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Abstract

We give a Taylor series expansion for the joint Laplace transform of stationary waiting times in open
(max,+)-linear stochastic systems with Poisson input. Probabilistic expressions are derived for coefficients
of all orders. Combining this new result with the earlier expansion formula for the mean stationary waiting
times, we also provide a Taylor series expansion for the covariance of stationary waiting times in such
systems.

It is well known that (max,+) linear systems can be used to represent stochastic Petri nets belonging to
the class of event graphs. This class contains various instances of queueing networks like acyclic or cyclic
fork-and-join queueing networks, finite or infinite capacity tandem queueing networks with various types
of blocking, synchronized queueing networks and so on. It also contains some basic manufacturing models
such as kanban networks, assembly systems and so forth. The applicability of this expansion technique is
discussed for several systems of this type.
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1 Introduction

Under the notion of an open (max,+)-linear stochastic system, one understands a sequence { X} of random
vectors satisfying the recursion X, 11 = A4, & X,,® B, 11 ®7T},4+1 where the addition & means maximization and
the multiplication ® means addition. Here {T},} is an increasing sequence of real-valued random variables,
and {A4,} and {B,} are stationary sequences of random matrices. Such systems allow one to represent
the dynamics of stochastic Petri nets belonging to the class of event graphs (see [2]). In particular this
class contains various instances of queueing networks like acyclic and cyclic fork-join queueing networks,
finite or infinite capacity tandem queueing networks with various kinds of blocking (manufacturing and
communication), synchronized queueing networks etc. It also contains some basic manufacturing systems
like Kanban networks, assembly systems and so forth. In all these models, T), is the arrival epoch of the
nth customer to the network and the coordinates X! of the state vector X,, = (X}, X2, -, X2) represent
absolute times (like beginning of the nth service in the ith queue) which grow to oo when n increases
unboundedly. For this reason one is actually more interested in the differences W = X! — T,, (like the
waiting time of the nth customer until the beginning of his service in queue i), which are expected to admit
a certain stationary state W* = lim,,_,o, W (in distribution) under certain rate conditions. In most cases,
and particularly for systems a greater than 2, it is impossible to determine the characteristics of the random
vector W = (W', ... W) in closed form. This motivated the research to derive an expansion formula for
the characteristics of W.

Assuming that {7} is a stationary Poisson process with intensity A and that the sequences {A4,} and
{By} have certain independence properties, our objective in this paper is to derive a series expansion for
E[efﬁlWLS?Wj], where W, W7 (i # j) are the ith and the jth components of the stationary waiting time
vector and s; and sy are nonnegative real numbers. Namely, we want to derive an expansion formula with
respect to the arrival rate A for the joint Laplace transform of stationary waiting times in Poisson driven
(max,+)-linear systems. In general it is impossible to get a closed form expression for such Laplace transforms
for systems of dimension « larger than 2. Even in the case when all system data are exponential, analytical
formulae only exist for specific models, like for instance two station tandem queues (see [14]). Using the
expansion formula for E[e™s1W'=52W"] it is straightforward to get an expansion formula for E[WWJ] with
respect to .

Under similar assumptions, Baccelli and Schmidt [8] derived a series expansion for EW? for i = 1,---, a.
Combining this with the expansion formula of E[WW/], we can easily derive a series expansion for
Cov(W*WJ) which is an important performance measure in queueing networks. This expansion approach
was generalized to other characteristics (such as higher order moments, Laplace transform, tail probability
and transient behavior) of stationary waiting times by Baccelli, Hasenfuss and Schmidt [4], [5]. Combin-
ing our series expansion for Cov(WW/7) with the results of [5], we can also get a series expansion for
Cov(WHWJI — W),

The technique used in order to obtain the expansion formulae in [4],[5],[8] is a general method which



consists of expanding the expectation of a functional of a marked point process using its factorial moment
measures. The roots of this method can be traced back to the following papers: [3],[9],[10],[11],[15],[16] and
[19]. In order to get an expansion formula for the joint Laplace transform of stationary waiting times, we
will use a more direct approach based on a general theory on the differentiability of functionals of Poisson
processes (see [6] and [13]).

The paper is organized as follows. In Section 2, some preliminaries are given. Section 3 contains
the expansion formulae for the joint Laplace transform and the covariances, together with the technical
conditions under which these formulae hold. Section 3 also describes an estimate of the analyticity region,
namely the region where the Taylor expansion can practically be used. In particular, Section 3.1 presents
the assumptions required for the existence of expansion formulae. Section 3.2 and Section 3.3 provide the
Taylor series expansions and the explicit form of the coefficients of these expansions for the joint Laplace
transform and covariances, respectively. Section 3.4 characterizes the region where the Taylor series of the
joint Laplace transform is absolutely convergent in A. In section 4 we present several examples to illustrate
the main results of Section 3. Section 5 is devoted to the proof of the expansion formulae. In particular,
Section 5.1 shows that under some moment conditions, functions of interest are differentiable in A while
Section 5.2 deals with the explicit computation of the coefficients of the expansion formulae. Clearly, if
one can guarantee the existence of the more restrictive conditions in Section 3.4 (existence of exponential
moments), differentiability of all orders is granted (as a result of the analyticity in \) and results in Section
5.1 can then be omitted. Finally, some particularly technical steps required in Section 5.2 are presented in

the appendix.

2 Preliminaries

The basic reference algebra throughout this paper is the so called (max,+) algebra on the real line R, namely
the semi-field with the two operations (®,®), where @ is the maximization in the conventional algebra and
® is the addition in the conventional algebra (see [2] for more details on this formalism). As mentioned
earlier the dynamics of (max,+) linear systems can be captured by the a-dimensional vectorial recurrence
equations

Xnt1 =4, @ Xy, ® Bpy1 @ Ty (2.1)

with initial condition Xy where

{T,,} is a non-decreasing sequence of real-valued random numbers (the epochs of the Poisson arrival

process),

{A,} is a stationary and ergodic sequence of o X o matrices with real-valued random entries,

{By} is a stationary and ergodic sequence of o x 1 matrices with real-valued random entries,

{X,} is a sequence of a—dimensional state vectors.



Various examples of discrete event systems with state variables satisfying an equation of type (2.1) are given
in Section 4. As mentioned above, the components of the state vector represent absolute times which grow

to co when n increases unboundedly, and one is more interested in the differences

Wi=X'—T,

(like the waiting time of the nth customer until he joins server i). Let 7, = T,,41 — Ty, n > 0. By subtracting

T41 from both sides of (2.1), the new state vector W, 1 can be written as

I/‘/’I’L-i-] = An & C(Tn) & I/an @ B’n—i—]y

where C'(x) is the a x o matrix with all diagonal entries equal to —z and all non-diagonal entries equal to
—00.

Assume that the underlying probability space (2, F, P) is equipped with a measurable (pointwise) shift
0 : Q — Q, which leaves the probability measure P—invariant and is P—ergodic. The random variables
Zyn, = (An, By,) and the Poisson point process are assumed to be defined on this probability space and to be
consistent with 6, i.e. A, = Ao 0" and B,, = Bo 0" and 7, = 7 0o 8", for all integers n and some random
variables A € R**%, B € R®! and 7 € R. Under these conditions, plus integrability assumptions, it is
shown in [2] that for all A < a~! where a is the maximal (max,+) Lyapunov exponent of the sequence {4,},
{W,} couples with a unique stationary sequence {W o 8"}, where W is the unique finite random variable

solution of the functional equation

Wol=AxCxW & Bob

which is determined by the matrix-series

W = Doya@C(T-;)® Dy
k>1

with Dy = By and

Dy = (éA_n) ® B_j, (2.2)

n=1
for all £k > 1.
For A € R*** and B € R*, let || A [|o= B j=; Aij and || B |loo= @iy B’ Tt is straightforward to
show that



n
Dy, <) Da lloo<ll @ A=k lloo + | B-n lloos
k=1

for any i € {1,---,a}. It follows from Theorem 7.27 of [2] that

i 1@ A e _
n—00 n - ’

where a is again the maximal Lyapunov exponent of the sequence {A,,}. Therefore, with probability 1

lim & <a, (2.3)

n—oo M
forallie {1, ---,a}.
Note that whenever we write an equality or an inequality which involves random variables we mean that
the equality or inequality holds P—almost surely (i.e. with probability 1.) However, in order to keep the
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statements as simple as possible we omit phrases such as “with probability 1”7 or ”almost surely” .

3 Main Results

3.1 Assumptions

Before presenting our main result which states that E[eiSlWLS?Wj] (i # j) can be expanded into a finite
power series with respect to the arrival intensity A, we will list the assumptions under which this result
holds.

Support and Monotonicity Assumptions. We assume that each entry of the random matrix A, is either a.s.

non-negative or equal to —oo, i.e.

(An)ij > 0or (Ap)ij; = —o0 as.

and that all entries on the diagonal of A,, are non-negative, i.e. (A,);; > 0. We also assume that there is
an integer 0 < o’ < « such that the first o’ coordinates of the a-dimensional random vectors B,, are non-
negative, i.e. Bfl >0 forall 1 <i<d Let D, be defined as in (2.2) with Dy = By. First o’ coordinates of

D,, are assumed to be nondecreasing in n i.e.

0§D6§D% <.oo,foralli=1,---,¢d.

As it is shown in [8], the above assumptions hold whenever the recurrence equations (2.1) originate from a

so-called open stochastic event graph.



We will also need the following additional assumption on D!, and D for i < j

Dy
D;, — Dy

IN

D} (3.4)
DI —Dlforalln>1andi,j=1,---,a. (3.5)

IN

Note that putting (3.4) and (3.5) together we obtain

Di <Dl foralln>0,i<jandi,j=1,---,a (3.6)

Stochastic assumptions. Recall that in the previous section we have already mentioned that {T,,} is a Poisson
process with intensity A and {A,,, B, } is a stationary and ergodic sequence of random matrices, independent

of {T},}. In addition to these stochastic assumptions we need the following. For all n € Ny and [ € IN, let

/

Hpp = P{A_uis1) @ Ay @ -+ @ A_ (i1 © (B_gs1y @ O)'},
i=1

where O is the a dimensional column vector with all its components equal to 0. We assume that

lim Hy; = oo.
l—o0 ’

Note that this condition is practically always fulfilled since for this to hold, it is sufficient to have EA;; > 0

for some i. We also assume that there exists a positive integer ' € IN large enough such that

A< U(EHoy) ™!

for all integers [ > r’. This will always be the case if the stability condition Aa < 1 is satisfied.

Finally, we assume that {H,, ' },>0 is a sequence of 1-dependent random variables (for systems derived
from stochastic event graphs with independent firing times, a general result states that the sequence Z,
is M—dependent, M < «. Our methodology can be extended to this more general case). An immediate

consequence of the stochastic assumptions is the following lemma which is also given in Hasenfuss [13].

Lemma 3.1 There exists an integer r € IN, r > 1/, such that

A< (r—1)(EHp,) !
and {Hp r}n>0 is a sequence of 1-dependent random variables.

Throughout the rest of this paper we suppress the index r and simply write H,, instead of H,, , but implicitly

assume that r is chosen according to Lemma 3.1.



3.2 Taylor Series Expansion for Laplace Transforms

We recall a class of polynomials which first appeared in the expansion formula of EW in [8] and which will

[6—5] W/’i—SQWj]

also appear in the expansion formula for E . These polynomials enjoy several nice properties

which can be found in [4] and [8]. They are given by the following formula

pk($0 cee T 1) = Z ( 1)7’6(207217'7% ])II)O s :I,‘k_]
9 ) — R

(i0,81, ik —1)ENG io! 11! g
where

Ne = {osin, - -sina1) €40,1,- i} rio+in - gy = kand if iy = 1> 1,
then i, 1 mod k= """ = %141 mod £ = 0}
and
Ve(io, 11,5 tk—1) = 1+Z (in, > 0),

for all kK > 1, with 1(i, > 0) = 1 whenever ¢,, > 0 and 1(z,, > 0) = 0 otherwise.
In particular it is shown in [8] that if E(H,)™® < oo and the above assumptions on {4, B,} hold, then

forall i =1,---,a/

E(W?) Z N E[ppy1(Di, -+, DL + O\
k=0
for A € [0,a™"). Recall that a is the maximal (max,+) Lyapunov exponent of the sequence {4, }.
We are now ready to state our main result. For all pairs of integers [ and m and all pairs of real numbers

x and y, let

e—512—52Y

F[l,m] ’ — (-1 I+m )
(@) = () S

(3.7)

Let d; and dg), p € IN, be two sequences of real variables. We will need the following functions of these
variables, which depend on four integers I, m, u and k such that 0 <! <m <k, and 0 < u < k—m for some
k:

; 1 foru=20
1 4 . . . . . .
himau(dii gy l+u7 m) = { Puldiy, iy, odiy 1) = puldiyy,....di,) otherwise (3.8)
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where p,(...) are the polynomials defined above. Finally, for all | <n <m <k, let

Grgmn(dly o di d L) = B (i ey )

(= ) T () = - -

m U m () —puld . (3.9
( (k‘ _ m)| ~ (k‘ —m— U)' { ( m~+1s ) m+u) p ( m ) m+u71)} ( )

Theorem 3.1 Suppose that the above assumptions on {A,, By} and {D,} hold and E(H,)™? < co. Then
fori < jandi,j e {1,---,a}, E[efslwif”wj] is (m + 1) times differentiable in \ for all X\ in a right

neighborhood of the origin,

. dk _5 W/i_s Wj i i . .
g%N‘E[e ! ? ]:k!E[Qk+1(D07"'7 k7D67"'7Di)]7
fork=0,1,---,m and E[efSlWLS?Wj] can be expanded as a Taylor series of order m with respect to X i.e.
E[e_S]W”_SQWJ] = Z )\kE[qk-H (D67 Ty }‘w Dg)a e ,D]k)] + O(/\m—H )7

k=0

for all arrival intensities A € [0,a™") where
Qk+1(d677 2}7d677d‘]7§;): (3]0)

k A k v—1 kol i ]
_ —-n v,k—v 7 ¥l
PO §3<n_1)F (. d})

+ ki Xk: oy (P (P [Pl (i @) — di, + dj)
=0 n=I[+1 v=n n—1 l 1 %n n l
_F[k—v-i-l-&-]ﬂ)—l—l}(d;"d% _d%+d§)}
SN b 1 Lfv=1 b S ) ) ‘ ‘
P P> <”_ 1) FUEd, ) {pk*b(diﬂﬂ’ s dy ) — Peb(d), ,dimfqu)}
b=0 n=0 v=n

k—1b—1 n+k—b

—1b—1 b - b
5 3 I E T of ([ (Al L TR A

b=1 =0 n=I+1 m=n

Rl o gl gi iy df)} Inshbimn (s i o L, ),
with the conventions that summation over an empty set is 0 and that (') =0, (?) = 1 whenever ny < 0.
2 n2
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The proof of the above theorem will be given in Section 5.
As is mentioned in Hasenfuss [13], H, is nothing but the maximum of various sums of service times.

Thus, for condition E(H,)™"? < oo to hold it is sufficient to have (m + 2)th moment of firing (or service)

times finite.

W] (

Note that when s; = 0, Theorem 3.1 yields the expansion formula for Elfe Laplace transform of

the jth component of stationary waiting time vector). In this case with straightforward algebra we obtain

J ¥ 1 . n k —sgdj = 1 ’ b+1 b —sgdj
Grer(d, o dy) = D (SN Ty ) (1T fer
2

52 n=o b=0 52 n—0
J J j J
[pk—b(dmrp t 7dk—b+n) - pk*b(dgw T 7dn+k—b—] )} .

This coefficient coincides with the one obtained in [4] in the expansion formula of the Laplace transform of

stationary waiting times. Setting sy = 0, with some elementary (but tedious) computation, we can obtain

the same coefficients for the expansion formula of E [e*slwi].

3.3 Taylor Series Expansion for Covariances
The following result follows from Theorem 3.1 and its proof.

Corollary 3.1 Suppose that the above assumptions on {A,, B,} and {D,} hold and E(H,)™* < oo.
Then for i < j and i,j € {1,---,a'}, E[W'W] is (m + 1) times differentiable in X\, for all X in a right
neighborhood of the origin,

k

lim 4 BV = KElgj 1y (D -+, D} Dfs++ . D]
for k=0,1,---,m and E[W*WJ] can be expanded as a Taylor series of order m with respect to \ i.e.
E[I/VZVV]] = Z )‘kE[ql/erl(D(Z)a Tty liw Dg): Ty D]k)] + O()‘m+1)

k=0

for all arrival intensities \ € [0,a™") where

q;c-H( 0" " " %,d{),---,d‘;ﬂ): (3'“)

k A k v—1 ok o], i ]
_ —-n v,k—v 7 ¥l
PICIRDY ( 1)F (d}.d})

= o=n \"*
+ kz_:] Xk: (_1)k—nz v—1I\(k—v+1 [Fle—vlo=ll(gi @i — qi 4 di)
1=0 n={+1 = \n—1 l 1 = Gp T O



_F[kfv+l+1,vflfl](d;’dzl . d; + d%)]

k—1 b l
—n v—1)\ =~ v,b—v]/ 71 j j j j j
b S (P ) e ) - el B )
b=0 n=0 v=n

T Y e (vl (b—v Plo—vtlo—l(gi g5 _ i i
+ ZZ Z Z (_1) Z n—1 I [F ' (dlvdin_derdl)_

b=11=0 n=I+1 m=n
Pttt dy, i — dyy + d)gnsk—bpmn (dfs - i - ) ),

' mo 'mo

with the same conventions as above and with

Flim] (z.y) = gyl tml B loy!TmFl o maytmtl oyt (12 4 im - )yt
(I +m)! (+m+1)! (l+m+2)!
An important performance measure in queueing network analysis is Cov(W W) (i # j) which is in
general impossible to compute in closed form. Combining the expansion formula of Corollary 3.1 with the
expansion formula of [8], it is straightforward to get an expansion formula with respect to A for Cov(W*W7).

Under the assumptions of Corollary 3.1, we have

Cov(WW9) = 3" Mg 1(Df,---, Dy, DY, -, Di) + O(x™ 1) (3.12)
k=0
where for all £ >0
qurl(Dé""’ ;f’Dé::D‘]Z;) = E[q§€+1(D6,~~', ;ija"'vD‘lz;)]
k
= Elps (D, -+, DDIE[pr—i11(Dg, -+, D] _y)].
1=0

In several applications, one is also interested in the covariance between the random variables W? and
W3 —W?, It is immediate to derive a Taylor series expansion for this last covariance from the above formula
and the expansion which was derived for the variance of W# in [5]. Then under the assumptions of Corollary

3.1, we have

Cov(WI(WI = W) = S Negi (Db, Dy, DY, -+, D) + O(A™ ) (3.13)
k=0

where for all £ >0

QZ+1(D6,"‘, szfDé’?Di) - QkJrl(D(i)f”V IZ<:7D67:Di)]_E[‘ijrl(D(Z):yDlzg)]
k
+ZE[pl-H(DE)a"'aD;)]E[pk—l-H(D%)a"'aDlfol)]'
=0



with 1 (d}) = (d})? and for k> 1
Grr1 (dh, -+ dy)

k iVkt+2  k—lk—1 i N2

o (K 2(d)F 1\ 2(d?) ‘ | | |

= —1)k-n “\'mJ (d I o dE
2 (=) ( ) k4 2)! OZZ;L ( ) (I +2)! P (s i) = Pty i)

n=0 n=
3.4 Convergence of the Expansion

A natural question which arises in relation with Theorem 3.1 is that of the region where the infinite Taylor
series expansion of the joint Laplace transform of interest seen as a power series in the parameter )\ is
absolutely convergent (even when H,, admits moments of all orders, this last property is not granted by
the method of [6], and actually, there are examples where the radius of convergence of such expansions is
strictly less than a~!, see [7]). Indeed, it is only when the parameter X is in this region that the Taylor
series expansion has a remainder term which tends to zero when the order of the expansion grows large. The

method that we use below is adapted from that of Baccelli and Hong [7].
Theorem 3.2 Assume that for some K > 1,

ag =141 ® - ® Akllso
is such that A\Eax < K and such that the function

¢ = Eexp(Cak)

1s finite in a right-neighborhood of 0. If in addition for some C in this neighborhood,

(Eexp(Cax))s < > —1, (3.14)

N

—s1Wi—soWJ

then the infinite Taylor series expansion in A at point 0 of the function Ele | is absolutely con-

vergent and

E[efslwtszwj] _ Z /\kE[Qk+1(D67 ee, ;'m Dj’ ... 7Di;)]_ (3.15)
k=0

Remark 3.1
o There always exists a K such that \Ear < K if Aa < 1, since % — a.

o [t is always the case that E exp(Cay) is finite in a right-neighborhood of 0 when the firing (or service)

times have exponential moments.

o Condition (3.14) is always satisfied when X is small enough.
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Proof Consider the vector (W2, Wi) of Rg x Rg as a function of the state vector Z, = (Ty,, X,},..., X2) of
R Wi = X —T,, WJ = XJ —T,. Tt follows from Lemma 2 in [7] that this function is 1-Lipschitz w.r.t.
the projective norm D defined therein (this is a direct application of this lemma when taking H = Id, G; a
permutation such that (G1(2,))1 = X! and (G1(Z,))2 = X}, G2(Z,) the mapping with all its coordinates
equal to T,, and f the projection on the first two coordinates).

In addition, it is easy to check that the mapping

(xay) - ¢(x7y) - eXp(_S]x - 32?})7

where s; and s, are two fixed real positive parameters is such that

|b(z,y) — ¢, ¥)| < (s1 + s2)ll(,9) — (= )],

where ||.|| denotes the supremum norm.

Thus, the mapping from Rt to R defined by the relation

Y(Z,) = exp(—s1 W, — s2W})

is (s1 + so2)—Lipschitz w.r.t. the projective norm D.
Therefore we can apply Theorem 1 and the results of Section 3.3.3 in [7] to derive the domain of absolute

convergence of the series expansion. M

4 Examples

In this section we provide several examples of discrete event systems with state variables satisfying a vectorial
recurrence equation of type (2.1) to illustrate the expansion formulae of the previous section. The first
example concerns a system for which the joint Laplace transform is already known. It is presented here for

the sake of checking the correctness of the expansion formula.

4.1 Tandem Queue with Deterministic Service Times

Consider a two station tandem queueing network where service times at both stations are deterministic. Let
o1 and oy be the service time at station 1 and station 2 respectively. Suppose 09 < 01 < 0o. Let W be
the stationary waiting time of a randomly chosen customer until departure from station i, ¢ = 1,2. Assume
that the arrivals to the network form a Poisson process with rate A < 1/0;1. It is shown in [8] that this
system satisfies the monotonicity, support and stochastic assumptions of Section 3. Then Theorem 3.1 can

be employed to obtain an expression for E [e‘slwl _SQWQ]. Note that in this case

D! = (n+1)oy and D2 = (n+ 1)oy + 02, n>0.

n —

11



Hence, it follows from Theorem 3.1 that

Elgy (Db, DY)] = 01(D}. D) = =P8 — =i =sa(ovien)  g-ler s s

and for £ > 1

QkJrl(D(%a"'7Dl£:7D(2)7"'7D12:) -

<] _ ]) 6*31(TL+1)O'1732((TL+1)0'1+0'2)

(S] + 52)j872€—j

(z‘ - l) (k I l) e 1D —sa((Dorton) (1) 1
l

(s1+ 52)k_j+lsg_l

=)

-1 ( ie*sl(n+1)01752((n+1)01+02)
(s1+ Sg)jsé_j

[Pk—z‘(D121+1a T D}im) - Pk—i(D?m T D72L+k7i71)]

14—

S Lo i—nt+k (=N [i—-j+1 , -1 141
+ Z Z Z Z (_1)Z_n+ - Z ol : (_])16—51( +1)o1—s2((14+1)o1+02)

1
=1 [=0 n=

1 : 1
(_1 i—7 _— — + (_1)z—n—H
(81 + s9)i7tls) (81 4 sg)i=7Hi+lsg

We first consider (4.17). Changing the order of summation and substituting k—j+{ — j in (4.17) we obtain

k—1k—1
1 1
k‘E E —S1(l+1 o1— 82((l+])01+0'2)(( l)k‘—l . (_l)k—l-‘r] i )
=0 j=1 ( ) (51 + s2)7s5 (51 + s)7H1 59!

k=1k=1 /. —s1(I4+1)o1—s2((I+1)o1+02)
il e
- ¥ Z(l—l)(_l)kl j gk

1=0 j=l (s1 4 s9)ish™
= (k - ])( ])k_l6751(l+1)01*32((l+1)01+02)

l (51 + 52)F ! (4-20)

where the equality follows from collecting similar terms together and then substituting j + 1 — j. Adding

(4.20) to (4.16) and using the fact that (*~1) + (¥;1) = (}), we obtain

12

(4.16)

(4.17)

(4.18)

(4.19)

1 1 2
J —l— ])gk+n—i7l,m,n(Dl’”"Dm’Dm : Dn—i—k 2)



k _ _
k e (s1+s2)lo1 (6 (s1+s2)o1 _ ])k
_1)k —(s1+s2)01—8202 YRl T ()R —(s1+s2)01—5202
(=1)% g) l (=1) (s1+ Sg)k (=1)% (s1+ SQ)k
o (s1s2)onsaop (1= €7 C1F2)T) (4.21)
(51 + Sg)k

We now consider (4.18) and (4.19). By the l-invariance property of the polynomials (see [8]), it follows that
(4.18) is nonzero only when ¢ = k — 1. Then (4.18) is equal to

k—1 ] -1 —5](n+])a]—52((n+1)01+02)
( > o1. (4.22)

k—1
1)]{71 Z_%(_]) Z k—1—j

i—n n—1 (81 + 82)j82

It follows from Theorem 7 in [4] that for u > 2

m— )4 m— el
(m=i)* _(m—yty

1 1 1 1 1 u
pu(Dval+]7"'aDl+u—1)_pU(Dl-H"”’DH-u):0—] ( u! - (u_l)'

The above equality and some algebra yield that if kK —¢ > 2

n+k—i
Z (_1)Zin+kimgk+n—i7l7m7n(Dll’ T ’Drlna Dg@ : Dn+l<: ) 0.

m=n
Hence, we again only consider the case i = kK — 1. Note that in this case m can only attain the values n and

n+ 1 and (4.19) is equal to

k k k . .
P 1 ZQ Zl Zl ( > (’L -7+ Z) 6731(l+1)01—32((l+1)01+g2)
l

=0 n=Il+1 j=n

1 1
(=1t ——— (1) — >01. (4.23)
( (514 s2)1=d+s) ! (s1 + sg)h—i+lg) 1

Using the analysis that we have employed in the simplification of (4.17), (4.23) reduces to

k—2 k— . —S g1—S8 0110
it 22:2 <j _ ]>(_1)k—1—le 1(1+1)o1—s2((1+1) 1‘+ 2)01
=0 = \{—1 (51 + s2)7s5 '™
k—2 _ _
k—2 e s1(I4+1)o1—s2((I+1)o1+02)
— (=1 —1)k1t o1 4.24
- 1=0 ( ! >( ) (s1+ s9)F~! ! (4.24)
Adding (4.24) to (4.22), we obtain
—(s1+s2)o1\k—1
_e—(s1+32)a1—5202 (1 —€ (s1+22) 1) oq. (425)

(81 4 s9)k—1

13



Summing (4.21) and (4.25) gives for k > 1
1— ef(lersg)Jl)k: (1 _ 67(814»82)0'1)]{371
(s1+s2)F (51 +s2)!

qk+1 (Dé’ e 7D}€, D(Q)7 R 7Dl%) = e_(81+52)<71_52<72 (( 01) ‘ (426)

Clearly, in this case, there are more efficient ways of obtaining such an expansion, such as a direct use of the
Pollaczek-Khintchine formula (see for example Wolff [18], page 386). Since o1 > o9

E[efs] WI*SQWZ] E[e*& Wl*82(02+Wl)] — E[e*(81+82)Wl ]E[G*SQUz]

and from the Pollaczek-Khintchine formula we have

— k-1 —
E[67(81+s2)WI]E[678202] R S e i \k 1 — g—(s1ts2)0n 1 — e—(s1+s2)01 o .
S1 + 82 $1 + S92

k=1
(4.27)
Note that the coefficients of the expansion in (4.27) are the same as those obtained from the expansion

formula of Theorem 3.1 (i.e. those given in (4.26).)

4.2 Tandem Queue with Random Service Times

Consider a two station tandem queueing network where service times at both stations are discrete random
variables. Let {ol} and {02} be the sequence of service times at station 1 and station 2 respectively.
Suppose P(o) = 1.0) = 0.3, P(c} = 3.0) = 0.1, P(c} = 4.0) = 0.6 and P(c2 = 2.0) = 0.3, P(02 = 5.0) =
0.25, P(02 = 7.0) = 0.45 for all n. Let W be the stationary waiting time of a randomly chosen customer
until the beginning of his service on station 4, ¢ = 1,2. Assume that the arrivals to the network form a
Poisson point process with rate A < 0.2. Our objective with this example is to get approximations for
Cov(W'W?) and Cov(W!'(W?2 — W1)) using (3.12) and (3.13). It is shown in [8] that for i = 1,2

i—1 I ln—1 In
i k ko k k
D; = 1§lnr£?§llgi{]; o + ]; ol +- 4+ kzl o T kzlcr,n}.
- —ly — —

Note that in this case D} = 0 and D3 = o). Using the above expression, for n > 1, we have D2 =
max{D},+ao},U,} where U, is a random variable written as the maximum of various sums of the service times
oh, ,alnH,al_n, o3, ,a%nﬂ,azn. Thus, the monotonicity assumptions of Section 3.1 are satisfied.
Seidel et al [17] provide an efficient algorithm for the computation of the coefficients that appear in the
Taylor series expansion of mean stationary waiting times in tandem queueing networks when service times
are discrete random variables. This algorithm facilitates the computation of the coefficients in (3.12) and
(3.13). Figure 1 displays a comparison of approximations of various order for Cov(W!'W?2) with those
obtained from a simulation study with respect to the traffic intensity p = Aa. Similarly, Figure 2 displays a
comparison of approximations of various order for Cov(W?!(W2—W1)) with those obtained from a simulation

study with respect to the traffic intensity p.
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20 —e— Approximation of 2nd arder

—8— Approximation of 4th order

—i— Approximation of 6th order

— simulation

Cov{WWh

D I ! ! ! !

0.15 0.3 045 0.6 0.75 0.9
p

Figure 1: Approximations for Cov(W!'W?2) for the tandem queue example.

4.3 Kanban System with Deterministic Processing Times

Consider a two stage kanban system where processing times at both stations are deterministic. This example
is studied in section 3.1 of [4] and section 4.2.4 of [8], where approximations for mean stationary waiting
times are developed. The event graph representation of this kanban system is also given in [4] and [8]. In
this simple example, each stage has a single machine and the number of jobs in the environment of each
machine (i.e. in the input buffer, on the machine being processed, in the output buffer) is restricted to 2.
Let o1 and o2 be the service time at station 1 and station 2 respectively. Suppose 01 = 09 = 4. As is
shown in [8], the stationary waiting time vector W has 7 components. The fourth component W* is the
stationary time from arrival until a job leaves station 1 and the seventh component W7 is the stationary
time from arrival until a job leaves station 2. Assume that the arrivals to the network form a Poisson process
with rate A < 0.25. We are interested in computing E[e‘51W4_52WT] and Cov(W*W7). Note that in this
case D = 4 +4n and D] = 8+ 4n. Exploiting this simple structure of {D;t} and {D!}, we can compute all
731W4752W7]

the coefficients of the expansion formula in Theorem 3.1 and get an exact expression for El[e as

s1+s2
81+ so — /\(1 — 67451*432)

]_674317432 _
674317832 (1 + )\( 4)('5] T 82))
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Cov(W!(W- Wl

D ! !

0.15 0.3 0.45 0.6
p

0.75

0.9

Figure 2: Approximations for Cov(W?1(W?2 — W1)) for the tandem queue example.

Moreover, the analysis of [4] yields that

8 — 24\

4 —8A
E[VV4] = m and E[M/Y] =

Hence, we can easily compute Cov(W4W7) as

64 A(1— \)

wWiwhy = - T
Cov( )= 5 =)

4.4 Kanban System with Random Processing Times

Consider the two stage kanban system of the previous example. Assume that service times at both stations
(unlike the previous example) are now random and uniformly distributed over the interval (0,4). Let {o]}
and {02} be the sequence of service times at station 1 and station 2 respectively. Then, D} = o} and
DJ = o} + 8. Moreover, using the expressions for A, and B, given on page 165 of [8], one can see that

for n > 1, DI = max{D; + 03,V,} where V,, is a random variable written as the maximum of various

16
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sums of the service times o, --,0l +1,aln, 08, 0%, 11 0?,. Thus, the monotonicity assumptions of
Section 3.1 are satisfied. Clearly, the coefficients of the expansion formulae in Theorem 3.1 and in Corollary
3.1 are difficult to compute since they now involve multidimensional integrals. Note that {D?}} and {D”}
are no longer deterministic sequences and we need to compute Elgg41(---)] and E[g)(---)]. However,
we can (for example) use Monte Carlo simulation (see for example Fishman [12]) to evaluate these multi-
dimensional integrals numerically. Using Monte Carlo simulation we obtain the coefficients of the expansion

for Cov(W4W7) as

Cov(WAWT) = 1.33+5.01\ 4 22.410% + 75.36)% + 205.820* + 578.74\% + 1428.09\° + O(\")

Figure 3 displays a comparison of approximations of various orders for Cov(W*W7) with those obtained

from a simulation study with respect to the traffic intensity p = Aa.

35

a0 - —e— Approximation of 2nd order
—&— Approximation of 4th order

25 7

—a— Approximation of Bth order

—— simulation

20 A

15 1

Cov(Wwh

10 1

0.02 022 042 062

p

Figure 3: Approximations for Cov(W4W7) for the kanban example.
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4.5 Blocking Before Service

Consider a system of five stations in tandem with “blocking before service”; that is at each station, a customer
can only start his service whenever the downstream station is empty (this is also called communication
blocking). This example is studied in Section 4.2.3 of [8], where approximations for mean stationary waiting
times are developed. Let ¢! be the deterministic service time at station i. Suppose ol < o2 < ... < oo,
Let W* be the stationary time from arrival until a random customer starts his service at station 4 and let
W5 be the stationary time from arrival until a random customer starts his service at station 5. Assume
that the arrivals to the network form a Poisson process with rate A < o* + ¢°. Note that in this case
D} =01+ 09+ 03 +n(o4+05) and DS = o1 + 09 + 03 + 04 + n(o4 + 05) and using our expansion formula,

we can get the following exact expression:

(1—5—(04+05)(S1+52) i —o )(s ts )
E[e—51W4_32W75] _ e—(01+02+03)(51+52)—0452 (1 +A 51452 4 5)(S1 2 )
51+ 853 — A(1 — e~ (0at0o5)(s1+52))

Moreover, the analysis of [4] yields that

+0’5)2

EW’] = Ao

(W4 o1 +o2+ 03+ 2~ 9\(04 + 05)
2

E[T/V5] = o01+02+03+04+ A (U4+05)

2 —2X\ (o4 +U5)'

Hence, we can easily compute Cov(W4W?) as

M120204 — 60302 — ANg408 — 4Xoios — Aot + 402 + 120502 + 40§ — Nod)

745y —
Cov(IWW*W?) 1201 = Ao + 01))2

4.6 Blocking After Service

In this final example, we consider a system of four stations in tandem with “blocking after service”. Unlike
communication blocking, in each station a customer can always start his service but when his service is
completed he can only proceed to the downstream station if the downstream station is empty (this is also
called manufacturing blocking). Let W2 be the stationary time from arrival until a random customer leaves
station 2 and let W* be the stationary time from arrival until a random customer leaves station 4 (hence
the network). Let oy, o9, o3 and o4 be the service time at station 1, station 2, station 3 and station 4
respectively. Suppose o1 = 1,00 = 3,03 = 5 and 04 = 5. Assume that the arrivals to the network form a
Poisson process with rate A < 0.2. We are interested in computing E[e 1" ~2W"] and Cov(W2W*4). Note
that in this case D2 = 4 + 5n and D? = 14 + 5n and using Theorem 3.1, we can get an exact expression for

E[efslw’Qfng‘}] as

s1t+82
51+ 89 — A(1 — e=5s175s2)

1—e—551—5s2
E[e—31W2—52W’4] — edsi—ldse (1 A (67 - 5)(5] + 52) )
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Moreover, the analysis of [4] yields that

8 — 15\
EW? =
Uy 2(1 = 5X)
28 — 115
EwY = S,
Uy 2(1 — 5\)
Hence, we can easily compute Cov(W?2W*) as
125 M\(4 — 5A)
2y — “2C o\ YA
Cov(W=*W1) 12 (1=

5 Proof of the Expansion Formula

This section is devoted to the proof of Theorem 3.1. The objective here is (a)to show that under some
moment conditions, the functions of interest are differentiable in A, and (b)to give a representation of the
coefficients of the Taylor series expansion. Note that under the more restrictive assumptions of Section 3.4
(existence of exponential moments), we have analyticity in A, so that the differentiability of all orders is then
granted.

Recall the marked point process (T, Z) = {1}, Zn} defined in Section 2. Let ¢ be a real valued functional
of the marked point process (T, Z) i.e. a measurable mapping ¢ : M x K — IR where M is the space of all
realizations of {T},} and K is the space of all sequences of potential marks. Since the stochastic systems
considered in this paper have the property that the future development of the input does not influence the
present state of the system, we can and do assume that the values of 1 depend on the restriction of (7', Z) to
the negative half line only. Let the counting measure >, J;, represent a sequence of points {t,}. Moreover,
let ¢ < 0 be an arbitrary but fixed real number and let T* denote the restriction of T' to the interval (¢, 0),
that is T? can be represented by the random counting measure Y, o7, 1(t < T;, < 0).

We will need the notions of uniform coupling and uniform boundedness. The following definitions are
from [5] and [13].

Definition 5.1 (Uniform coupling) Let \g > 0 be fized. Suppose there exists a (finite) random variable
70 : 2 — (—00,0] such that

H(TH@). 2w) = ¥(T().2w)) (5.28)

for all t < 7(w) and such that 79 does not depend on X € [0, \g]. Then this random variable 1y is called a
(uniform) coupling time of order 0. Moreover, assume that for k > 0 there exists a finite random variable

T+ 8 — (—00,0] such that
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/to.../tozk: (?)(_1)kl{¢(T+ zz:(sth) — (T + leét,,,Z)}dtl cdty, =0 (5.29)
=0 v=1

v=1

whenever t < 7y, and Ty, does not depend on A € [0, X\o]. Then we say that 1y, is a (uniform) coupling time of
order k for .

Note that condition (5.28) and (5.29) are automatically satisfied if

1 l
(T+36,.2) = v(T'+36,.2) (5.30)
v=1 v=1
holds for all ¢,¢, < 0 and [ < k whenever ¢t < 7y,.

Definition 5.2 (Uniform Boundedness) Assume that there ezists a random variable ng : Q@ — [0,00) such

that Eng < oo and

| W(T", Z) |< o (5.31)

for all t < 0 and for each A € [0,Xo]. Moreover, suppose that for k > 0 there is a random variable
Nk : 2 — [0, 00) such that En, < oo and

/ / ‘Z() kl/(Tt+Zdt, Z)|dt -+ dty, <y (5.32)
for allt <0 and for each X € [0, \g]. Then we say that we have uniform boundedness of order k for 1.

Finally, we define the so-called expansion kernels 1, ..., which were first introduced in Reiman and

Simon [16] (see also Blaszczyszyn [9)).

Definition 5.3 (Ezpansion Kernels) For any x <0 and z € K, let

Vo, Z2) = Y(p" + 04, Z2) —Y(p*, Z)

where p* denotes the restriction of the counting measure p to the interval (z,0). For any k > 1 and

x1, -, 2, € R, the functional ¥, ... 5, is defined by iteration of the mapping ¥ — ., that is

wx],"',wk (:uv Z) - ( o (¢w1)w2 o )Zk (,ua Z)'
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From the definition of the expansion kernels one can obtain the following relationship (see Blaszczyszyn [9])

k k-l
/ — 21:0(_1) ZWEK ) ¢(Zv€7r 5$U’Z) for z <--- <z
Var, (0, 2) { 0" otherwise (5:33)
where o denotes the null measure (i.e. o(IR) = 0) and K} ; denotes the collection of all subsets of {1,---,k}

containing [ elements.
It is shown in [5] and [13] (see corollary 5.1) that if conditions (5.28), (5.29), (5.31) and (5.32) hold for
all 0 < k£ < m + 1 and if almost surely

0 k I
1’\1?01/ / () 1)k_l1’/)<T+Z‘Stmz)dtr--dtk

=0 v=1

0 ]f k l
/ / (z) (=0F 1Y 80, Z)dt - dty, (5.34)

=0 v=1

then
dk k—l l
&fndklﬂ EY(T,Z) = / /OOl 0< ) (—1) ¢(;5tmz)dt1“'dtk
- / / Ety, ..y (0, Z)day. - day (5.35)
We now define for 7,5 =1,---,d/
W’J(T,Z) :G(wi(T,Z),WJ(T,Z)) :G(Dg@@(pjl@@;p Dg@@ DigT , ) (5.36)
n=1 n=1

where G : ]R(T X lRar — lRar is a nonnegative function such that G(z,y) < cx*1y*2 for all z,y > 0, where vy, 19
are non-negative integers and c is a positive finite constant. Note that for G(z,y) = e %1% 52Y | 51,59 > 0,
E%I (T, Z) is the joint Laplace transform of W W/, Similarly, for G(z,y) = zy, Ev*/ (T, Z) is the expected
value of the product of W% and W7,

5.1 Uniform Coupling and Uniform Boundedness

Let us start with a few preliminary results. It is shown in [13] that the following useful bound can be

obtained on D!, where r is determined by Lemma 3.1:

Lemma 5.1 Forn,r € N and r is determined by Lemma 3.1

D! <Hy+H +---+H, 1,
foralll <i<da.
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We also need the following results:

Proposition 5.1 If the assumptions of Section 3 hold and E[H¥2T™+2] < oo then for 0 <k <m + 1

k

d
el 0,7 — k! w
1/\1% )\kE@Z) T Z k! / / Ew o Z)dxk -dzx,

where ¥4I (T, Z) is as defined in (5.36).
The proof of the above proposition follows from the following lemmas and Corollary 5.1 of [13].

Lemma 5.2 If the intensity of A = Ao of T is such that Aoa < 1, then for all k € IN, there exists a random

variable T such that for all 0 <1 <k, and for all choices of real numbers t1,-- -,

W%W+i%z):¢wﬁ+i%z)
v=1

v=1

whenever t < 1y,.

Proof Using the inequality in (2.3), we obtain that wark +T , and Di+k +T , tend to —oo for any kK € IN
as n tends to co. Then there exists an N such that Di+k +T_, < 0Vn > Nj. Since wak: < Di+kv we
also have Dfl x t T <0Vn > Ng. Rest of the proof is similar to the proof of Lemma 3 in Baccelli et al
[6] and it is omitted. .

The above lemma gives the existence of a coupling time. We next show that for an appropriate choice

of the reference probability space, the coupling time 7 is uniform with respect to A in the interval [0, Ag].

Lemma 5.3 Let A\g be as in Lemma 5.2. There exists a probability space on which are defined Z and a
family of point processes {T'(\)}, where T'(\) is a stationary Poisson process of intensity A € [0, Ag]. For all
k € IN, there exists a random variable 7, on this space such that for all 0 < [ < k, for all choices of real

numbers ty,-- -, t;, and for all X € [0, \g]

wﬂﬂn+i%z)/W( +Z%,)
v=1
whenever t < 1y,.

Proof Since {D%} and {D}} are monotone in n and Di < Dj for all n, proof is analogous to the proof of

Lemma 4 in [6] and it is omitted. =

Hence, condition (5.30) and as an immediate consequence conditions (5.28) and (5.29) are satisfied. We

now show that the uniform boundedness conditions in (5.31) and (5.32) hold. Before going into the details
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of this proof we state two simple inequalities which will be used in our analysis. For zi,---,z, € RZ,
- ik, k € N and n € Ny,

x%l .. ka < x%1+"'+ik et ac7;1+"'+ik (5.37)
(Z1 4 +zp)" < K&+ +a]). (5.38)

Proofs of the above inequalities are given in [6].

Lemma 5.4 Suppose that the assumptions of Proposition 5.1 hold. If A\g < a™', then there exists a non-
negative random variable ng with finite expectation such that 0 < ¥4 ((TH(\), Z) < no and EYv*(T(N), Z) <
oo for allt < 0 and for all A € [0, \g].

Proof We first show that Ev"I(T,Z) = E[G(WYT, Z),W¥(T, Z))] is finite for T = T(\o). Let A = \g and

let  be chosen according to Lemma 3.1. Since G(z,y) < cz”'y*2, we have

v (T, 7)

. 0 .
= G(Dje SZB](D; ®T ), D} @ n@(]),@ 2T )

o0

c(Dye DD, oT )" (Dé@é(D,@@T,n))y2
] L

IN

n—

c(DO + ililg max {Dpr+q + T (pr+q)}+) (DO + il;%) max {Dqu +1_ (pr+q)}+)

IN

IN

v1+v2
C D + Sup{D p+1),,. + T pr+1)}+)

= (D} +sup{Ho + -+ Hy+ Ty }+

) v1+vo
p>0

v1tv2

< o(Df+ Ho+ AT, 2) + oW(T, 2)) (5.39)

{z}4+ = maX(O, z)) where we used the monotonicity properties of {D%}, {D4}, Di < D} and Lemma 5.1.
Note that ¢ (T, Z), b=0,1, denotes the random variable

eNT, Z) = SUP{ > (sz b+ (T 2k—tyr — T (20—t l)r))}
p21 "0 +

Applying (5.38) to (5.39), we obtain

[ W8T, Z) |< ea? T2 (DG4 + (Ho) 12 4 (9T, 2)) 72 4 (p1(T, 2))72).

Note that it follows from the stochastic assumptions of Section 3 that w(b)(T ,Z), b=0,1 is the supremum

of a random walk with negative drift since from Lemma 3.1 we have
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r r—1
Bl + (T-@k-tyr = T-@h—t-1yr)] = EHo = < EHo — —— <0

for b = 0,1. The finiteness of E[¢)"J(T, Z)] now follows from the well known fact the (; + l/g)th moment of
the maximum of a random walk with negative drift is finite if (v1 + v2 + 1)th moment of its increments is

finite (see for example Theorem 2.1 on page 184 of Asmussen [1]). This is true since for b =0, 1

V]+V2+]]

E[<H2k—b + (T—(2k—b)r . T—(2k—b—])r)) < 2V1+V2-H {E[(Ho)m-‘ruz-‘r]] + (Vl NI 1) ()\)V]+V2+]} < 00

whenever E[(Hg)"'T"2%!] < co. We have actually done more than proving the finiteness of E[v%/ (T, Z)].

We have shown that 7y can be chosen as

no = c4v1te2 ((Dg)”ﬁy? + (Ho)"' ™2 + (0T, 2))11 172 + (oUN(T, Z))V]JFVQ). (5.40)

This is true since

vi(14,2) = G(Dje @ (D@@T_ I @ EB (D}, ® T_,))
nal_p, nia_p
< ¢(Dye D@@T )" (pie @ (D} & Tp))”
nT_ nia_p
< c(DO@@ DZ®T_n)) ( 3;69EB(D,ZL<§©T_7L))V2
n>1 n>1

Hence, ng as given in (5.40) can be used to show that there exists a random variable 79 such that 0 <
YHI(TYHN), Z) < mp for all £ < 0 and for all A € [0, Ag]. =

Lemma 5.5 Suppose that the assumptions of Proposition 5.1 hold. Then for k > 0 there is a random
variable i : Q — [0, 00) such that Eng < oo and

[ 15 () st Sa Ao <o
for allt <0 and for each X € [0, Ag].

Proof Recall that K} ; denotes the collection of all subsets 7 of {1,---,k} containing precisely ! elements.
Then
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[ [ (e e ga o
_ /t /t ‘;(_M—l S (T4 Y 8, Z) |dta - dty

WEK[C,[ veT

-y WJ(TtJchSx, )‘dxl---d:ck (5.41)

0
= k!
t e Ky,

where we split the range of integration (t,0)" into k! subranges. Clearly, the value of k! resulting integrals
is the same. For each realization of the point process T+ 3", o 0z, let the sequences {g]; } and {h]} be the
indices of these points originating from 7' = {T_,,} and {z,,v € 7}, respectively. Using this notation we see
that for any 7 C {1,---,k}

V(T + 3 6,,2) = G(Dhe @ (Diy 2 T) o @P(Djy 22, Dje @ (D) 2 T-) & @Dy @)

ven nT_pn>t VET nT_p>t vET

Then

1)kt Z Wi (TtJr 25%7z)

N
M= LM~
o

—~~

WEK[CJ vew
B AP I SIS ) B SRITEES S
=1 WEKk,l,kEﬂ' vem WGK{CJJC%W veT
-3 Z {¢(Djo @ (DT .)o@Di; 2w, Djo D (DT .) o@D )
=1 7Ky ,kem nil_,>t vem n:il_,>t vET ©
. Iz )—1 . T_n<t . ‘
~G(Dio @ DpaT e @ D 9T, @ (Di;@w),
n=1 n>l(zy) ver\{k}
] z)—1 ] T_p<t ] ]
Djo @ (DeT)e @ (D oT.) @ (Do)} (5.42)
n=1 n>1(xy,) vem\{k}

where [(z}) is defined by the relation = € [T_;(,), T_(1(z)-1)]- The differences between the functions G(-) in
(5.42) is zero if

zk)—1 T _n<t
0@ P Dgelne @ Do) 2 @ Dy ©T,) o (D @) and  (5.43)
n=1 ver\{k} n>l(zy)
) l(zp)—1 ) ) T_ <t ) )
Dy P DpeT)o @ Dez) > O Dy 0T, (Djyr ® ). (5.44)
n=1 ver\{k} n>l(zy)
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For simplicity let g, = gil"“”f} and h, = REY M \where for each realization of the point process T+ Y*_, 5,

{97{117~-7k}} and {hq{,]"'”k}} are the indices of the points originating from 7' = {T",,} and {z,,v € {1,---,k}}
respectively. Clearly, g7 < g, and AT < h,, for all subsets m# C {1,---,k}. Since D} > 0, Dé >0, {Di}
and {DJ} are monotone sequences and g, < n + k, we can conclude that for the difference in (5.42) not to

vanish it is necessary to have

0< @B Dy, @T0) ® (D, ©T_(z)=1) = B (Dhoqip ® T_(neyy) or
n>l(x) n2l(zy)

0< D (D5 @T0) & D)y T e)-n) = D Dhay ®Tonon)
n>l(xy) n2l(zy)

since hy = l(z;) — 1 + k. The absolute value of (5.42) can be bounded by

k ‘ ,
> (l— 1) (B D 10T ) ( B DT )
=1 n>l(zy) n>l(zy)
I[(xk : @ (DZL—H-k ®T_(n—1)) > O)H(xk : @ (Di—l—i-k ®T_(n-1)) > 0)
n>l(xy) n>l(xy)
. l(mk)il . . 1 Vo
+ (Dho @ DgeT)o @ Do) (D DL ;& (1))
n=1 ver\{k} n>l(zy)
l(wk ' T_ <t ' '
1z Dy @ (Diy T n)& @ (Dig©2,)> @ (Dig 1 ©T )& (D @ 24))
ver\{k} n>l(zy)
I[(xk : @ (DZL—H-k & T_(n_1)) > 0)
n>l(xy)
' Hzr)—1 ) Vo
+ ( ) (D,@,Hk®T,(n,1))) (DO@ D DLeT)e O (D ®:cv))
n>l(zy) n=1 vern\{k}
I[(.’,Uk : @ (DZL—H-IC X T—(n—l)) > 0)
n>l(xy)
) l($k)71 ) ) T <t ) )
H(xk:Dgea @D Der)e B Do) > (D;g,1®T,n)@(Dig®xk))}
n=1 vem\{k} nzl(zy)
< 2k710{( 69 (D£L,1+k®T,(n,1)))y]+y2

n>l(zy)
o Maw-1 4 » .
+ (Dl D DheT e @ Dhen) ( @ (D W0 @)

v2

n=1 ver\{k} n>l(zk)
4 L ) 4 y
+ (B Dy ®T)) (Dhe @ (DeT)e @ (Do) |
n>l(wx) n=1 vem\{k}
I(zr: @ (D), &T (o) >0) (5.45)

n>l(zy)
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where we used the fact that D! < DJ for all n. Note that

-1

-~
—~
8
Eal
v

D} e (DY 0T)® @ (D @)
n=1 vem\{k}
o Uze)-1 .
< Dj® (D} ®@Tn)® B (D}, @20)
n=1 vem\{k}
o l(wg)—1 ,
= Dio D D ®0T0)® D Dl 1m0 ® T-wn)-1)
n=1 vem\{k}
o Ump)-1 .
< Dyo D DhueTw)o D (D10 ®T-g@)-1)
n=1 ve{l, - k—1}
o a1
= Dye (D} ® Tn) < Dy & D), @ Tn)-
n=1 n>1

Then an upper bound on (5.45) is

2k—1c[( sup (Di_l_,_k—l—T_(n_])))eruz

N + (maX{Do,sup(D Lk +T_n)}) 1( sup (Di_]+k+T_(n_1))) 2
n>l(xg

n>l(xy)

+ ( sup (Df;th + T_(n_l)))yl (maX{Dj’fgli(Dn+k + T,n)})w} I[(ack : sup (DiflJrk‘ +T_(n-1)) > O).

n>l(zk) nzl(xy)

Let [* = (r —1)2 + (r — 1)(k — 1) where r is the integer defined in Lemma 3.1. It is shown in [6] and [13]
that if z, < T« then

. 0 1
sup (Df%Hk +T_(n—1y) < sup (51(;(1)1) JFE;(,(L))

n>l(zy) n>l(zy)
< ¢l 4 gl (5.46)
where p(n) € IN is such that p(n)(r—1) <n < (p(n)+1)(r—1) and fz(fzzz) = f;lzgl)(T, Z),b=0,1 is defined as
® (T,7) = H T -T
&y (T Z) > a—b + (T @161 — T2 ) 1))

1:0<21—b<p(n)-1

and d);(ﬁl;) = (b)(T Z) = supn>l($k)(§l()(3l)(T Z)). Let (T, 2Z) = suppZ](EZ(,b) (T, Z)). Notice that Ez(fzzl) is a
random walk with a negative drift and ¢® (T, Z) can be interpreted as the supremum of a random walk
with a negative drift. Then the (v + vo)th moment of ¢ is finite whenever (v; 4 v5 + 1)th moment of its

increments is finite. But for b= 0, 1

E |:<H2l_b + (T—(Ql‘H—b)(r_]) _ T—(2l—b)(7~_])))m +V2+1]

— 1\v1+vo+1
< 20t (BI(Hoy ™+ (v + vy + DI ) ) <
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where we used the inequalities (5.37) and (5.38). On the other hand, if z € [T_;+,0) then

sup (Di—wk +T (1)) = max{ max (Di—wk +T_ (1)) sup (Dn 1k T T (no1))}
n>l(zy) Wz )<n<i* n>l*
< max{Ho+ -+ Hgr—1, ¢§5(,)€) + ¢(zk ¥
< (Ho+ -+ Hepoy) + 680 + o). (5.47)

As a next step we develop an upper bound on maX{Dg, SUP,,>1 (D£+k +T_,)}.

IA

max{D}, sup(Dn+k +T ,)} D} + sup max. (D(pT+q)+k +T_(pr+q))

p>0

IA

D+ Sup(D(p-H)r—i—k T (pri1))+

IN

D +SUP(D(p+k+1) + T (pr+1))+
P

IN

Dg) + S‘ilg(HO +Hi+ 4+ Hpppg+ T pr)+
b=

IN

D)+ Ho+ (~T_py) + B + 8V (5.48)

where for b =0, 1

b
5;2) = sup > (H2lfb+(T—(21—k—b)r_T—(2l—k—b—1)r)) :
P20 <ol p<prk T
= =P

Again ﬁ,ib) is the supremum of a random walk with a negative drift. The (v; 4+1v2)th moment of this supremum

is finite as long as (v; 4+ v2 + 1)th moment of its increments is finite. But for b =0, 1

E {(Hﬂ—b + (T_(2l—k—b)r _ T_(m_k_b_])r))m-&-uz-&-]}

v1+ro+1
< 2 (B[(Ho) ) 4 (4 v + 1)) (A) T <

We are now ready to put all the pieces together. First notice that the right hand side of equation (5.41) can

be bounded above by splitting the outer most integral into two parts:

/to/x /Z LD @b(Tt+Z5%,Z))d:c1---dgg

2 = 0 TEK}, VET

k] v1+uv2
Y o T
* n

+(max{ D, sup(D}, + T- )}) 1( sup (D4 o))
n2l(xg
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] V1 ) v
+( E;}p )(DZL—Hk + T,(n,l))) (maX{Dé, Sup(D]JrP + T )}) }dﬂfl cdxy,
n>l(xy >

T_x vi+u2
L L Pt )

n>l(z

+(maX{D0,sup(D T T )})Vl( sup (Di_Hk + T_(n_l)))y2

n>l(xy)

+(n§}1;k)(DnHk + T,(n,l))) (maX{DO’ SUP(D nk T T—n)})w}

I[(:ck : sup (Di—wk +T_ (1)) > O)d:q . --dxk} (5.49)

n>l(xy)

Using (5.47), (5.48) and the inequalities (5.37) and (5.38), the first integral in (5.49) can be bounded by

3(kr + 2)1tvetl 4 9. sritra+l kr—1 1
( r ) 5 (Q(Ho)leerJrk—i— Z (Hl)l/1+l/2+k'+Z(¢)(l))yl+y2+k+
' 1=0 1=0

N
-
[en)

—

ﬂ](fl))yﬁruﬁk + (—T,kr)yl+y2+k + (—T,l*)yl+y2+k).

Let

7_9(1’) (b)(T Z) = Sup{ T (p+1)(r=1) £ (T, Z) > O}
p>

for b= 0,1. Then the second integral in (5.49) can be bounded by

(6@ + 60" ™ 4 (D} + Ho+ B + 8" + (—Tka)w(%m oM)” +

¢(O)+¢])) (Dg—i—Ho—l-ﬂ]gO)—l-ﬂlg) ~T_ kr / / / Tp : —xk<19( )+19(]))dx1---d:ck
Tp

{

(

{(¢o>+¢<1>)ul+w+(D6+H0+ﬁ,§ 80+ (~T1) " (69 +60) +
(69 + 60)" (Df + Ho-+ B0 + 80 + (<)) "} L 2O

(

k!
3. ovitratk 4 9. 5V1+V2+k ! !
< . O 3 N A
: =0 =0
1
(=T g )1 Ho2th 4 Z(ﬁ(l))m-&-ug-&-k)
1=0

where the first bound follows from (5.46) and Lemma 7.6 of [13] and the inequality again follows from (5.37)
and (5.38). Thus, we can conclude that

/ /’Z() ”/”(Tt+z(5t, Z)|dtr - dty, <,

where
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kr—1
Ny = 5k(2(H0)V1+V2+k+ Z(Hl)l/1+l/2+k+
l 0
1

Z l) vi+uvot+k + Z l) vi+uvotk (—Tfkr)leerJrk (T * )1/1+1/2+P + Z l) u1+u2+P)
=0 =0 =0

with & = 28 le(3(kr + 2)n1 T2t 4 2. pritwvathtl 3. gmitatk) - 1t follows from Lemma 9 of [6] that
(v1 + o+ k)th moment of ¥W(T, Z), u = 0,1 is finite provided that E(H,)"' 2%+l < oo, Hence Eny < oo,
and 7 is a uniformly integrable bound for all k € {1,---,m + 1} as long as E(H,)"*™27™+2 < oo, which

completes the proof of Lemma 5.5. O

Finally, the proof of continuity property follows from an argument similar to the one given in section
3.1.7 of [6]. Since conditions (5.28), (5.29), (5.31), (5.32) and (5.34) are satisfied it follows from Corollary
5.1 of [13] that the result of Proposition 5.1 holds.

5.2 Computation of the coefficients

Since we have shown that Proposition 5.1 can be applied to derive a Taylor series expansion for EG(W?, W),

we now explicitly compute the coefficients of the expansion when
GWi, W) = e sW'=s2W f5r < 5 and 51,59 > 0. (5.50)

We first provide a recursive representation of these coefficients and then use this result to provide their

explicit form in a second step. Recall that
P (T, Z) — G(W’(T, Z), Wi(T, Z)).
Let ¢ (D}, D)) = ¢ (0, Z) and for k > 1
. . . . 0 0 .
@1 (Db D Do DY) = [ o [ 0 (0. Z)dmy - day (5.51)
for G(W?, W) as defined in (5.50). Let
Sk = {(i1,d2, k) € {1,2, -k} 1iy Sdp <o < 2 Lj =1,k — 1,4, =k}

and let

sy [ 1 i, =max{l: Dj — Dy < Dj— Dj} forall p=1,---k
X (i1, 12, iK) {0 otherwise ’

Throughout our developments we set i, + 1 = iy if 7, = k for p < k — 1.
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Theorem 5.1 Suppose that the monotonicity assumptions of Section 3 hold, then fori,j € {1,---,a'} and
i <J, q S,Dé) — e=s106=2Dy gpg forallk > 1

] i i Jj nJ Jy . .
qurl(D%)?D%ﬂ'“? 27D07D17"'7Dk)* Z X(Zl,"',lk)
(41,78 )ESK
k=1 DI D
p i i i i J J J
<Z[/DJ DJ {qk(DO’”"DO’ iP‘H_u"”’Dk_U’D07"'aD07Dp+]_ua"'aDk_u)
— _ —_——— —_——
=0 0 h
p P ip p
i i i i J J J
_Qk(DO”DO7DZp+1 - ",Dk_] _U’D()’”"DO’DP-F] _U,,Dkil_u)}du
—_—— —_——
ipt1 p+l
ipt1—ip—1  pi —Di
ip+v+1 0 i i ] j ] ]
+ Z /Z Z_ {qp(D}, - -- ’ip+1)+1_u7”'7‘Dk‘_U7D07”'7D07Dp+1_u7"'7‘Dk—u)
— e —— —————
v=1 iptv DO
D
] ] ; ] J J N J
_qk‘(D677D67 Ep-i-’u-i-]_u?“"D}Lc—] _U7D07”'7D07Dp+1_u7“'7Dk—] —u)}du
—_——— —_———
ip+v+1 p+1
Dj
0 Di - Di _ Dj Dj Dj _ Dj _
+ i Di {qk( 0" oo tpt1+1 Uy -y g U, g, -, g, p+1 Uy« -y k u)
: — SN—— ———
0 )
Ip+1 p
] ] i i J J N J
~qu(Dh, -+, D, DL~y Dy —u, D}, D}, D)y — - D]~ u)}du]) (5.52)
—_——— —_———
ipt1+1 p+1

with the convention that summation over an empty set is zero and ig = 0.
Proof By definition

(D DY) = e Pt
Using (5.33), (5.36), (5.50) and (5.51) we have for k > 1

27D67D{7"'7Di):/0 /t / Z(_])
1

QkJrl(DéﬂDli: Tt

-1
i, l i j l j
Z e ! (DOEB@nzl(D"_t”(m))_SQ(DétB@nzl(D%_t“(m))dtk -+ dty (5.53)
ﬂ'EKkJ
where Ky ; again denotes the collection of subsets of {1,---,k} containing ! elements and T(n) denotes the
n*" order statistic of 7, i.e., the n® smallest element of the | — tupel 7 € Kj. Pick (i1,---,i) € Sy and
suppose
ip = max{n : D!, — D} < Dg — D}}. (5.54)
As a next step using the order in (5.54) we decompose the outer integral in (5.53) in the following way
/oo - kzl(/D’fp+]_D6 +ip+1zip1 /D§p+v+1_D6 +/D;+1_Dg ) o0
0 - = Joy,-n; Di -D} Dj-D}
k—1 Dt _Di ip+1—ip—] Dt _Di Dj _Dj
ip+1 0 ip+v+1 0 +1 0
Z(/j"j et Z i" Z_ ...+/ip ) (5.55)
p=0 Dy—Dy v=1 Dip-s-v*Do DipH*Do
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with the convention that the summation over an empty set is zero. Since t; <ty < --- <t and Dg < <L
D} and t; > D] — Dj, it follows that t,, > t; > D] — D} > D} — D}, > D, — Djy and therefore D}, —t,, < D}
and D}, —t,, < D{ for all 1 < m,n < k and the integrand of the integral from D] — D} to oo is

S (=1Et S o—51D4—s2D) _ ,—s1Dj—s2D} S é<: )(—1)Ft = 0.

=0 WGKk,l =0

For each remaining integral in (5.55) we decompose the inner summation according to

k

k k
Z(_l)kfl Z :Z(_])k*l Z ...+Z(_])k*l Z (5.56)

=0 WEK}CJ =1 WEK}CJ,IEW =1 ﬂEKk’hl%ﬂ'

o~

We first consider first of these sums for 0 < p < k — 1 for each integral in (5.55),

1 . l .
/ o / Uy (DD (D tey) 2 (5B D) gy gy =
th—1 = 1 WEKk,l,IEﬂ”
Di . —Di k min ;
/ iptl om/oo Z(—l)k_l Z e*Sl(D@EB {up}(putﬁ( ))@@n mm{“pm(p;ftﬂ(n)))
D] DJ Te—1 =1 weKy ,lem

min{l,p}
52 (D@ Dhto ) O i1y 11 P =t gy g (5.57)

Since ty > D} — Dj > D — D}, it follows that Dj, — tr < Dj, —t; < Dj —t < D} for n < min{p, 1} and
Dy, —tr,, < D —t1 < D; —t1 < Dj for n < min{ip, l}. Substituting tr,, — tr,, —t1 in (5.57) yields
the plus term in the first integral in (5.52) for the particular ordering considered in (5.54). For v > 1 we
have t; > DZJ; — Dé and hence D% —try < DZL -t < Dg; -t < Dé for n < min{p, [} still holds and since
t > Dilpﬂ — D}, we have D} — by < Dl —t < D§p+v —t; < D} for n < min{l, i, + v}. Thus, for v > 1

D? —Di k . _ . .
/ ot ™0 /Oo Z(_l)k_l Z 6—81(Dééb@izl(D%—tﬁ(n)))—52([)3@@;:1([)%_“@)))dtk coedty =

1p+v Dy th—1 =1 meKy ,1em
D? v —Di o0 k mln{l zp+v} .

/ iptotl 0/ Z(_l)k—l Z (e—sl(ngaEB (D=t oD’ min{l, ZPHH](D;—M(")))
z +o Do th—1 =1 weKy ,1em

¢~s2(Dbe@ (D ‘t”(m)@@;:min{z,pm(D%‘twn))))dtk - -dty (5.58)

Again substituting tr, — tr, — ¢ in (5.58) yields the plus term of the second integral in (5.52) for the

particular ordering considered in (5.54). Similarly, for the last integral we have

D’ ., —D} o Kk o .
p+1 0 o — —t _ D] N D] —t
/i i / Z(_l)k l Z S]( RS 7r("))) s2(DJe@D, , (Dh 7r(n)))dik"'dtl =
ipi1 D0 te—1 1= weKk,m@r
Dj —Dj mln{l1 +1}
/ 1~ Do / 4 Z ( s1(Die@rn et (p —tﬂ(m)@@n min{l, ’p+1}+1( t,r(n)))
§p+1_Dl th— 1= 1 €Ky ,1em

—s2(Dhe@n (D%‘t’%n))EBEBZ:min{z,p}H(D%_tﬂ(m)))dtk -dty (5.59)
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and substituting t, . — t; = —t; in (5.59) gives the plus term of the last integral in (5.52) for the particular

T(n) T(n)

ordering considered in (5.54). The minus terms in (5.52) follow analogously from the second summation in

(5.56). =
We now show that the expression for g1 (D}, -, D%, Dé, e ,Di) does not depend on (i1,---,ix) € Sk,
Vk > 1 as long as the monotonicity assumptions of Section 3 are satisfied. Let T,i“’m’“‘) be the linear
transformation given in (5.52) for (i1,---,ix) € Sg. Hence, for f: R?* - R
T Dh - D1 Dheo D) =
’P“ 0 i i J J J
Z/ f(Dh, -+, Dy, D 1 —u,--,Dj, —u,Dj, -~ D,Dp+1 u, -+, D] —u)
\ﬁ,_/ \.q,_/
ip p
_f(DE')?"'aD(i)ngerl_uv"'aDliffl_uaDév" DjaDerl 'aD]kfl_u)}du
iptl pt1
ip+1—ip—1 Dz +l+17D(i) . .
ip : .
+ Z Di 7D’ {f(D67 D07Dz +l+]_u7"'7D}c_u7DgJa"'7D Dp—H 7Di_u)
=1 ip+l ip'-‘rl p“
_f(D67 "7D67D§p+l+] _ua"'leic—] —U,D%,--- ,Dé,D;_H _ua"%Di_] _u)}du
i1 p+1
D410y i i J J
—1—/1_ i{f(Dof , D, Zp+1+1 ---,Dk—u,DO,---,D DpH—u,---,Dk—u)
D ~Dj \-—/—/i —
p+1 p
_f(D67"'7 67 ;p+1+1 "'7D271_U7D67"'7D Dp+1 '7Di—] —u)}du](560)
ip+1+1 p+1
The following lemma says that T,Ei“"”ik) does not depend on (i1, - - -, i) under the monotonicity assumptions.

Lemma 5.6 Let f: R** — R be such that

DZ

’L}Q?‘

f(Dév"" 271,Dj,'~~,Di71) h(DZ

i J
V1 '7D D

'LU]7

-, D] ) (5.61)
where h : R - R, n4+m <2k and 0 < vy <vg <+ <vy <wy <wg < - <wp, <k—1. Then
T}?]’mﬂk)(f( 6,---,D£_1,D6,---,Di_1)) - Tlglpu.ﬂk)(f( 6,---,D£_1,D6,---,Di_1))
fOT‘ any (i1,~'~,ik),(i,1,"-,i§€) € Sk

Proof Without loss of generality, we assume that vy # 0 and wy # 0. If v1 = 0, we have Df)l —u = Dj in
the integrals below. Similarly, if v1 =0 and m = 1 and w; = v,,, we have D{U] —u = Dé. It follows from

(5.60) and (5.61) that with vg = 0 and with the convention that the summation over an empty set is zero
T]E217..-7Zk)(f(D67 --,Di_,D},---,DL_))) =

D Di
D —w, D~y D —w, DL —wye DY —w)du o+
0 v1+1 u, vo+1 u, s Hum+1 u, wi+1 u, s Hawn+1 ujau
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m—1 Di _Di
vp+1+1 0 i
>/ h(Dp,
‘l D

i11—Db y

Df;erl_D(i)
n—2 .pI _pJ
wpyo+l 0 i
Z . h(D,- -,
=0 Dw p+1+1 —Dy
Dj_Dj
ko
-
D31~ Db

m—1 qu) 7Di )
N {Z/ p+1- Oh(Déa"'a

i _ )t
vao

D?,, —D}
Di,,=D;

p

Dj _Dj
wq+1 0 i
/ h(D07'

i J
v+1+1 ”7Dv +1 UDw1+1 u"'ﬂDwn+1_u)du+

Dy, DY o —u,--, DY —u)du+

.,D}, D} —u,-+, DI —w)du+

wpy2+1
p+l

-, D}y, D}, -, D})du

D) . —wu;-,Di —wu,D} —u,---, D —u)du+

Upt1 U Wn,

0.+ Do, DY, —u, -+, D}, —u)du+

Wn

n2 Dl . ,—D} . o .
Z/_ U h(D,- -, Dy DYy, DY DYy =y, D)y — u)du +
p=0 7 Doy 1~ Do Y
p+1
D]-D} . o ‘
oL, 2 J .. J
/D%)TLDé h(D07 ’ 05D07 7D0)du}
= Ho 1(D07Dv1+17D22+17'"7D121m+17D501+17"'7Dzun+1)_H072(D§;1+17D1Z;2+1="'7D;m+17Diu1+17"'7D‘zun+1)+
m—1
(HP7 (DO’DU;:+1+17""DzszrlvD‘zu]Jrl""’DzunJrl)_HIL (D07 v +1a"'7Dz;m+1aDzu]+1v"'7Diun+1))Jr
p=1
Hm,l( D Dw1+]"”’DZun—H)_HmQ(DO’Dvm—H?Dzm—&-]’”"Diun—H)Jr
n—Il—1
(Hm+1+p, (DOaD():D 'aDZun—H)_Hm-H-HOQ(DO?DO’Dw 41+l T DzUn+]))+
p=0
Hern I+1 1(D07D07Dk) Hm+n I+1 2(D07D07Dwn+])
- {H7 'U]?Dz)Q" '7DZ wlv" 9 Zun)_HO,Q( vaz}Qa' 'aDi D{up"' Diun)Jr
m—1
Z p,1 DO? v+1""’DZ ww" ’Diun)_HnQ( O’DZ DZ Diup"' Diun))Jr
=1

H ,]( D Diula"'aDZun _Hm72(D(i)7Di Djw17' 7Diun)+
n—Il—1
Z m+1+p1 DOaD07D 'aD{un)_HerlerQ(DO’DOva IRER '7Diun))+
Hm+n_z+171 (Dj, D3, D) = Homent1,5(Dps DY, D) } (5.62)

where Hp, (- --) correspond to the value of the integrals evaluated at the end points. Since (5.62) does

not depend on (i1,---

ir), we get the desired the result. Moreover, it can be seen from (5.62) that

T,gi]"“’ik)(f( oo DL D3, "-,Difl)) is written as the sum of functions of the form given in (5.61)
(i.e. sum of functions whose parameters are ordered whenever the monotonicity assumptions hold). =
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We can now state our next theorem.

Theorem 5.2 Suppose that the monotonicity assumptions of Section 3 hold. Then for eachi,j € {1,---,a'}

and i < j, we have

qu(Dé,--- iDg,--- Di):

p+1 . ; . . .
Z/ {qk D07 D%)aDi)Jrl_u:"'aD;f_uaD{_u"'aDi_u)

P
—Qk(Déa e Do: p-H Uyt 7Dlic—1 - u,Dg,D{ Uy ’Di'fl —u)}du
p+1
DJ . ) ) . . )
Jr/ {Qk DO: : DOvD] : Di_u)_Qk(DE)v"'aD(Z)ng)aD{_uv"'aDifl_u)}du
~—_————
k k
+Z/ p+] {qk D07 : 7D65D67"'7D65DZ]7+] uaaD]k_u)
k 4
_Qk(Déa" 7D67D€)7 7D Dp—H _ua"'wDi—] _u)}du (563)
k p+1
for allk > 1.
Proof Since g1 (Dj, Dé) = e—51D% S2D0 it follows from Lemma 5.6 and its proof with an induction argument
that for all k > 1 the expression for gj41(D§, - -, DL, . DI ,D‘,Z:) does not depend on (i1, --,i;) € Sk. For
the sake of simplicity we can choose i1 = i3 = -+ =i = k, for all £ > 1 and obtain the recursive relationship

n (5.63) from (5.52). .

Finally, we provide an explicit representation of the coefficients gx(---), & > 1 which show up in the

Wi—s2 W)

Taylor series expansion of Ele™*! in Theorem 3.1.

Theorem 5.3 For k > 1 and d}, < dé, 0<d, —dj<d — dé for i < j, a solution to the integral recursive
equation (5.63) is given by the functions qi(---) defined in (3.10).

Proof is given in the Appendix.
Note that the existence of a Taylor series expansion for E[W*W7] under the assumptions of Corollary
3.1 follows from section 5.1. The explicit expression of the coefficients gj (- - -) for k > 1 is straightforward to

obtain from g(- - -).

6 Appendix—Proof of Theorem 5.3

We use induction. Recall that FLm(z,y) = (—1)l+m%. First suppose k = 1. Then

i_di

. 1% . - ] j
q2( z d d‘{) :/0 {Q] (dzl —u,d‘{ — ) ( d] }du+/ {Q] dOadl ) q1 (dévdé)}du
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il
dl

= [ ) OO s [ O ] ) - FON )

di —d
FON(dh, df) + F“’O](d’i,d{) — (PO — FION)(dhy, df — di + dfy) — F1*%(df, ) (p1 (d]) — pu ()

which satisfies the expression in (3.10) for k£ = 1. Similarly,

a3(d, i, dy. dh,df,dj) = FUO2(df,df) — (FI 4 PO (], df) + FI2O)(d), df) +
(P02 — FUO) (dh, df — di + df) + (FU — FRO) (i, df — di + db) +
(FB0 I — 2100 o — i -+ df) — FION ) pate] ) — el ) +
FIO(dy, ) (1 (&) = pa () = FI0(di, ) (o1 () — pr(d)) +
(FION — FINO) (df, dj — db + df) (pr (dz) pi(d})) -
(PO — PO (dh, df — di + df)(p1(d}) — pa(dh) + p1(d) — pi(d]))
which again satisfies the expression in (3.10) for £ = 2. In the following k will always be assumed to be

greater than two, i.e. k > 3. It follows from Theorem 5.2 that

Qa1 (diy, di -, d dé,d{,~-- dl) =

Z/pH % . do, p+1 ---,d};—u,d{—u,d‘%—u,---,d‘,i—u)du (6.64)
. g , o ‘
—Z/ by iy~ dy oy~ d ] e d] —wdu - (6.65)
o
di-dl 4
/1_ (s dy ] — ]~ b — ) (6.66)
k%0 Y
k
& —d) , L .
_/i . Qk( 67"'a 6ad€)7d{ _uv"'adifl —U)dqu (667)
k%0 Y
k
k-1 g0 _qd
p+1 70 ; ; i j
Z/j ; Qk( 67"'7 %)ad(])f":d derl ”"d‘]]f_u)du (668)
p=1 dp—dy L M
k—1 &
P10 i j i j
—Z djid] qk( 07“'7 0,d0,“'7d0,dp+1 _u7"‘7dk_1 _u)du. (6.69)
p=177w 0 k pil

In what follows we will evaluate (6.64) to (6.69) separately. Now assume that the expression in (3.10) is
correct for some k > 3, i.e. gi(---) satisfies the expression in (3.10). Then changing the order of summation
and using the 1-invariance property (see Baccelli and Schmidt [8]) of pi(---) and grjmn(---) and the fact
that if df = d}_H =...=d! then

0 ‘ ifm>n
gk%hm,n(d;ﬂ : 7dfna d7]n7 o dk) — { ( 1)k mt {pk(dm+17 : adngrm)_
Pr(ds -+ df 1)} ifm=n
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with some algebra we obtain (6.64) as

k=1 .4t

p+1_d6

. o . i i i
Z/ qr(dy, -+ dy, dpyy —uy - ooy df —u,di —u,dy —u, -, dy —u)du
~———

-
p

P
k—2 =1/ . . . ‘

= Z(_l)k_n_] Z <n— ]>(F[Uk o 0=dn+1 dpq +dp) — Flok=vl( Oﬂdn—H - 2"'%)) +
—0

—1

1—nF[k—1 —v+lv—I+1] +

(—1)Fnplhmotte= l]](dlydﬁﬂ diyq +dp) —

[(_1 )k—] —nF[k—l —v+lv—

l+1}+( )k nF[k vtl,v— l]](

2 k-1 k-1
v—=I\(k—1—-v+I n Lot} (gi
R o e

dy, &by — dj, + db)) +

—dlq +dh) +

>(F[U+] k==l n—H?dn—i-]) Flotk=e=1 (g dn—H iy ‘*’dé))) +

k=3 k=2 k-1
3 Z(z:i)(k—ll—erl)([(_])k_

(~iyF Rt UGy dl = d )| (pr(dhy) = pr(dfy)) +

k=2 k=1 k-1 _ 11—
3 <2_§><k 11 +z>([(_1)k_

(—1)kinF[kivHH’U*lfl]](d;Ha dhy —dyyy +diyg) —

l—nF[k—v—H,v—l] +

[(_1)k—1—nF[k—v+l7v—l} + (_1)k—nF[k—v-‘rl-i-l,v—l—]]]( dn+1 d?"L-ﬁ-] + dé)) +

e b
v—1
Z Z(_l)b—n-i-l Z (n ~ 1) (F[ub—v—i-l]( dﬁz—H dz o + dz) [ub—v—H}( dﬁz—H

n=0b=n

{pks—b—l (d‘;+27 B di_b_,_n)

J J
— pr-b-1(dp g, sy 1

; b [y 1
ZZ(_l)b—n-H Z (Z_])( Flo+1,6— v]( n—H?dn—H) Flo+1,6— U](dzvdgz-i,-]

{pks—b—l (d‘171+17 B di_b_,_n)

J J
— pr-b-1(dp g, sy 1

)} +
dli +d6))

)} +

k-3 k—2 k-2 b ! b v—1 b—U+l \ l " . " l '
Z Z Z(_l) —n+ Z(n_l>< l >([F[ —U+7’U—+}_F[ —’U+—|—7U—}](dz’dn+]

[F[bvarl,vflJrl] _ F[b7v+l+1,v7l}]( dn+1 i Jr d%))

{pk—b—l (o) = Pt (g ’diﬂrk*b*l)} +

k-3 k-2 k-2ntk—b-1 b (v—1\(b
S s (o)

l

F[b7v+l+1,vfl71]( dm+1 dz it + dl ):|

n d};ﬂ—d% . .
(4 (]
(3 e by
p=n+1"% %0

p—Il—1

T d;erfn - u) -
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_’U+Z> |:F[b v+l v— l](dl d7]n+]

L+ dy)

= dypy +dp) —

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

—djy g +dp) —

(6.77)



] ] (dz - d6 _ u)kfernfbfl
m—n dz: : d ) : adl m-—n—1 " - -
p (0 0 p+1 I+ 1 U)}( (k—ern—b—l)'
p—Il—1
k—m+n—b—1 (_1)7"( i —di— u)k—m+n—b—r—1 ) . .
Z (k7i+7]71+rg—b—r—l)' {pr(d%@+25"'ad7]n+7“+1)_pT(dfn-‘,-]v"'adm—i-r)})du] (678)
r=1 '

k3k2k2n+kb1 - . vt ‘ ‘
D S S S ol (A | L

=0 n=I[+1 b=n m=n+1
b—v+i+1v—-1-1 J i ]
F l(d sy — g1 + do))

i Ji 3
Z /d L {pm n m+17d0"' 0 0pr1 — Uy, lfm—n — W) —
p=Il+1 p—l—]
i di _ u)k—m—‘rn—b—]

i 7 (dm 0
pm—n(dm ’ dOa p+1 "lermfnfl_u)}( (k:—m+n—b—1)! B

p—Il—1
k—m+n—b—1 (_1)7"( i —di— u)k—m+n—b—r—1 ) . .
) b Pl ) = e )} du] (6.79)
r=1 '

5 (1) (075
+ m—
=0 n=l+1b=n m=n !
([F[bvarlJrl,vfl} _ F[b7v+l+2,vfl71}]( dan d,'nH +d6) .
[F[b—v+l+17v—l] _ F[b—v+l+27v—l—1}]( %—H?dm—H _ dfn—H + d%—i—l))
9k—b+n,l+1,m+1,n+1 (d§+1 y T 7dfn+1 ’ d7]n+] y T ’diLJrkfb)' (680)

Similarly, (6.66) can be obtained as

#od o | |
/Z_ p qp(dy, -+, dh, d] —u,d) —u, -+, d), —u)du =
L% ~
k
k-1 v—1 . . . . . .
3 (—1)Fn ‘Z (n_])(F[“’“—”]( bl — di+db) — PRl ) — df + ) + (6.81)
n=0
k=2 k-1 k—1
v—1 ]C—]—U—l—l -n —v4l—1,v— n v+l v— i 37 i i
Z Z( _l>< >( k 1-n plk—v+i-1, l+1}+( )k Fle—vtl, l]](d 7dn+1 +d0)
1=0 n=it+1v=n \"
_[( 1)k 1 nF[k vHl—1,v— l—H}Jr( l)k nF[k vtl,v— l]](dz dﬁz—H d%eré))Jr (6.82)
SE i (v bvtl i vl i
Y Yty (n_ 1)(F[”v gy — d ) — FUO O d ]+ i)
n=0b=n v=n
{pk—b—l (A gy ] pn) = Pt Ay, 7di+k—b71)} + (6.83)

SLEE s (v (b—v+l b—vtlo—l+1 b—v+1,0—1 j ey
S e ol L | e L R e
_[F[bvarl,vflJrl] _ F[b7v+l+1,vfl}]( dn+1 d‘{ + d{)))

{Pk—b—l (o] ) = Probt (dyy, e, dZLJrkqu)}- (6.84)
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Finally, to complete the plus terms in (5.63) we consider (6.68).

Note that using the recursive integral

relationship of the polynomials (see Baccelli and Schmidt [8]) we can easily show that the following equality

holds
1 ;
Z / {Pr—p—1( ML dp+2, oy di pn) = Pr-b—1 (1,
pfn p—
k—2—n p+n+1 )
P+’ﬂ
p
= pszb(d}jwrl, )

J
U dp+2’ g ) bdu
n+1
J J
b—1 (U, U, dp+n+27 T 7dk+n—b—] )}du
p+1

Using the above relationship with some algebra we obtain (6.68) as

k— d;_‘_lfdo

Z/d] dj QI”( 67 idj"'d(]).7d§+1_u7"'7d‘li_u)du

FUR=l(dy, ) +

(=Dt ] g ) (p1(d]) — pr(dd ) +

o (dp, ) — d‘l7+1+d6)+

k—2 —
= X Z<R_1>F“”“ v, df) (i (d]) — i) +
n=0 =
= v — 4 4
St 5 (1) (Rt o ) -
n=1
k-3 1”222 ’fz:l l>< 1—v+l) {(_l)k—l—nF[k—l—v—&—l,v—l] +
=0 n=Il+1v=n !
k=2 k—1 k-1
Z Z Z (Z:;) ( —1—-v+ l) ([(_1)k—1an[k717v+l,
+1v=n

=0 n= =
( 1)l<: nFP v+lv— l](
(_ )k_nF[k_v+l’v_l](d6,d‘é)]) +

3PS §<2:§><k_1l_v+l)([< oo

diyy —dly + )] = (=) R

1—v+lv—1+1] (d%, d(]))

Al — ]+

+(_1)k—nF[k—v+l,v—l]]( ( dgz—H _ dj —l—dj)] _

[(_1)k—1—nF[k—l—v-Hm—l—H} Jr( l)k nF[k vtl,v— l]](dz dj d]

01 Oy — Qjyq T d%)) +

k—2 k-2 ) . b v—1 ) ' ) ) )
PIDDCOEDS (n _ 1)F“’ o d)pv(grs e dyy) +
n=1b=n v=n

k—2 k-2 ) : b v—1 b : . .
SpUETd ol ) (GRS T R

n=0b=n v=n

) — Flb=o+1(dh, df) )

{pszb—l(d}]wr% o di pn) — Phobo1(dgg, vdfwkfbfl)} +

LEE b—n+1 Lo (o= (b—v+I [b—v+lu—1+1] b—v+i+1,0-0]/ 7i
Z Z Z(_l) vZ:;L n—1 l [F ’ - F ’ }(d07d0)

39

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)



(), dl ) + (6.93)

k-3 k-2 k-2 b 1b v=I\[(b—v+1 b—vtlo—l+1 b—v+l+1,0-1 |
> D (D> (n—l>< ! >([F[ sotbotrl]  plemortttos gl @l —d )+ df) —

=0 n=I+1b=
[F[bvarl,vflJrl] . F[b7v+l+1,vfl]](d6’d6))

{pk—b—l (dos s B pyn) — Pr—bot(dhpys vdfwrkqu)} + (6.94)

hs k2 k2 (o= [b—v+l bovtlo—l4+1 bvtltlo- - d
ZZZ(—])MZ(n_z)( z >([F[”+’”H—F[”++’”]]( (g = i + )

=1 n=Il4+1b=n
[F[b—v-&—lm—l—i-l] . F[b—v-i—l-‘r]m—l}](dz’dnJrl d‘ZH + d(])))

{pk*bfl(d‘zwﬂ? T dgfbern) - pk*bfl(dnJrlv Tt 7di+kfb71)}' (695)

With similar analysis and with some algebra we have (6.65) as

P“*d‘l) ' g i J
Z/ . do, p_H—u,-w, b1 — U, dy,di —u, -, dy | —u)du (6.96)
p-H

( 1)l<: lF[Ok: 1](dl dj)( dl)
k—1

—n— v—1 vk—v]( g 7j i i vk—vl( i g5 i i
Sy (n_1> (FR )b, ], =, + dy) — FF I, ), — df+ ) + (6.97)
n=1 v=n
k-1 [ o ' '
Z(_l)k—n—l Z (n_ 1) (F[UHP v— H(d;,dil) F[v+1,k—u71}( L dl—dl er%))) + (6.98)

n=1
k=2 k—1 k-1 v—1 —1—v+1 ] ] ] ]
Z Z Z ( > ( l ) ([(_1)k717nF[k7171)+l,v7l+1] + (_l)kan[k:varl,vfl]](d%’dil _ d:L + d%)

=0 n=I+1v=n
_[(_1)szlan[k:flvarl,vflJrl} + (_Uk:an[kvarl,vfl]]( de% _ d}f +d6)) + (699)

kz_f kz_:] l§ (U - l) (k -1 Z_U + l) {(_Uk—l—nF[k—]—v-‘rl,v—l] +

(_1)k—nF[k—v+l+,v—l—]q ( 6’ d% — d% + dé) (pl(d%) — pl(d;)) —+ (6100)

-2 k-1 k-1
Z (:L - é) (k -1 l_ v+ l) ([(_1)k‘717ﬂF[k‘71)+l,’Ufl] +

(=1
(=1

k-2 o pdi—d) . 4 o 4

ST (=P O (g, d%)/o {Pr—p1(dl, - d]_ 1) = Pr—pr(dd] —u,---,d]_ 5 —u)}du+
b=0

k=2k-2 1 o . . S . .

> > (=1 Z (n _ 1) (Pt (dy, &, = di, + dj) = FIPP 2 (dh, &, — di + df))

n=1b=n

kan[kvarlJrl,vflfl]](d;’dZL _ d; + d;) _ [(_1)]43*1*”F[k‘7’u+l,1)7l] +
k=n plh—v+ltlo—t=1) (i gi _ gi +d6)) + (6.101)

{pk—b—l (s od] i 1) = Pl (A, adiJrkfbe)} + (6.102)
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k=2 k—2 1

> > (= Z (n _ 1) (Flttb=sldy, d) — F=rl(dy, df, — di, + dj)

n=1 b:n

{pkfbA(dnH, e ) — b1 (d, 7dil+k_b_2)} +

(6.103)

= b 1bU—l b—v+! b—vlu—I+1 b—vt i1 o—1]10 70 7 ; ;
)OI DID DI Vit Z(n_l)< l )([F[ oot plmv oSl gl d) — di, + df) —

[F[bvarl,vflJrl] _ F[b7v+l+1,vfl}]( é’dZL . ?;:eré))

{pk—b—] (dgl-t,-] P di_b+n_]) — Pk—b-1 (dg-u T 7dgl+k_b_2)} +

(6.104)

e SIS k—m—1 Lofv=1\[b—v+I [b—v+lv—1] b—vti+1,0-1-1]] /70 75 i i
Z Z Z Z ( 1) Z n—1 l {F ' - F ’ }(d07d¥n_dm+d0)

=0 n=l+1b=n m=n+1

0 |
o1~ :
by / . O rn ey iy s = 0y —0)

p—I
i ) k—m+n—b—1
m dO B U)

i ( (d
Prmn(d, -+, dy, p+1 " l+m—”_u)}< (k—m+n—b—1)

p—I

k—m+n—b—1 (At 7 k—m+n—b—r—1
(=1)"(dp, = dy — ) j :
Z (k—erOTL—b—’r‘—l)' {pr(din+1;"';d7]q@+u) pr(dgnf"'fd}jn—i—r)})du} +
r=1 :
k=3 k-2

=0 n=Il+1b=n m=n+1

b1 i i
Z/l {pm n d 7d07 : dO? p—H Uy Qi —pn—1 _u) -
p—1
i ) 7 (din — d6 — u)k—m—‘rn—b—]
pm—n(d07 0 “p+1 — 'adl+mfn_u)}( (k:—ern—b—l)!
p—I
k—m+n—b-1 (i i k—m+n—b—r—1
(1) (d, — df —w) < - g
> Gm e —b—r =i P i) = ol )} )du &
r=1 :

-3 k-2 k—2n+k—b—1 R b (01 b—ovtl S
DD DD DIV D Dl S | R (s

F[b7v+l+2,v7l71]](d6’dzn _ din + d%) _ [F[b*’u+l+1,1)7” _

plo-votti2o ) (g db — d, + d;))gnJrkfbfl,l,m,n(d%f ey ).

y s Wims ©

We now consider (6.67)

djfdj
roo i i i i J
/. ) QK(d07"'7 07d07d1_u7"'7dk—1_u):
e T
<—1)’f*1F[°v’f*”< b @) (pi(d]) — pi(dh) = pi(df) + pi(dh)) +
k—1
DIV Z (n _ 1) (FER=oI(dy, &, — di, + db) = FI*=0)(d, df, — df + ) ) +
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(6.105)

k—2n+k—b—1 41 . . .
Z Z l<: m—1 Z ( > ( ’;) ) {F[bvarl,vfl] _ F[b7v+l+1,vfl71]}( dein _ d:n + d%)

(6.106)

(6.107)

(6.108)



2R -\ (k—1—v+1 o
Z Z Z < l) ( l > ([(_1)k—1—nF[k—v—i-l—Lv—l—H} + (—l)k_nF[k_v+l’v_l]](d6,d‘zl _ d?c + d%))
n —

_[(_1)k717nF[kfv+l71,vfl+l} + (_l)sznF[kvarl,vfl]](dé,dzl - d{ eré)) +

=2 o pdl=d} , . o .
Z(_])bJAF[O’b} (d67 d(])) /dz i {pk*bfl(dif T 7di—b—]) — Pk—b-1 (d‘(])y d‘{ — Uy ,d‘ljg_b_Q — u)}du -+
b=0 —
k—2 k—2 b _— . | | |

n+1 v,b—v+1 2 ] _ A v,b—v+1 i g J

{pkfbA(d‘;H, o dy 1) — Phb (dl, dfl+k_b_2)} +

SLEE b—n+1 Lo (v=1\[b—v+I [b—v+l,u—1+1] o—vtltlo—0 g0 5 _ gi o i
S S (T (et plet el i — )+ )

=0 n=I+1b=n
_[F[b—v—&-lm—l—i-l] . F[b—v+l+]7v—l}](d6’d% o d{ + d%))

{pkfbA(dle, o d) ) — Phb (e dfﬁk_b_g)}-

Finally, we compute (6.69) as

Z/de % .. idj---dé,d;+1—u,---,d‘,i_]—u)du:
k—1 k=1 (o _ o . .
2T, )F“”“ v (. ) (pr () — pr(dh)) +
n=1

(=)' PRy, df) (pr () — pr(a) ) +
k—1 <

v ) Flk=l(dh, dj, — d + db) — FF=(dj, b)) +

—a Rz —1 —1—v+1 \k—1-n plk—1—vtlu—]

Z ; ( l) ( l ) [( 1) F -
(_])k—nF[k—v-&—l,v—l—]]}( 67d6) (p] (d‘ljs) _— (d%)) +

k—1 k-1
v —1-n —l—v,w -n —v,0|1( 8 g7 j j
33 (1) (e e - 4 ) -

[(—1)F—tn ple—t=vott] | qykon ple—val)(gi dé)) +

R2 kb Rl N\ (k=1—v+1
Z Z Z (n_l>< l )([(_1)k1nF[k1v+l,vl+1]+
=l+1

=1 v=n
(=
k=2 k—1 k-1

Z ('U - l) (k -1 l_ v+ l) ([(_l)k‘flan[k'*lvarl,’UflJrl] +

1=2 n=it1v=n \"" © L
(_l)k—nF[k—v+l+l,v—l—]]]( 676% _ d{ + d(])) _ [(_1)k—1—nF[k—l—v+l7v—l+1] +

(—1)F mplE e dh, ) - df + df) ) +
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(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)

(6.115)

1)k an v+lv— l]]( 07d% _ d{ —I—d%) _ [(_1)k—l—nF[k—]—v-‘rl,v—l—‘r]] + (_1)k—nF[k—v+l7v—l}]( 67d6)) +(6.116)

(6.117)



f—2
ST (=) FOR(E dyppp(dh, ]y ) —

b=0
- ] . . . :
Z(_l)bJrlF[o’b](d%)v d%) /dj {pk—b—l (déa e adiqu) — Pk—b-1 (u7 d‘{’ e ’diﬁfb72)}du +
b=0 0
k=2 k—2 " o—1 . o ‘ .
PIDBCAEDD (n B 1)F“’7 ~Ndh. ) prp(dh Ay y) + (6.118)
n=1b=n v=n
k—2k—2b1bv_1 bl ot i
2,2 (=1 (n _ 1> (Flb=vttldh, d], — df + db) — FUP= 4 (dy, df) )
n=2b=n v=n
{pk*bfl(diﬂv T di—b-i—n—]) - pkfbfl(dgw T 7d£z+k—b—2)} + (6.119)
k—3 k—2 k-2 b
—I\[(b—v+1 L
_ _1)b-n v F[b—v-‘rlﬂ/—l} _ F[b—v—i—l—i—lﬂ)—l—l} z’d]
s L zers ()0 ()
Prmb(dd, o dl i q) + (6.120)
k—2 k-2 b
—n v —v,v —v+1lw i j j j
IIPBCOINDD (n) ([Fovestl — Pl ), df, — df + df) -
n=2b=n v=n

[F[bfv,erl] _ F[bvarl,v]](dé’d‘g))

{pk—b—l (dhirs s Al 1) = Prmbr (d, - ’diﬂrk*b*?)} +
k=3 k—2 k—2 b
Z Z Z(_l)bfnJrl Z <v - i) (b— ;} +l> ([F[bvarl,vflJrl] _ F[b7u+l+1,071]]( L d{ +d6) _
n—
=1 n=l4+1b=mn v=n
[F[bvarl,vflJrl] _ F[b7v+l+1,vfl}](d6’d6))

{pk—b—l (1) — Ph—br (d), -+ 7dfl+k7b72)} + (6.121)
k

o R Ay N AV RS vt o—I41 b—vtlb L o—1/ i ) i
Sppa S CH S S
1= v=n

2 n=l+1b=n
[F[b—v-&—lm—l—i-l] . F[b—v-‘rl-‘r]m—l}](d%’d% _ df + dé))

{pszbfl(d}j;wrlz ) = P (dh, 7di+k_b_2)}« (6.122)

Since g1 (- - -) is given by the sum of (6.65),(6.67),(6.69) subtracted from the sum of (6.64),(6.66) and (6.68),
we continue by the computation of the differences. We start by subtracting (6.97) from (6.71)

k=2
k n— 2 : v—1 v,k—v]( gt 3] i i v, k—v ‘ i
nz::o | <n— 1) (F[ ]( 0> i1 — dpyy +dp) — ! ]( O’dn+1 +d0))

_(_1)k—1F[07k—]](dz d])(di _ dé)

k—1
- (=nFm IZ (n_i) (Flkvldh, df, - d, + df) = FIF(dh, df, — dj + d))
n=1

o k-1 7n’f v—1
_ (_UkF[O,k: 1}( ofdtj))( k_d0)+n§::1(—l)k ;(n—l

e vee i g =+

43



k-1 k
1 vl kv i i i i
—E (=1 Z<n—1)F[ V=l dd, dd — dj, + df) (6.123)
n=1 =

where we substituted n+1 — nin (6.71), v+ 1 — v in (6.71) and (6.97), used the fact that (°73) + (V_%) =
(Zj) to obtain the equality in (6.123). Similarly, subtracting (6.98) from (6.72) we have

1

k k k k
Z(_])k—n Z (U - ])F[U k— U](d;,d‘%) Z(_])k—n Z (Z: 1>F[v7k—v}( 67(1% _ dfz + d%) (6.124)

n=1 v=n \"" 7 1 n=1 v=n

The difference of (6.99) and (6.73) is equal to

k—1k—1
v —-n k—v—1v k—n —v,v 7 ) 7 7
ZZ(n)([(—l)k Fli-v-Lotlly (et plhval)( g d) — d, + dy)

n=1v=n

_[(_1)k—nF[k—v—1,v—H] + (_Uk—n-HF[k—v,v}]( B,d% _ %c""d%))) +

S8 & o=\ [k-v+l k—n plk—vti—1,0—1+1] k—nt1 plk—otlo—l1 i 25 _ i oL i
DI I I | R [{(CS il b g (bt pliorlosl G d) — di, + dj)

I=1 n=I4+1v=n
. (_1)k‘7’rLF[k7’U+l*1,’U71+H +(_1)]{3*7L+1F[k'7’u+l71)*l]](dé,d%l_d’Lk+d6)) (6125)

which we obtained by substituting n+1 —n,v+1 —wvand [+ 1 — [ in (6.73). Similarly, the difference of
(6.100) and (6.74) and the difference of (6.101) and (6.75) are equal to (6.126) and (6.127) respectively.

k—1 k-1
Ty <v> Yo pli—o=tol o qykontl pli-votlgi g — gl 4 df))(pl (dy) — p1 (d%))) T
n=1v=n
k
Z Z Z (U ) < —v+ l) {(_UsznF[kvarlfl,vfl] +
=1 n=l+1v=n l
(_1)k—n+1F[k—v+l,v—l—H} ( 6’ d% — d% + dé) (pl(d:—b) — pl(d;)) (6.126)
k-1 k k
Z Z Z v—1 k—v+1 ([(_l)k—nF[k—v-‘rlﬂ/—l] + (_l)k—n—HF[k—v-i—l-i—lﬂ)—l—l}]( ;,d% _ d; + d;)
=1 noii1 omn AP T l
=1 n=l4+1v=n
_[(_l)sznF[kvarl,vfl] + (_1)kfn+1F[k7v+l+1,vfl71}]( BvdiL _ d; +d6)) (6.127)

Similar analysis yield (6.128) and (6.129) for the differences of (6.102) and (6.76) and (6.103) and (6.77)

respectively.

k—1k—1

b n+1 v Lbo—v+1)/ 70 37 i i i :
Z Z * Z (’I’L . 1) * ](dO’ diL - dn + dO){pk—b(dgz-H P adi;,bJrn) -
Pr-b(dy, - dib—i-k—b—] )}
k—1k—1
n 1 v—1,b—v i i i i j j
_ Z Z b +1 Z (n ~ I)F[ 1,b +1](d0,dgl —d;, + do){Pk—b(d%H ,oee ,di:i“n) _

pk—b(d;w ) di;—i—k—b—] )}
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k-2 I . 4 o 4
- Z(—l)bHF[Qb](déadﬂ)/o {Pe—b—1(d], - di_y 1) = Pr—br(dddf —u, - df_y o —u)bdu  (6.128)

b=0
k—1k—-1 ) . b v—1 ) ' ‘ ) ) ‘ )
Z Z(_l) ot Z (’I’L _ 1>F[U’ ! (d;w d%){pk—b(d}jwrla T ’d‘ljgfbﬁ»n) - pk—b(dgw T adiLJrk:fbfl)}
n=1b=n v=n
k—1k—1 . b (0 , o . ‘
SO I ol (M B TR
n=1b=n v=n

{pk*b(d}]wrl’ T ’dggbern) - pkfb(dZw Tt diLJrkfb—l)} (6'129)
Substituting b+ 1 — b in (6.104) and (6.77) and substituting n+1 —-n,v+1 —vand [+ 1 — [ in (6.77)
and taking the difference we obtain

v
n

b
(_l)bfTH’l Z ( >[F[bv1,v+1] _ F[bfv,v]](dé,dzl - d; +d6)

{pk*b(d‘;ﬂa T ad‘/ifwn) - pkfb(dZw T dil‘i’k‘*b*l)}

b
-2 2 <—1>b—”“Z(Z)[F[b—”—‘ﬂ’*”—F[b—wlwa,dz;— i+ dy)

{pk—b(dgﬁ-] ) ’di—b-i-n) - pk—b(d%v Ty dfwrk—b—l )}

k=2 k-1 k—1 b fo— I\ (b—v 1

i Z Z Z(_l)bfnJrl Z < l) ( l > [F[bvarlfl,vflJrl] _ F[b—u+l,vfl]}(d6’dzl —di +di)

n—
=1 n=Il4+1b=n V="

{pksfb(dflﬂa s dh ) — Peb(dl )}

LS b—n-+1 N OEAVIEIES [b—v+l—1,v—1+1] b—vtlw=0/gi 15 i o i
B Z Z Z(_]) Z n —1 l [F ’ - F ’ }( Oadgz_ k+d0))

(sl @il ) = Prcal e gy )} (6.130)

Taking the sum of (6.105) and (6.106) and subtracting from the sum of (6.78) and (6.79) with some algebra

we have

k-2 k-1 k-1 b (o—1\[b—v+1 o , ,
Z Z Z(_])k—n Z ( l)( : > [F[b—v—i-l—hv—l} . F[b—v—i—l,v—l—]]}(dé’d% —di +di)

n—=1 g g i i k—b k—b—1 T(Jt i k—b—r
pt17% /(dl — dfy —u) (=D)"(dL, — dby — u) ; ; ; ;
| " - - {pr(dpyrs s dmry) = Pr(dls iy 1)}
[ pzl /d;)_dé ( (k—b)! ~ (k—b—r7)! + * el
(=1 ooy g g) = (s gy )})du} +
k=2 k-1 k-1 n+k—b b
—m v—I0l\[b—v+I ol — —votlo—l— i g i i
Z Z Z (_1)k Z(n—l)( l )[F[b =t l]_F[b ol 1]}( Ovdgn_derdO)
=1 n=I[+1 b=n m=n+1 v=n
m—1 di . —dt
p1l 70 i i i i i
{ / i {pm—n(dm=d07"'7d07dp+1 _u7"'7dl+mfn71 _u) -
=l di,—dg —

p—l
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(din _ d6 _ u)k:fernfb B
(k—m+n—0)!

pmfn( 67"'7 67 ;—H — Uy, %—i—m—n_u)}(
p—l
k—m+n—b—1 (_l)r(dz _ d6 . u)k—m+n—b—r
n

(D N
Z (k—ern—b—r)! {p(erl’ 7m+r) p(m’ 7m+r71)}

r=1
_(_])k_b_m—m{pk:fbfern(dgnJrl; e dvj;@—&-k—b) - pk,b,ern(d%l, te 7d‘77;1+k—b—1 )})du} +
k—2 k-1 N b v b j b }
—n F —v—1v] F —v,0—1 ( B’dgz o d:’b + d%))
7; b=n+1 v;n <”> [ }
n—1 g d k— k—b—1 i i k—b—r
p+1 dg —do—u) d —d —U) 7 j j j
[ L e 2 oyl e ) e )

—(—1 )k_b{pkfb(dnJrl? e 7dn+k—b) o pk*b(dz“ o ’diJFk_b_] )})du} *
k=2 k—1 n+k—b

— b
) IED IS (n) et - plemor=ll] (dy, df, - di, + df)

n=1b=n+1 m=n+1

m—1 di o —dt
p+1 0 i i i
{ /d’ g {pm—n(dm7 dO? o dO’ p+1 : 7dl+mfn71 - u) -
p=0 "“p™ %0 p'
; ; (dfn _ d6 _ u)k:fernfb
men(do," dO: p-H — Uy, H—m—n_u)}( (k—m+n—b)! B
p
k—m+n—b—1 (_1)r(dz _ dz _ u)szernfbfr . X . .
Z (k:Tm—l?n—b—r)' {pT(d‘;ﬂbJrly"'fd‘?jn—i-r)_pT(d}jnf"fd‘fszrrfl)}
r=1 ’

~(= DT (B B ) = Phobemtn( sy )} )du]. (6131)

Subtracting (6.107) from (6.80) we have

e k—m Lo (v=1\ (b—v+1 [b—v+lv—] [b—v+i41,0—-1-1]] /i 77 i i
Z Z Z Z (_1)b Z n—1 l {F ’ - F ' }(dl’din_derdl)

=1 n=Il+1 b=n m=n

i i J
gk—b+n7l,m,n(dla Ty dm7 dim ) dnJrkfb)

O L AV L B [b—v+,v—1] b—v-+i+1,u—1-1]] (i 7 i i
X X X X et pee et — )

Ghmbrndmn(d]y oy didd ) (6.132)

where we substituted b+1 — bin (6.107) and (6.80) and m+1 —-m,n+1 —-n,v+1 —vandl+1—{in
(6.80) to obtain (6.132). For convenience, we split the expression in (6.132) into three parts in the following

way
k=2 k—1 k—1ntk—b b
k—m v—=Il\[(b—v+lI b—v+lu—1 b—vlt1,0—1—=1] 70 17 i i
S S ey () (e Je =+ )
gk—b+n7l7m7n(d§7 T 7djny d}]na T 7d£z+k b) (6133)

S e hom = (V=1 — U+ 1\ [ p—vtio—1] [o—v+l+1,0—1=1]]( 7i 77 i i
S SD O b S o G | | B TR

=1 n=Il4+1 b=n m=n+1

46



] i ¥l
gszbJrn,l,m,n(d[, to 7dm7 dim T 7dn+]<;7b)

k=2 k-1 k-1 b (o 1\ [(b—v 1 Co
_ Z Z Z(_l)kfn Z < ) ( l > [F[bvarl,vfl] _ F[b7v+l+1,vfl71}}( B’d-ZL _ d; +d6)

n—1

(gk:bern,l,n,n(da T 7d:17 dna e 7diL+l<;fb) + (_])kib{pkfb(diprly B dggbern) - pk*b(dZu T 7d‘171+k7b71)})

(6.134)
k=2 kol Rl bl I\ (b=t D\t .
—ntl —v+lv— —v lo—I-1 i 77 i i
S B £ () (s -
{pk*b(di+1’ o] yyn) = Db Ay )}' (6.135)

Instead of subtracting (6.81) directly from (6.108), for convenience we add (6.114) to (6.108) and subtract
this sum from the sum of (6.87) and (6.81) which yields

(~DFFIR(dh, dh) (pi(d) — pa(dh) ) + (6.136)
(=R FR(d), df) — (—1)F PO (dh, dh) (pa(d}) — pa(dh)) +
k k
_n v—1 o1 . ; ;
PIC DY <n_ 1>F[ Lot () dl) — df, + dj). (6.137)
n=1 v=n

Similarly we subtract the sum of (6.116), (6.117), (6.109) from the sum of (6.89), (6.90), (6.82) and obtain

kfj

&> 3
= =

X

< ){ k nF[k v—1,u+1] Jr(_l)k—n-HF[k—uv]} (dé,d‘%— %erdz))

(v — l) ( — ;} + l> [(_1)k—nF[k—v+l—l7v—l+1} +

(_1)k7n+1F[k7v+l,v*lq (di, d — di +db). (6.138)

Taking the sum of (6.119) and (6.110) and subtracting from the sum of (6.92) and (6.83), we have

k—1k—1
b n+1 [v=1,b—v+1]/ 3¢ 75 _ gt i
F dy,d), —dj, +d
ngl l;), Z (’I’L _ 1) ( 05 Yn k + 0)

{Preesl@hrs ) = Pros (o Dy pr) }

k—1k—-1 b
-n v v—1,b—v i 37 j j j j
> 2 (=1 “Z@F[ W ) {Prb (s ) = Preal(d g0

- & —d) , ,
= L E ) [ (] ey ) -
= di—d

k

&> 3
[ RN

Ph—bt (A}, d] —u, - d)_, o — u)}du. (6.139)

Finally, taking the sum of (6.121),(6.122),(6.111) and subtracting from the sum of (6.94),(6.95) and (6.84)

we have
kz_f kz_i (_1)b_n+] Zb: <U> {F[b_”_lﬂ’"‘]] _ F[b—v,vq( i i —l—di)
n=1b=n+1 v=n \1 0> %n k 0
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(s ) =m0

k=2 k—1 k-1 b (o 1\ [b—v+1 o ‘ ‘
+ Z Z (_])b—n+1 Z ( l)( l > [F[b—v—‘rl—hv—l—‘rﬂ _ F[b—v—i-l,v—l]}(dé’d% —di +dY)
n [R—
I=1 n=I4+1b v=n

=N

{pk_bwﬁg] B ) = P By )

4
||M\
”M‘

b—1
v —v—Lv —U,v i 3]
Z <n> |:F[b 1, +ﬂ _F[b s ]i|( O,d'é)
{pk*b(diﬂ’ o d] ) = pep(dd, adigkqu)}
k=2 k=1 k—1 b o\ (b vt -
’ 20T ( ) ( ) ettt plmetenll] (4, df)
=1 n=I+1b=n v=n \I* — l [
{pk_b(d%“ v ) = Prob(d ’diwrk:fb—l)}‘ (6.140)

We now consider the remaining terms in the difference of (6.68) and (6.69). We start by the difference of
(6.113) and (6.86). Analysis similar to the ones above yields the following

k—1 k
S 3 (8 Fe ) e - i) ¢

n=1 v=n n- 1

(—1)EFIOA1( i d) (p1 () = p1 (d{))' (6.141)

The difference of (6.115) and (6.88) yields

= e v—1\(k—v+1
Z Z Z < )( l >{(_1)kan[k1v+l,vl] +

=1 n=Il+1v=n
(_1)k7n+1F[k:fv+l,v*l*1q( ¢, d%) (p1 (di) — P (d%))
k=1

k—1
+ Zz< )[ Y pplk=1—ua] | (_ 1)k—n+lF[k—v,v—1]}( 67d6)(p1(di)—p1(d%)). (6.142)

n=1v=n

Finally, the difference of (6.118) and (6.91) and the difference of (6.120) and (6.93) are equal to (6.142) and
(6.143) respectively.

k=2
S (—1)rH plow (dg,dg){pk_b(dg, coydl ) — pro(dd, ’di:fb—l)} +
b=
k2 o pd] , . ‘ .
b=0 df
k=2 k=2 . 1 X o . | | |
>y (=it Z (n B 1)F[v7 —vl é,d‘é){pkfb(d‘;ﬂ, sy ) = Drb(dy dgc—b—i-n—])}a (6.143)
n=1b=n —
k=3 k=2 k-2
Z Z Z(—l)b—n—H Z (U - l) (b —v+ l> {F[b—v—i-lm—l} _ F[b—v—&-l—‘rl,v—l—]]}( fpdg))
=0 n=I+1b=n v=n \* — l l
() 1) o
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We are now ready to sum up the differences given in (6.123) to (6.144) in order to obtain the expression

for ge+1(--+). Note that with the convention that (1)) = 0 when n; < ny we have st (Zj)(kf?ﬂ) -

ST = (0D = (BT and (07D 4 (51 = (Y). Then the sum of (6.123), (6.124), (6.125), (6.127),
(6.137), (6.138) is equal to

i ] k—ni v—1 vk v] dz &7 Jrz 2 Z —v+l -1 k—nF[k—v+l,v—l]
SR D ;e

n=0 =0 n=I+1v=n
Jr(_l)sznJrlF[kvarlJerflfl]} (df, dl —di +db). (6.145)

In a similar fashion with some elementary (but tedious) algebra, the sum of (6.128),(6.129),(6.130),(6.133),(6.135),

(6.136), (6.139), (6.140), (6.141), (6.142), (6.143) and (6.144) can be obtained as
k=1 k—1 o fu—1 b ‘ ‘ . -
IPUCIEDS (n_ 1)F[v W ) Pl by )~ Phctle -y )
n=0b=n
k—1k—1 ' ‘ ' '
+ Z Z(_ b—n+1 Z ( >|: [b v,V] _F[bvarl,vflq(dé’d%_d:Leré)
n=1b=n

{pk—b(dzm v ) = Peb(dh )}' (6.146)

We now consider (6.131). Using Theorem 8 in Baccelli et al [4] and substituting b — 1 — b, (6.131) can be

written as
k-3 k—2 k-2 b
_ _ 1 , .

Z Z Z(_])k—n—H Z (Z _é) <b ;):f + > [F[b—v-‘rl,v—l] _ [b vHl+1,0—1— 1}}( Oﬂdn+1 dn—H +d6)
=0 n=I+1b=n v=n

f(n,n+1,1,b) + (6.147)
k=3 k—2 k-2 ntk—b b
3 3 (—1)km 3 v=l\(b—v+i+1 {F[b—wl,v—l} _ F[b7v+l+1,vfl71]}(di & —d +d)
1=0 n=I+1 b—n m=n+2 o=\~ L+1 Otme Tm

f(n,m,1,b) + (6.148)
k—2k-2 b/ o ' '
PIDIC DS (n> |plbmeel - plmottosl] (@) df — di, + dj) f(n — 1,m,—1,b) + (6.149)
n=1b=n v=n

k—2k—2n+k—b-1

b
)IDDEDIICHDD (Z) |plmeel = plemvttomll] (@ df, — di, + dh) f(n—1,m,—1,b)  (6.150)

n=1b=n m=n+l

where we also substituted [ — 1 — [, v — 1 — v and n — 1 — n in the first two summations and defined

f(.’ S ) as

b . (dz = di )k—b m—n+i—1 ‘ ‘
f(TL, m, L, b) = (_1) e ( m_?z — b);n Z {pm_n‘H_T(dZT-H 1T d:’n—n-‘rl) B
: r=Il+1
) ) ] (dz —_ )kfbfernflJrr)
'm—n+l—r dfna er y 1T 7d3n—n - - =
Pr—n-+i—r( +1 + 1)}(1€_b_m+n—l—|—r)!)
— ) k—m+n—>b ) ) ] ) (dz - di )k—b—v
_ 1\k—nt+m— 7 ] _ Y Y m—n m
+ ( ]) Uz::l {pv(dm+17 7dm+'u) pv(dm7 7dm+v71)}( (lﬂ _ b _ ’U)'
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m—n—+l—1

- Z {pm—n-‘rl—r (dzr—H y T ’d:n—n—&-l) — Pm—n+l—r (djn’ dzr—H P 7djn—n+l—] )}
r=l+1

(d?ﬁ _ diﬂ)k—b—m—&-n—l—i—r—v}
(k:—b—m—i—n—l—i—r—v)!)'

Note that (6.149) is equal to

k—2k—2 b
—1)km U) plo—vel _ ple—vtlo=1lgh @i — d + d
,; g( ) 1; <n { }( 0 0)

(gkjbern,O,n,n(d%)a T 7d;7 dn7 T 7di+k_b) + (_1 )kib{pkfb(d‘ZHrla to ’d‘li—b—i-n) - pk*b(dg;m tee 7d£+k_b_] )}) .

Adding this to (6.146), we get

k—1k—1

b
—n v—1 v,b—v|/ 70 j j j j j
Z Z(_l)b i Z <7’L _ 1>F[ b ](dna d%){pk—b(d‘;ﬂa T adggbern) - pk—b(diw ) diLJrk,b,l)} +
n=0b=n =

k—2 k-2

b
> D=1 "Z( )[F”’ O, — o+ dp) = FPT N (dh, ) — d, o d)|

n=1b=n

G0 (dh, o db,dd o dl ) (6.151)
k—1

k—1 . .
+ Yo (=Y (Z) |pik=tmvl - plimvostl] (@) df — di + dy){pi(dd ) = pr(d]) }. (6.152)

n=1

We also have

fnym, Lb) + f(n—1ml = 1,b) = g prnimn(dl, - di,dl, - d) ;) and
f(m_lamvl_lvb) = gk—b+m7l7mm(d%7'"ad;mdim "7dzn+k7b)+

(—1)]{71’{?% b i B ) = Pty ’dgfbermfl)}'
Using the above relationship together with some algebra, we obtain the sum of (6.147),(6.148) and (6.150)
and (6.134) as
k—2 k-2 nt+k-b

b
PPN DY <n> |Flmeel — plomet b ) (d, df, — o+ d)

n=1 b=n m=n+1

gk—b+n,07m7n(d6a t ad;n’ din? T d"ZL+k‘*b)
k—2 k—1 k—1
—I\N(k—1—-v+1
_ _1)k—n—1 v ple—1—v+lo—=l] _
Z 21( ) u;n<n_l>< ! >[
F[k:varl,vflfl} d] _ dz dz dz o dl
(dos dyp i — dpy + do) (drgr — dia

k=2 k-1 b
S (—1)F Y (U - ;) (’f -1 l_ v+ Z) [F[kqwﬂ,m] _
n—

I=1 n=l+1 v=n
F[k—v—i—lm—l—l}}( o +d3)(d; _ d;’), (6.153)
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Adding (6.126) to (6.153), we have

k—2 k—2 n+k—b b v . . . .
)IDEDINCHEDD <n> |Fleel — plt b ) (d, df, — d o+ )
n=1b=n m=n+1 v=n
gk—b—i—mO,m,n(déa e adjna d] mo T adeH{;fb)
k—1 k—1 ) . . )
+ Z(_l)k—n—l Z (n) [ [k 1—vv] _ [k—v,v—l]}( diL—H dn—H + dé)(d%_t,_] o d%)
n=1 v=n
- S (kY (n) |plh=t=vel — ple=vo=l] (@) df — di, + dj) (d], - db). (6.154)
n=1 v=n

Finally, summing (6.152), (6.154) and (6.133) and changing the order of summation yields

k-1 b
(_ b n+1 (
SEcry
k—1b—1 n+k—>b

Yy Y Y

b=1 =0 n=I+1 m=n

Flb=l( d%ad%){pk—b(diﬂa”'ad‘lifbm) _pk—b(d%a""diwrksfb—l)}

n— 1)
b
v — b—v+1 ol o— - v—l— i g i i
Z (n B l) ( l > |:F[b +1, l] _ F[b +l+1,0-1 1}:|( l7d¥n _ dm + dl)
Tkt (] el ). (6.155)

Putting (6.155) and (6.145) together gives the expression for gi11 (- - -) which completes the proof of Theorem
5.3. B
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