼ ciF (x)

as x → ∞; ci ≥ 0. Then,

1 −
n

∏

i=1

Gi(x) ∼
n

∑

i=1

ci F (x) .
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