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Abstract

A fundamental aspect of designing queueing systems with stationary servers is iden-
tifying and improving the system bottlenecks. In this paper, the concept of a bottleneck
is extended to queueing networks with heterogeneous, flexible servers. In contrast with
a network with stationary servers, the bottlenecks are not a priori obvious, but can be
determined by solving a number of linear programming problems. Unlike the station-
ary server case, we find that a bottleneck may span several queues. We then identify
some characteristics of desirable flexibility structures. In particular, the chosen flexi-
bility structure should not only achieve the maximal possible capacity (corresponding
to full server flexibility), but should also have the feature that the entire network is
the (unique) system bottleneck. The reason is that it is then possible to shift capacity
between arbitrary points in the network, allowing the network to cope with demand
fluctuations. Finally, we discuss how knowledge of the system bottleneck may be used
to decide how to add server flexibility to an existing network.

1 Introduction

In this paper, we are concerned with the problem of deciding how to cross-train a collection

of servers to perform a set of tasks. We would like to identify fundamental properties of the

set of skills that each server should have. We are in general interested in which sets of skills

are needed to approach the same throughput performance as that of full flexibility (i.e., all

servers are trained for all tasks) while also being adaptable to changes in the environment,

manifested by perturbations in arrival and/or service rates. We would like to do this in a
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very general setting, so that the system topology is general, there can be many different

demand types, and the servers are heterogeneous in their capabilities.

We perform our studies using queueing network models and find that fundamentally

sound flexibility structures can be identified by examining a number of related linear pro-

gramming problems (LPs). This allows a designer to quickly evaluate candidate structures,

leading to a smaller number of desirable structures which may then be further examined

using more detailed analysis (simulation or other techniques, see the concluding remarks of

this paper for more on the latter). An important notion in our work is that of a system

bottleneck, which generalizes the notion of a bottleneck for a system with stationary servers.

Just as in the stationary server case, we find that one can make initial design decisions by

simply doing a bottleneck analysis. However, when the servers are flexible, then their time

can be divided between stations in the network, and the overall load at each station or set of

stations depends on how much time the servers capable of working at those stations in fact

spend working there (rather than simply on the number of servers allocated to each station

and their respective service rates). Consequently, it is no longer sufficient to consider only

individual stations when determining what “bottleneck” bounds the capacity of the system.

In other words, the bottleneck set may be a set of stations, rather than a single station.

We find that to determine the bottleneck set, one must solve several linear programming

problems.

An important notion that has appeared in the literature is that of chaining, introduced

by Jordan and Graves [15] and Sheikzadeh et al. [17], and further developed by, amongst

others, Bassamboo et al. [7], Graves and Tomlin [10], Gurumurthi and Benjaafar [11], Hopp

et al. [12], and Iravani et al. [14]. Using simulation studies for a specific system where workers

sharing the same role are identical, Jordan et al. [16] discuss the robustness of chaining to

errors in estimating system parameters (see Section 3.3 in particular), which is in the spirit

of our notion of effectiveness. Our results include the conclusion that chaining is desirable

in homogeneous environments, but also demonstrate that other flexibility structures often

show better performance in heterogeneous settings. A similar observation was made by Gu-

rumurthi and Benjaafar [11] who present numerical results for specific systems indicating

that other flexibility structures could be better than chaining (with throughput as the per-

formance measure of interest). Here, we analytically identify general conditions under which

specific flexibility structures, such as chaining or focusing all training on one demand type

or server, would be desirable, and provide an explicit computational tool for designers to

evaluate alternate structures.

The organization of this paper is as follows. Section 2 gives details of the queueing model

under study. Section 3 demonstrates how to locate the system bottleneck and discusses
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the connections between determining the bottleneck and stability properties of the queueing

system. Section 4 then discusses how the bottleneck can be used to characterize desirable

flexibility structures. Section 5 looks at an important special case, well studied in the call

center literature, where the stations are in parallel. Section 6 discusses how identifying the

system bottleneck can aid in determining how to add flexibility to the system. Section 7

provides concluding remarks.

2 Queueing Model

We consider a system with N mutually independent renewal arrival (demand) streams, with

rates λi > 0, i = 1, . . . , N . Arrivals from stream i will be called type i customers. There are

K ≥ N queues in the system. We will call customers stored in queue k class k customers,

and we define i(k) to be the corresponding type of class k customers. The set of classes

Ki contains all classes with type i customers, i.e., Ki = {k : i(k) = i}. Type i arrivals

from outside are routed to class k ∈ Ki with probability p0,k. Upon completion of service

at class k, a customer becomes a class k′ customer with probability pk,k′ . We assume that

Ki

⋂
Kj = ∅ when i 6= j and that

⋃
iKi = {1, . . . , K}. This can be thought of as separating

different customer types into different queues, allowing the types to be treated separately, if

desired.

There are M servers. A server j has a potential service rate of µj,k for class k customers.

By this we mean that if a server is trained to work on class k customers, the service times

form an independent and identically distributed (i.i.d.) sequence with rate µj,k. Servers can

either work in parallel at a class, or work together on a customer, in which case their service

rates are additive. Without loss of generality, we assume that
∑K

k=1 µj,k > 0 for each server

j = 1, . . . ,M . Let fj,k = 1 if server j is trained for class k and 0 otherwise. By varying

the number and location of the ones in the set {fj,k}, we can examine different flexibility

structures.

3 Determining the Bottleneck

Let ak be the expected number of visits by a class i(k) customer to class k. To determine

ak, k = 1, . . . , K, we need to solve the following set of traffic equations for each customer

type i and all classes k ∈ Ki:

ak = p0,k +
∑
k′∈Ki

ak′pk′,k.
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We assume that (I − P ′)−1 exists, where P is a K by K matrix with (i, j) entry pi,j and
′ denotes transpose. This is equivalent to assuming that all arrivals eventually leave the

network, and, in particular, that ak is finite for k = 1, . . . , K.

Due to the fact that there are multiple arrival streams, the notion of capacity is compli-

cated, due to the tradeoff over how much capacity to give to each demand type. We approach

this by measuring capacity with respect to how much a particular set of arrival rates for the

K demand types can be inflated (or needs to be deflated) in order to ensure the stability of

the system. In other words, we are maximizing the total capacity under the constraint that

the fraction of the total capacity that is given to each demand type remains unchanged.

To accomplish this, we consider the following allocation LP, where Γ ⊆ {1, . . . , K} is a

subset of the set of all classes. The decision variables are {δj,k} and γ, and we will denote

the optimal value of the LP by γ∗(Γ). We maximize γ subject to

M∑
j=1

δj,kµj,kfj,k ≥ γakλi(k), k ∈ Γ; (1)

K∑
k=1

δj,k ≤ 1, j = 1, . . . ,M ; (2)

δj,k ≥ 0, j = 1, . . . ,M, k = 1, . . . , K. (3)

The above LP determines the optimal assignments {δ∗j,k} of servers to the classes in Γ if we

increase the demands to the point of instability while keeping the relative demands fixed.

The constraint (1) guarantees that the service capacity allocated to class k is at least the

arrival rate. Constraint (2) prevents overallocation of a server, while (3) prevents negative

server allocations.

We call any set Γ satisfying γ∗(Γ) = γ∗({1, . . . , K}) a bottleneck set, as it determines the

maximum load. If {1, . . . , K} is the unique bottleneck set, we will say that the entire system

is the unique bottleneck.

We will use the allocation LP above to identify effective flexibility structures. However,

we first make precise the notion that γ∗({1, . . . , K}) is a measure of the stability of the

network. Let Qk(t) ≥ 0 be the queue length at class k at time t (including customers in

process, if any) and let Q(t) be a vector whose kth entry is Qk(t). The norm |Q(t)| is defined

as
∑K

k=1 Qk(t). We have previously proved the following result for N = 1, see Theorem 1 of

Andradóttir et al. [4], and here it is extended to an arbitrary number of demand types.

Theorem 1 (i) For any set of arrival processes with rates γλi, i = 1, . . . , N , where γ <

γ∗({1, . . . , K}), there exists a server scheduling policy such that the distribution of the queue

length process {Q(t)} converges to a steady-state distribution ϕ as t→∞.
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(ii) For any set of arrival processes with rates γλi, i = 1, . . . , N , where γ > γ∗({1, . . . , K}),

P (|Q(t)| → ∞) = 1 for any server scheduling policy.

Proof. The proof follows from Theorem 1 of [4], where µj,k, λ, and αk in [4] are replaced

by µj,kfj,k, γ, and akλi(k), respectively, from this paper. Replacing αk in [4] by akλi(k) is

equivalent to setting p0,k in [4] equal to λi(k)p0,k/
∑N

i=1 λi in this paper. ♦
An immediate corollary indicates whether the system with the given arrival processes

can be stabilized.

Corollary 1 (i) If γ∗({1, . . . , K}) > 1, then for the set of arrival rates {λi}, a server

scheduling policy exists such that the queue length process {Q(t)} converges to a steady-state

distribution ϕ as t→∞.

(ii) If γ∗({1, . . . , K}) < 1, then for the set of arrival rates {λi}, P (|Q(t)| → ∞) = 1 for any

server scheduling policy.

4 Characterizing Effective Flexibility Structures

Let γ̄ be the largest possible value of γ∗({1, . . . , K}), which occurs when fj,k = 1 for j =

1, . . . ,M , k = 1, . . . , K. We will call this full flexibility. We are interested in identifying

fundamentally sound structural properties for a given set {fj,k}. We will see that we would

like to choose {fj,k} such that

γ∗({1, . . . , K}) = γ̄ (4)

and

γ∗(Γ) > γ∗({1, . . . , K}) for all strict subsets Γ of {1, . . . , K}. (5)

The first property (4) indicates that we would like the flexibility structure to be efficient,

i.e., it can handle the same load on the queues as full flexibility. The physical interpretation

of the entire set of tasks being the unique bottleneck (5) is that it is possible to shift excess

capacity from any class to any other class, which should aid in alleviating both long-term

and short-term workload imbalances. Thus the flexibility structure is robust with respect to

the assumptions it is derived under. This is discussed in more detail below. Before doing

so, note that (5) is also satisfied under full flexibility when µj,k > 0 for all j, k, so flexibility

structures satisfying (4) and (5) can be said to offer the benefits of full flexibility.

Note that if (4) and (5) are satisfied but the wrong scheduling policy is chosen, an artificial

bottleneck may develop at demand rates much less than optimal. For example, consider a

system of two queues in parallel and two servers. Let λ1 = λ2 = 1− ε, µ1,1 = µ2,2 = 1, and

µ2,1 = µ1,2 = ε. Assume full flexibility, i.e., fj,k = 1 for j, k = 1, 2. Then, (4) and (5) are

5



satisfied with γ̄ = 1/(1 − ε). However, if we assign server 1 (2) to give priority to type 2

(1) arrivals, then the system is unstable for ε < 1/2. So, in addition to satisfying (4) and

(5), we must choose a server assignment policy that guarantees stability. The generalized

round-robin policies in [4] are one means to do this. Gurumurthi and Benjaafar [11] also show

that performance can be policy dependent using numerical results for Markovian systems

(optimal policies are not identified).

In general, the conditions (4) and (5) must both be checked. Consider a system with

M = 3 servers and N = K = 3 classes in parallel, with arrival rates λ1 = λ2 = λ3 = λ. Let

µ1,1 = µ1,2 = µ2,2 = µ2,3 = µ3,1 = µ3,3 = µ and µ1,3 = µ2,1 = µ3,2 = 2µ. Then, the (chaining)

flexibility structure f1,1 = f1,2 = f2,2 = f2,3 = f3,1 = f3,3 = 1 and fj,k = 0 otherwise satisfies

(5), but γ∗({1, . . . , K}) = µ/λ < γ̄ = 2µ/λ, so (4) is not satisfied. On the other hand, the

(dedicated) flexibility structure f1,3 = f2,1 = f3,2 = 1 and fj,k = 0 otherwise satisfies (4), but

not (5) (γ∗({k}) = γ∗({1, 2, 3}) for k = 1, 2, 3).

On the computation side, we do not need to evaluate (5) for all Γ, as if Γ ⊆ Γ′, γ∗(Γ) ≥
γ∗(Γ′) (see (1)), so we need only check (5) for at most all subsets of Γ consisting of K − 1

classes. Thus, in order to check the conditions, we need to solve at most K + 2 LPs (one for

the given flexibility structure, one for full flexibility, and K with one class removed).

To make more precise the notion of being able to shift capacity, we see that (5) implies the

following more formal result. The first part of the theorem states that if the entire system

is the unique bottleneck, and there is a change in the underlying environment such that

a demand λi decreases, then the system can accommodate increased demand for all other

customer types i′ 6= i. Flipping this around, if there is a change in the underlying environment

such that a demand increases, any other demand may be decreased to compensate (at least

in part). The second part shows that we cannot shift capacity into a bottleneck set from

outside. For example, this implies that increases in demand within the bottleneck can only

be compensated for by decreases in other demands within the bottleneck.

Theorem 2 (i) Suppose that (5) holds. For any i ∈ {1, . . . , N}, if λi is decreased, then

γ∗({1, . . . , K}) is increased.

(ii) Suppose that (5) does not hold for some strict subset Γ of {1, . . . , K}. Then, for all i

such that Ki ∩ Γ = ∅, if we decrease λi by any amount, γ∗({1, . . . , K}) remains unchanged.

Proof. Let δ∗j,k be the solution for the allocation LP (1)-(3) under the original arrival

rates. If we decrease λi, then for any class k ∈ Ki, (1) is not tight.

From (5), γ∗({1, . . . , K} \ Ki) > γ∗({1, . . . , K}). This implies that there exists a server

j1 and classes k ∈ Ki, k1 /∈ Ki satisfying δ∗j1,kµj1,kfj1,k > 0 and µj1,k1fj1,k1 > 0. Hence, we can
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decrease δ∗j1,k and increase δ∗j1,k1
, without reducing γ∗({1, . . . , K}), so that (1) is not tight

for any k′ ∈ Ki ∪ {k1}.
Since γ∗({1, . . . , K} \ (Ki ∪ {k1})) > γ∗({1, . . . , K}), there exists a server j2 and classes

k ∈ Ki ∪ {k1} and k2 /∈ Ki ∪ {k1} such that δ∗j2,kµj2,kfj2,k > 0 and µj2,k2fj2,k2 > 0. Hence, as

for j1 and k1, we can decrease δ∗j2,k and increase δ∗j2,k2
, without reducing γ∗({1, . . . , K}), so

that (1) is not tight for any k′ ∈ Ki ∪ {k1, k2}.
It is clear that if we proceed in this manner, eventually (1) is not tight for any k′ ∈

{1, . . . , K}, and hence if we define γ̃∗({1, . . . , K}) to be the optimal solution of the LP with

λi decreased, we have

γ̃∗({1, . . . , K}) > γ∗({1, . . . , K}).

Part (ii) follows immediately as Ki ⊆ Γc and (5) not holding implies that Γ and Γc do

not have a server j in common such that δ∗j,kµj,kfj,k > 0 and µj,k′δj,k′ > 0 where k ∈ Γc and

k′ ∈ Γ. ♦
The construction in the proof of Theorem 2 leads to the following corollary, which states

that if (5) holds, (1) and (2) are tight. In other words, for every class the capacity assigned to

the class is equal to the demand (adjusted by γ∗). Also, every server is completely allocated.

Corollary 2 If (5) holds, then (1) and (2) are tight. In addition, for all j = 1, . . . ,M ,

K∑
k=1

δ∗j,kfj,k = 1.

It may also be worthwhile to express our results about the sensitivity of system perfor-

mance to changes in the service rates. The interpretation of Theorem 3 below is similar to

that of Theorem 2, only the uncertainty in the environment that is being addressed is that in

the service rates. So, part (i) states that if (5) holds and one service rate µj,k increases, then

increases in any demand can be accommodated (not just i(k)). Together with Theorem 2,

this also implies that if µj,k decreases by a small amount (where δ∗j,k > 0), then this decrease

can be compensated for by either a decrease in any demand, or an increase in any other

µj′,k′ , with δ∗j′,k′ > 0. Part (ii) indicates that making a server more efficient (faster) at a

non-bottleneck class does not allow one to increase any demand (some may be increased,

but certainly not those within the bottleneck).

Theorem 3 (i) Suppose that (5) holds. Fix j ∈ {1, . . . ,M} and k ∈ {1, . . . , K} such that

δ∗j,k > 0. If we increase µj,kfj,k, then γ∗({1, . . . , K}) is increased.

(ii) Suppose (5) does not hold for some strict subset Γ of {1, . . . , K}. Fix k /∈ Γ. If we

increase µj,kfj,k by any amount, then γ∗({1, . . . , K}) remains unchanged.
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Proof. The proof follows that of Theorem 2, with Ki replaced by {k}. ♦
In the diffusion limit literature, the notion of “complete resource pooling” (CRP) is quite

prevalent. The CRP condition is used to show that the diffusion limit for a multi-class system

is one dimensional, which yields a notion of being able to arbitrarily shift capacity amongst

classes in response to randomness in the system state. In Stolyar [20], it is shown that

for a system of parallel queues (i.e., N = K), then if the unique solution to the allocation

LP is γ∗ = 1 and the graph that has an arc between a node representing server j and

a node representing class k is a fully connected tree (no cycles are permitted), then the

CRP condition holds. Any flexibility structure satisfying (5) has a subgraph that is a fully

connected tree (see the proof of Theorem 2). (In general, we do not have that either the

CRP condition implies (5) or the converse.) The additional structure in our case is due

to the desire to protect against changes in the environment (i.e., changes in the means of

the underlying distributions), rather than to protect against variability due to (unchanging)

underlying distributions. The structures satisfying (4) and (5) protect against both.

We end this subsection by noting that our results are easily extended to unreliable servers.

If the proportion of time server j is up is given by aj, then we can simply replace µj,k by

ajµj,k in the preceding development, so that effective flexibility structures that account for

server failures would simply be based on the effective rates ajµj,k. One could also extend

these results to more complex failure models (allowing for class failures and dependencies),

but one would have to examine a similar generalization of the allocation LP given by (4)-(6)

in [5]. Note that these observations are specific to throughput as the performance measure,

the situation becomes more complex for performance measures such as mean waiting times.

5 Desirable Flexibility Structures for Parallel Systems

We now specialize our results to particular parameter assumptions. In particular, we assume

that K = N and ak = 1 for k = 1, . . . , K, which corresponds to a parallel server model.

Note that much of the work in this area (in particular [10] and [15]) base their insights on

such a model. In addition, the literature on call centers is concerned with such models. For

excellent overviews of the vast literature in this area, see Aksin et al. [1, 3] and Gans et al.

[9]. In most of this section, we assume that M = N , and initially assume that the servers

and classes are homogeneous, i.e., µj,k = µ for all j = 1, . . . ,M , k = 1, . . . , K.

As discussed in the Introduction, the notion of chaining has been suggested to construct

effective flexibility structures. In this section, we wish to identify when chaining is and is not

effective. For example, let µ = 100, K = M = N = 10, and λ = [64, 53, 123, 99, 78, 118, 82, 84, 117, 132],

where the kth entry in the vector λ is the arrival rate λk. Now, consider the “2-chain” flex-
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ibility structure fj,j = fj,j+1 = 1 for j = 1, . . . , 9, f10,10 = f10,1 = 1, and fj,k = 0 otherwise.

One can verify that this structure satisfies (4) and (5) with γ̄ = 1.0526, and thus Theorem 2

(i) holds and the system is stable. If, for example, we “break” the chain by setting f3,4 = 0,

we then have γ∗({1, . . . , K}) = 0.9859, the system is unstable, and (5) does not hold. For

this kind of system, we can, in fact, state a more general result. We suppose that the servers

are “generalists” in the sense that µj,k is given by βjµk for j = 1, . . . ,M and k = 1, . . . , K.

Here, βj characterizes the intrinsic speed of server j and µk captures the inherent difficulty

of class k. Also, let Γi,n be the set of consecutive classes starting at i and containing n

classes, where K and 1 are also considered consecutive classes. For example, Γi,1 = {i} and

ΓK−1,3 = {K − 1, K, 1}. Finally, define Γ0,n = ΓK,n.

Proposition 1 If K = N = M , µj,k ≡ βjµk > 0 for all j, k, and∑
j∈Γi−1,n+1

βj∑
k∈Γi,n

λk/µk

>

∑M
j=1 βj∑K

k=1 λk/µk

, (6)

for i = 1, . . . , K and n = 1, . . . , K−2, then the “2-chain” flexibility structure fj,j = fj,j+1 = 1,

j = 1, . . . ,M − 1, fj,M = fj,1 = 1, and fj,k = 0 otherwise, satisfies (4) and (5).

Proof. In [4], a different system is considered, but Proposition 4 of [4] directly examines

an LP ((3)-(5) in [4]) that is the same as our allocation LP specialized to the parallel setting,

with γ, λk, and fj,kµj,k here playing the roles of λ, αk, and µj,k in [4], respectively. So, using

the result of Proposition 4 of [4],

γ∗({1, . . . , K}) = min
Γ⊂{1,...,K}

∑M
j=1 βj1{fj,k = 1 for some k in Γ}∑

k∈Γ λk/µk

, (7)

where 1{·} is the indicator function. We first see that γ̄ =
∑M

j=1 βj/
(∑

k∈Γ λk/µk

)
as the

numerator is
∑M

j=1 βj for all Γ under full flexibility and the denominator is maximized when

Γ = {1, . . . , K}.
Now, for the “2-chain” flexibility structure, the minimum in (7) is achieved for a set of

the form Γi,n. To see this, suppose that Γ achieves the minimum in (7). We can write

Γ = ∪L
`=1Γi`,n`

, (8)

where i` < i`+1 for ` = 1, . . . , L − 1 and there is at least one class separating Γi`,n`
and

Γi`+1,n`+1
(and ΓiL,nL

and Γi1,n1 where classes K and 1 are considered to be adjacent). Thus,

the term in the minimum in (7) becomes∑L
`=1

(∑
j∈Γi`−1,n`+1

βj

)
∑L

`=1

(∑
k∈Γi`,n`

λk/µk

) ,
9



where in particular each βj appears at most once. Now, as for b` ≥ 0, c` > 0, ` = 1, . . . , L,

min
`

b`
c`
≤
∑L

`=1 b`∑L
`=1 c`

,

we can conclude that the minimum is achieved by one of the sets Γi`,n`
in (8). However,

under (6), the minimum is uniquely achieved when Γ = {1, . . . , K} (note that (6) holds for

all i when n = K − 1) and is equal to γ̄, so (4) holds. Finally, (5) holds as it suffices to

consider sets Γ with K − 1 elements (see page 6). In this case, the numerator in (7) remains

unchanged, while the denominator decreases. ♦
The condition (6) states that the offered load due to any subset consisting of adjacent

classes in isolation must be less than the overall system load. Unfortunately, it appears

difficult to simplify the condition, i.e., to check (6) on a smaller number of sets. It may be

useful to note that (6) automatically holds for n ∈ {K − 1, K} and all i = 1, . . . , K.

To further illustrate under what circumstances 2-chaining is effective, we examine three

special cases. For the following corollary, define the average arrival rate (over all classes) as

λ̄ =
∑K

k=1 λk/K.

Corollary 3 If K = N = M , µj,k ≡ µ, for all j, k, and∑
k∈Γi,n

λk < (n+ 1)λ̄, (9)

for i = 1, . . . , K and n = 1, . . . , K−2, then the “2-chain” flexibility structure fj,j = fj,j+1 = 1,

j = 1, . . . ,M − 1, fj,M = fj,1 = 1, and fj,k = 0 otherwise, satisfies (4) and (5).

The condition (9) requires the arrival rates to be balanced in an appropriate manner. In

particular, it limits to what degree groups of neighboring arrival rates can differ from the

average, and also limits the maximum arrival rate to be less than twice the average (λ̄). One

particular example where (9) trivially holds is if λk = λ for k = 1, . . . , K.

Suppose that in the above setting λk ≡ λ and µj,k = µk for all j, k (i.e., the service rates

depend only on the class, a common assumption in the literature). Similar to Corollary 3,

(6) translates into a condition which requires groups of neighboring mean service times to

be close to the average mean service time, given by m̄ =
(∑K

k=1 1/µk

)
/K.

Corollary 4 If K = N = M , λk ≡ λ, for all k, µj,k = µk for all j, k and∑
k∈Γi,n

1/µk < (n+ 1)m̄,

for i = 1, . . . , K and n = 1, . . . , K−2, then the “2-chain” flexibility structure fj,j = fj,j+1 = 1,

j = 1, . . . ,M − 1, fj,M = fj,1 = 1, and fj,k = 0 otherwise, satisfies (4) and (5).
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Finally, suppose that λk ≡ λ and µj,k = βj for all j, k (i.e., the service rates depend

only on the server). Similar to Corollary 3, (6) translates into a condition which requires

groups of neighboring mean service rates to be close to the average mean service rate, given

by β̄ =
∑M

j=1 βj/M .

Corollary 5 If K = N = M , λk ≡ λ, for all k, µj,k = βj for all j, k and∑
j∈Γi,n+1

βj > nβ̄,

for i = 1, . . . , K and n = 1, . . . , K−2, then the “2-chain” flexibility structure fj,j = fj,j+1 = 1,

j = 1, . . . ,M − 1, fj,M = fj,1 = 1, and fj,k = 0 otherwise, satisfies (4) and (5).

If λk ≡ λ for all k, then we have the following result which states that chaining is a

minimal desirable flexibility structure. This is consistent with the observation on the value

of “completing the chain” in [12, 15].

Proposition 2 Suppose that K = N = M , µj,k ≡ µ, and λk ≡ λ for all j, k. If for the

“2-chain” structure described in Proposition 1 we change fj,k from 1 to 0 for some j, k, then

(5) is violated.

Proof. Without loss of generality, suppose that it is fM,1 that is changed to zero. Then

we trivially have γ∗({1}) = γ∗({1, . . . , K}) = µ/λ, achieved with δ∗j,j = 1 for all j (recall

that γ∗({1, . . . , K}) ≤ γ∗({1})). ♦
Proposition 1 and Corollaries 3, 4, and 5 show that the way the classes and servers are

ordered matters. For example, Corollaries 3, 4, and 5 require, respectively, the average

adjacent arrival rates, mean service times, or service rates not to differ too far from their

overall averages λ̄, m̄, and β̄. Thus, some “2-chain” flexibility structures may satisfy (4) and

(5), but not others. Also, it is not true that (4) and (5) only hold if the flexibility structure

is a chain. Consider the following example. Let N = M = K = 2, µj,k = 1 for all j, k and

λ1 = 1− 2ε, λ2 = 1− ε for some 0 < ε < 1/2. Now, for this example the “2-chain” structure

and full flexibility are identical, with γ̄ = 2/(2− 3ε). If we set f2,1 = 0, then (4) and (5) still

hold. However, if we set f1,2 = 0, then γ∗({2}) = γ∗({1, 2}) = 1/(1− ε), and thus both (4)

and (5) are violated. This discrepancy is due to the unbalanced demand.

The above idea can be generalized to the following result, which can be thought of as the

other extreme from balanced demand. The resulting flexibility structure is in some sense the

opposite of chaining: all servers must be trained for demand type 1, while M − 1 servers are

each trained for a different one of the remaining demands. It is instructive to note that this

structure requires fewer skills than the “2-chain” structure.

11



Proposition 3 Suppose K = N = M > 2, µj,k ≡ µ for all j, k, λ1 > (M − 1)µ, and∑K
i=1 λi < Mµ.

(i) The structure fj,1 = 1, j = 1, . . . ,M , fj,j = 1, j = 2, . . . ,M , and fj,k = 0 otherwise

satisfies (4) and (5).

(ii) The “2-chain” structure described in Proposition 1 does not satisfy (4).

Proof. (i) The fact that γ̄ = µM/
∑K

k=1 λk follows as in the proof of Proposition 1.

It is not difficult to see that γ∗({1, . . . , K}) = γ̄. Set δ∗1,1 = 1 and δ∗j,j = λjM/
∑K

k=1 λk,

δ∗j,1 = (
∑K

k=1 λk−Mλj)/
∑K

k=1 λk for j = 2, . . . ,M . The conditions of the Proposition imply

λ1/
∑K

k=1 λk > (M − 1)/M , and hence

0 ≤ δ∗j,j ≤
M
∑M

j=2 λj∑K
k=1 λk

= M

(
1− λ1∑K

k=1 λk

)
< 1,

for j = 2, . . . ,M . However, µδ∗j,j = γ̄λj for j = 2, . . . ,M , and similarly µδ∗1,1 + µ
∑M

j=2 δ
∗
j,1 =

γ̄λ1. This shows that (4) holds. Now, γ∗({1, . . . , K} \ {k}) > γ∗({1, . . . , K}) is trivial for

k = 1, . . . , K. Since (5) must only be verified for all subsets of {1, . . . , K} of size K − 1, we

have (i).

(ii) For k = 1, we have
∑M

j=1 δj,1fj,1 ≤ 2, which in turn implies that γ∗({1, . . . , K}) ≤
2µ/λ1 < 2/(M − 1) < γ̄ when M > 2. ♦

In general, finding limited flexibility structures that perform well is a difficult problem.

We now consider the case where the servers are not identical. Consider the following example.

Suppose that N = M = K = 3, λ1 = λ2 = λ3 = 3.5, and the service rates are µ1,k = µ3,k = 1

for all k and µ2,k = 10 for all k. If we set f1,1 = f3,3 = f2,1 = f2,2 = f2,3 = 1 and all other

fj,k = 0, then it is not difficult to show that (4) and (5) hold. If we use the “2-chain”

structure, i.e., f1,1 = f1,2 = f2,2 = f2,3 = f3,3 = f3,1 = 1, and fj,k = 0 otherwise, we see that

(4) and (5) are both violated.

We can generalize this example. If one server is sufficiently dominant in terms of its

service rate, we have the following result, similar in spirit to Proposition 3. In this case, one

should simply train the dominant server for all demands, with the remaining servers trained

for exactly one demand. Not only does this result in a more effective flexibility structure, it

requires fewer skills than chaining.

Proposition 4 Suppose K = N = M > 2, µj,k = µ, j = 2, . . . ,M , k = 1, . . . , K. In

addition, assume that λi = λ, i = 1, . . . , N . If, for some d > N+1, µ1,k = dµ, k = 1, . . . , K,

then

(i) The structure f1,k = 1, k = 1, . . . , K, fj,j = 1, j = 2, . . . ,M , and fj,k = 0 otherwise

satisfies (4) and (5).

(ii) The “2-chain” structure described in Proposition 1 does not satisfy (4).
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Proof. (i) The fact that γ̄ = (N − 1 + d)µ/Nλ follows as in Proposition 1. To show

that γ∗({1, . . . , N}) = γ̄, set δ∗1,1 = (d + N − 1)/Nd ≥ 0 and δ∗1,k = (d − 1)/Nd ≥ 0,

k = 2, . . . , N , so that
∑K

k=1 δ
∗
1,k = 1. Moreover, dµδ∗1,1 = γ̄λ and similarly dµδ∗1,j +µδ∗j,j = γ̄λ

for j = 2, . . . ,M . This shows that (4) holds, and (5) is trivial.

For (ii), note that for K > 2, we have δj,3 = 0 for j 6= 2, 3, so that

γ∗({1, . . . , K}) ≤ γ∗({3}) ≤ 2µ

λ
<
N − 1 + d

N
× µ

λ
= γ̄.

♦
Note that it is not difficult to relax the condition that K = N = M > 2 and d > N + 1

to K +N +M ≥ 2 and d > N − 1 in part (i) of Proposition 4.

Finally, if each server has a class at which it is faster, then a “2-chain” may satisfy (4)

and (5), but not all “2-chains.” The third paragraph of Section 4 provides an example with

a “2-chain” structure which satisfies (5) but not (4). The “2-chain” structure f1,3 = f2,1 =

f3,2 = f1,2 = f2,3 = f3,1 = 1 and fj,k = 0 otherwise satisfies both (4) and (5).

The results to this point have given scenarios that suggest either chaining or concentrat-

ing all training on either one demand type or one server. For these extremes, we can give

explicit results for the flexibility structures to satisfy (4) and (5). This shows that desirable

flexibility structures could range from the “2-chain” structure to focusing all flexibility (be-

yond satisfying base demand) to one demand or on one server. To enumerate all intermediate

possibilities and study their performance is impractical, but one can envision that anything

between these two extremes would be possible, depending on the level of heterogeneity.

To conclude this section, we discuss two other flexibility structures for small, parallel

systems that have been studied in the call center literature. The first is sometimes referred

to as the “N” structure, see Figure 16 of [9]. It has two servers, two classes (M = N = 2),

and a flexibility structure where one server is trained for both classes, the other for just one

class. Such a structure has arisen in a number of settings, in particular the bilingual call

center model of Stanford and Grassman [19]. This model has also been studied by Shumsky

[18]. We assume that the servers and classes are labelled such that µ1,1 > 0, µ2,2 > 0,

µ1,2 > 0, µ1,1µ2,2 ≥ µ2,1µ1,2, and λ1/µ1,1 < λ2/µ2,2. We will consider the flexibility structure

f1,1 = f1,2 = f2,2 = 1 and f2,1 = 0. The following result generalizes part (i) of Proposition 4

to more general arrival and service rates when there are two servers and classes.

Proposition 5 The “N” structure described above satisfies (4) and (5).

Proof. We first consider the full flexibility structure and make (1) and (2) tight for
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k = 1, 2:

µ̄1,1δ1,1 + µ̄2,1δ2,1 = γ,

µ̄1,2(1− δ1,1) + µ̄2,2(1− δ2,1) = γ,

where µ̄j,k = µj,k/λk, j, k = 1, 2. Rewriting:

δ1,1 = − µ̄2,1 + µ̄2,2

µ̄1,1 + µ̄1,2

δ2,1 +
µ̄1,2 + µ̄2,2

µ̄1,1 + µ̄1,2

,

γ =

(
µ̄2,1 − µ̄1,1

(
µ̄2,1 + µ̄2,2

µ̄1,1 + µ̄1,2

))
δ2,1 +

µ̄1,1(µ̄1,2 + µ̄2,2)

µ̄1,1 + µ̄1,2

.

So, the solution to the LP (1)-(3) satisfies δ∗2,1 = 0, δ∗1,1 < 1, and γ̄ = µ̄1,1(µ̄1,2 + µ̄2,2)/(µ̄1,1 +

µ̄1,2) when

µ̄2,1 ≤ µ̄1,1

(
µ̄2,1 + µ̄2,2

µ̄1,1 + µ̄1,2

)
(10)

and
µ̄1,2 + µ̄2,2

µ̄1,1 + µ̄1,2

< 1. (11)

The relation (10) reduces to µ2,1µ1,2 ≤ µ1,1µ2,2 and (11) reduces to λ1/µ1,1 < λ2/µ2,2. The

fact that δ∗2,1 = 0 means that (4) holds for the “N” structure, and the fact that (5) holds

follows from δ∗1,1 < 1 and µ1,2 > 0. ♦
The interpretation of the above result is quite straightforward. First, to achieve maximum

throughput, server 2 should be at class 2, server 1 at class 1 (unless idle). To be able to

shift capacity in an appropriate manner, the load due to demand 2 using server 2 only must

be greater than the load due to demand 1 for server 1 only. Here, server 1 must be able to

serve demand 2, but fluctuations in demand 1 can be handled by server 1 alone.

The second flexibility structure from the call center literature that we consider is some-

times called the “W” structure, see Figure 16 of [9]. It has M = 2 servers and N = 3 classes,

with each server trained for two classes in such a way that all three classes are covered.

Without loss of generality, we assume that the servers and classes are labelled such that

µ1,3

µ2,3

≤ µ1,2

µ2,2

≤ µ1,1

µ2,1

. (12)

Furthermore, we assume that µ1,1 > 0, µ1,2 > 0, µ2,2 > 0, µ2,3 > 0, and the following

inequalities hold:

λ1

µ1,1

<
λ2

µ2,2

+
λ3

µ2,3

, (13)

λ3

µ2,3

<
λ1

µ1,1

+
λ2

µ1,2

. (14)
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The “W” flexibility structure that we consider corresponds to f1,1 = f1,2 = f2,2 = f2,3 = 1

and f2,1 = f2,3 = 0. In light of (12), this flexibility structure corresponds to training both

servers for the class that has the most balanced rates between servers, and having only server

1 serve class 1 and only server 2 serve class 3. The assumptions (13) and (14) require the

load at each of the classes where there is only one server to be strictly less than the load

at the remaining two classes if served by the other server. This means that the two servers

must both work at class 2 at optimal throughput levels.

Proposition 6 The “W” structure described above satisfies (4) and (5).

Proof. As for the “N” structure in Proposition 5, we rewrite (1) and (2) with both

constraints tight for full flexibility:

µ̄1,1δ1,1 + µ̄2,1δ2,1 = γ,

(1− δ1,1 − δ1,3)µ̄1,2 + (1− δ2,1 − δ2,3)µ̄2,2 = γ,

µ̄1,3δ1,3 + µ̄2,3δ2,3 = γ,

where µ̄j,k = µj,k/λk, j = 1, 2, k = 1, 2, 3. This can be rewritten as

δ1,1 =
γ − µ̄2,1δ2,1

µ̄1,1

,

δ2,3 =
γ − µ̄1,3δ1,3

µ̄2,3

,

(
µ̄2,1µ̄1,2

µ̄1,1

− µ̄2,2

)
δ2,1 +

(
µ̄1,3µ̄2,2

µ̄2,3

− µ̄1,2

)
δ1,3 + µ̄1,2 + µ̄2,2 = γ

(
1 +

µ̄1,2

µ̄1,1

+
µ̄2,2

µ̄2,3

)
.

So, the optimal solution to the LP (1)-(3) satisfies δ∗2,1 = 0, δ∗1,3 = 0, δ∗1,1 < 1, δ∗2,3 < 1, and

γ̄ =
µ̄1,2µ̄1,1µ̄2,3 + µ̄2,2µ̄1,1µ̄2,3

µ̄1,1µ̄2,3 + µ̄1,2µ̄2,3 + µ̄2,2µ̄1,1

when (12)-(14) hold. That the “W” structure satisfies (4) follows from δ∗2,1 = δ∗1,3 = 0, and

(5) holds from δ∗1,1 < 1, δ∗2,3 < 1, µ1,2 > 0, µ2,3 > 0, µ2,2 > 0 and µ1,1 > 0. ♦
It appears that it would be quite straightforward to use (4) and (5) to quickly evaluate

other structures.

6 Adding Flexibility

One important question that may be asked is, given a set of servers and a flexibility structure,

how should flexibility be increased? We believe that identifying the system bottleneck should

give guidance in situations where (4) or (5) are not yet met. We provide a partial answer
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to this problem, mainly discussing the situation when (4) is not met. This is a reasonable

approach, as satisfying (4) has direct impact on throughput (a first order consideration),

whereas satisfying (5) is a second order consideration.

We first note that we have an upper bound on the number of skills that are required (in

total). In particular, from Proposition 2 of [4], there is a basic solution to the allocation LP

with M +K − 1 non-zero {δ∗j,k}.
If we know in advance the number of additional skills to be added (say `), then we can

modify the allocation LP to become a mixed LP in the following manner. Replace each fj,k

that is currently zero with a 0-1 decision variable gj,k. Now, we still maximize γ, but the

decision variables are δj,k and gj,k. We must add a constraint
∑

j,k gj,k ≤ `. However, it is

not always clear how to determine `, so an alternative is to to try to add skills sequentially.

Suppose that for a given flexibility structure, we have γ∗({1, . . . , K}) < γ̄. Suppose

further that we want to increase the flexibility by changing exactly one fj,k that is equal to

0 to 1. The following proposition follows directly from the definition of Γ∗.

Proposition 7 If (4) does not hold and one is allowed to change exactly one fj,k from 0 to

1, it should satisfy

1. µj,k > 0;

2. j : fj,k′ = 0 for all k′ ∈ Γ∗, where Γ∗ is a bottleneck with the smallest number of classes

(over all system bottlenecks) and ties can be broken arbitrarily;

3. k : k ∈ Γ∗.

In other words, one should increase flexibility for a server that is not currently assigned to a

bottleneck set of classes and train that server for a class in a bottleneck (otherwise there is

no improvement). Choosing a bottleneck with the smallest number of classes is desirable as

γ∗(Γ′) ≤ γ∗(Γ) if Γ ⊂ Γ′, and hence Γ being a bottleneck implies that Γ′ is also a bottleneck

for all Γ′ with Γ ⊂ Γ′. This does not identify precisely where the flexibility should be

increased. One could evaluate the allocation LP for all j, k pairs that satisfy Proposition 7.

One could then continue until (4) is satisfied, finally adding skills according to Proposition 7

until (5) is satisfied (if necessary).

This procedure may result in an assignment that is strictly worse than if one simultane-

ously adds a number of skills. To illustrate, take a network with four stationary servers with

rates µ1,1 = 0.5, µ2,2 = 2.0, µ3,3 = 1.3, and µ4,4 = 7.0. We wish to add three of four skills,

with corresponding rates µ4,1 = µ2,1 = µ2,3 = 1.0 and µ4,3 = 2.0. If we add skills sequentially

to maximize the value of γ∗ at each step, then skills should be added in the following order:
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server 4 at class 1, server 2 at class 3, and server 2 at class 1. The resulting value of γ∗ is

1.438. On the other hand, adding three skills simultaneously, we choose server 4 at classes

1 and 3, and server 2 at class 1, yielding γ∗ = 1.470.

7 Concluding remarks

We have provided means to identify flexibility structures that are throughput optimal and

adaptable to changes in the environment, manifested by perturbations in arrival and/or

service rates. Our approach is not only intuitive but is also computationally efficient. To

accomplish this, we have extended the notion of a bottleneck to queueing networks with

flexible, heterogeneous servers, so that the bottleneck may extend over several queues and

servers. As a result, we have identified minimal conditions that should be required of any

flexibility structure. We have further specialized these results to provide insights for more

specific structures, including parallel servers. Our insights have been applied to provide

guidelines as to how to add skills to existing flexibility structures.

Our research yields the following managerial insights:

1. As in a system with stationary servers, the bottleneck limits system performance (in

this case throughput and adaptation to changes in the environment). The bottleneck

may span several classes and may not be obvious a priori, however it is easily deter-

mined by solving several associated LPs.

2. It is desirable for the unique bottleneck to be the entire set of classes.

3. Decisions on where to add capacity must address the bottleneck, just as in the station-

ary server case. We have provided guidelines as to how to best do this.

4. When demand is sufficiently balanced, skill chaining is an effective strategy, but it is

suboptimal in more heterogeneous settings. We have provided criteria for determining

precisely when chaining and other crosstraining strategies are effective, including the

well known “N” and “W” structures defined in the call center literature.

In terms of future work, one obvious question is: given a number of flexibility structures

that are all fundamentally sound, how could one make a more refined choice? This is a topic

of recent interest, see in particular the work of Aksin and Karaesmen [2] and Iravani et al.

[13, 14]. We have also begun to address the topic in [6].

Finally, the question of how to add flexibility appears to be related to the issue of con-

nectivity augmentation in graphs. A good survey of such results is Frank [8]. Unfortunately,

we have not found results from this area that apply to our problem.
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[4] S. Andradóttir, H. Ayhan, and D.G. Down. Dynamic server allocation for queueing

networks with flexible servers. Operations Research, 51:952-968, 2003.
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