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On the cardinality and sum of reciprocals of primitive
sequences

Shane Chern, Tianxin Cai, and Hao Zhong

Abstract. Let A(2n) denote the set of primitive sequences A(2n) with cardinality n. In
this paper, we consider the upper bound of reciprocal sum of A ∈ A(2n) and obtain

max
A∈A(2n)

n∑
i=1

1

ai
= log 3 +O

(
1

nlog3 2

)
as n → ∞. We also find some interesting properties of |A(2n)|.
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1. Introduction
We first introduce some notations. Let A = {ai}i≥1 be a subset of N. For con-
venience we set a1 < a2 < . . .. Note that A can also be viewed as an increasing
sequence (ai)i≥1. For x ≤ y, (x, y] and [x, y] equal the set of integers n such that
x < n ≤ y and x ≤ n ≤ y, respectively. We use the abbreviation A(x) = A ∩ [1, x].
A sequence A = (ai)i≥1 is primitive, if ai ∤ aj for i ̸= j. In 1935, Paul Erdös [3]
proved that for every primitive sequence A = (ai)i≥1,

1

log n

∑
ai≤n

1

ai
= o(1) as n → ∞. (1.1)

In the same year, Felix Behrend [2] showed that there exists a constant γ such that
for every primitive sequence A = (ai)i≥1,

1

logn

∑
ai≤n

1

ai
≤ γ

1

(log log n)1/2
for n ≥ 3. (1.2)

Later in 1967 Paul Erdös, András Sárközy and Endre Szemerédi [4] proved that for
every infinite primitive sequence A = (ai)i≥1,∑

ai≤x

1

ai
= o

(
log x

(log log x)1/2

)
, (1.3)

and that this bound is best possible. In fact, one may refer to the paper by Rudolf
Ahlswede and Levon H. Khachatrian [1] for more details on relevant results. On
the other hand, it is easy to verify by the pigeonhole principle that the cardinality
of each primitive sequence A(2n) is less than n + 1. As Professor Qi Sun told us,
Paul Erdös wrote to Chao Ko in 1960s and suggested to find some properties of
primitive sequences A(2n) with cardinality n where n ∈ N. Denote by A(2n) the
set of such primitive sequences, and by s(n) the cardinality of A(2n). Chao Ko and
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Qi Sun [5] showed that a1 ≥ 2⌊log3 2n⌋ holds for all A ∈ A(2n). It is easy to see that
{n+ 1, n+ 2, . . . , 2n} ∈ A(2n), hence we have

min
A∈A(2n)

n∑
i=1

1

ai
= log 2 +O

(
1

n

)
(1.4)

as n → ∞. In this paper, we consider the upper bound of reciprocal sum of
A ∈ A(2n) and some other interesting properties of s(n). We have the following
theorems.

Theorem 1.1. If n goes to infinity, then

max
A∈A(2n)

n∑
i=1

1

ai
= log 3 +O

(
1

nlog3 2

)
. (1.5)

Theorem 1.2. Let t be a positive integer. If n satisfies (i) n = 6t, or (ii) n = 12t+9
where t ̸≡ 0 (mod 5), then s(n+ 1) = 2s(n).

Theorem 1.3. Let t be a positive integer. If n satisfies (i) n = 6t + 4 where
t ̸≡ 0 (mod 3), or (ii) n = 12t + 1 where t ̸≡ 1 (mod 3) and t ̸≡ 4 (mod 5), then
s(n+ 1) = s(n).

2. Proofs of the theorems
To prove Theorem 1.1, we need the following lemma.

Lemma 2.1. Let A(1)(2n) = {2kii : i = 1, 3, . . . , 2n − 1} where each ki satisfies
2n

3ki+1 < i ≤ 2n
3ki

, then A(1)(2n) ∈ A(2n). Moreover, all A ∈ A(2n) have the form
{2αii : i = 1, 3, . . . , 2n− 1} with each αi ≥ ki.

Proof. It is easy to show that 2kii ≤ 2n for each odd i. We now divide {1, 2, . . . , 2n}
into the following k + 1 subsets:(

2n

31
,
2n

30

]
,

(
2n

32
,
2n

31

]
, . . . ,

(
2n

3k+1
,
2n

3k

]
,

where k = ⌊log3 2n⌋. Given 2i− 1 and 2j − 1, where 2i − 1 < 2j − 1, in the same
subset, say

(
2n

3α+1 ,
2n
3α

]
, we have k2i−1 = k2j−1 = α. If 2k2i−1(2i−1) | 2k2j−1(2j−1),

then 2i − 1|2j − 1. Thus 2i − 1 ≤ (2j − 1)/3 ≤ 2n/3α+1, which contradicts to
the assumption 2i − 1 ∈

(
2n

3α+1 ,
2n
3α

]
. If we pick 2i − 1 < 2j − 1 from two different

subsets, then k2i−1 > k2j−1. It readily follows that neither of 2k2i−1(2i − 1) and
2k2j−1(2j − 1) divides another. Thus A(1)(2n) ∈ A(2n).

We next show that each A ∈ A(2n) has the form {2αii : i = 1, 3, . . . , 2n − 1}.
Otherwise, by the pigeonhole principle, there exists an odd i and two integers
0 ≤ β1 < β2 such that both 2β1i and 2β2i are in A. Thus 2β1i | 2β2i, which leads
to a contradiction. Note that for odd i, if both 2αii and 2α3i3i are in A, then
αi ≥ α3i + 1. Now if odd i ∈

(
2n

3ki+1 ,
2n
3ki

]
, we have 3ji ≤ 2n for j = 0, 1, . . . , ki.

Thus, αi ≥ ki by induction. □

Example 2.1. If n = 12, then A(1)(24) = {4, 6, 9, 10, 11, 13, 14, 15, 17, 19, 21, 23}.

Remark 2.1. One readily verifies a
(1)
1 = 2⌊log3 2n⌋. In this case, the inequality of

Ko and Sun mentioned above is in fact an equality.



On primitive sequences 3

Proof of Theorem 1.1. Since∑
1≤n≤x

1

n
= log x+ γ +O

(
1

x

)
and ∣∣∣log x

2
− log

⌊x
2

⌋∣∣∣ ≤ log
x

2
− log

(x
2
− 1

)
= O

(
1

x

)
as x → ∞, it follows that

S(x) :=
∑

1≤n≤x
n odd

1

n
=

∑
1≤n≤x

1

n
− 1

2

∑
1≤n≤⌊x/2⌋

1

n

=

(
log x+ γ +O

(
1

x

))
− 1

2

(
log

⌊x
2

⌋
+ γ +O

(
1

x

))
=

log x

2
+

γ + log 2

2
+O

(
1

x

)
.

Using this estimate, it follows from Lemma 2.1 that

max
A∈A(2n)

n∑
i=1

1

ai
=

⌊log3 2n⌋∑
j=0

1

2j

∑
2n

3j+1 <2i−1≤ 2n

3j

1

2i− 1

=

⌊log3 2n⌋∑
j=0

1

2j

(
S

(
2n

3j

)
− S

(
2n

3j+1

))

=

⌊log3 2n⌋∑
j=0

log 3

2j+1
+O

⌊log3 2n⌋∑
j=0

(3/2)j

2n


= log 3 +O

(
1

nlog3 2

)
as n → ∞. □

Remark 2.2. For x ≥ 1, let A′(x) be the set of primitive sequences A(x) with
cardinality ⌊(x+ 1)/2⌋, we also have

max
A∈A′(x)

∑
a∈A

1

a
= log 3 +O

(
1

xlog3 2

)
(2.1)

as x → ∞.

Letting {2αii : i = 1, 3, . . . , 2n − 1} = A ∈ A(2n) and {2α′
ii : i = 1, 3, . . . , 2n +

1} = B ∈ A(2n+ 2), we next prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. We first prove case (i). Note that 2n + 1 = 12t + 1 and
2n + 2 = 2(6t + 1). Since 3 ∤ 12t + 1, for any proper divisor d of 12t + 1, we have
d ≤ 12t+1

5 ≤ 12t+2
3 = 2n+2

3 . Thus, α′
d ≥ 1, which leads to 2α

′
dd ∤ 12t + 1. We

therefore have

#{B ∈ A(2n+ 2) : 6t+ 1 ∈ B} = #{A ∈ A(2n) : 6t+ 1 ∈ A} = s(n).
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Since 3 ∤ 6t+1, for any proper divisor d of 6t+1, we have d ≤ 6t+1
5 ≤ 12t+2

9 = 2n+2
32 .

Thus, α′
d ≥ 2, which leads to 2α

′
dd ∤ 2(6t+ 1). We therefore have

#{B ∈ A(2n+ 2) : 6t+ 1 ∈ B} = #{B ∈ A(2n+ 2) : 2(6t+ 1) ∈ B} =
s(n+ 1)

2
.

This readily implies s(n+ 1) = 2s(n).
We next prove case (ii). Note that 2n + 1 = 24t + 19 and 2n + 2 = 4(6t + 5).

Since 3(6t + 5) ∈ A,B, we have α6t+5 = 1 and α′
6t+5 = 1, 2. Note also since that

3 ∤ 24t+19, for any proper divisor d of 24t+19, we have d ≤ 24t+19
5 ≤ 24t+20

3 = 2n+2
3 .

Thus, α′
d ≥ 1, which leads to 2α

′
dd ∤ 24t+ 19. We therefore have

#{B ∈ A(2n+ 2) : 2(6t+ 5) ∈ B} = #{A ∈ A(2n) : 2(6t+ 5) ∈ A} = s(n).

Since t ̸≡ 0 (mod 5), it follows that 15 ∤ 6t+ 5. For any proper divisor d of 6t+ 5,
we have d ≤ 6t+5

7 ≤ 24t+20
27 = 2n+2

33 . Thus, α′
d ≥ 3, which leads to 2α

′
dd ∤ 4(6t+ 5).

We therefore have

#{B ∈ A(2n+2) : 2(6t+5) ∈ B} = #{B ∈ A(2n+2) : 4(6t+5) ∈ B} =
s(n+ 1)

2
.

This readily implies s(n+ 1) = 2s(n). □
Proof of Theorem 1.3. We first prove case (i). Note that 2n + 1 = 3(4t + 3) and
2n+ 2 = 2(6t+ 5), so that

#{B ∈ A(2n+ 2) : 6t+ 5 ∈ B} = #{A ∈ A(2n) : 2(4t+ 3) ∈ A}.
Since t ̸≡ 0 (mod 3), it follows that 3 ∤ 4t + 3. For any proper divisor d of 4t + 3,
we have d ≤ 4t+3

5 ≤ 12t+8
9 = 2n

32 . Thus, αd ≥ 2, which leads to 2αdd ∤ 2(4t+3). We
therefore have

#{A ∈ A(2n) : 2(4t+ 3) ∈ A} = #{A ∈ A(2n) : 4t+ 3 ∈ A} =
s(n)

2
.

Since 3 ∤ 6t+5, for any proper divisor d of 6t+5, we have d ≤ 6t+5
5 ≤ 2(6t+5)

9 = 2n+2
32 .

Thus, α′
d ≥ 2, which leads to 2α

′
dd ∤ 2(6t+ 5). We therefore have

#{B ∈ A(2n+ 2) : 6t+ 5 ∈ B} = #{B ∈ A(2n+ 2) : 2(6t+ 5) ∈ B} =
s(n+ 1)

2
.

This readily implies s(n+ 1) = s(n).
We next prove case (ii). Note that 2n + 1 = 3(8t + 1) and 2n + 2 = 4(6t + 1).

Since 3(6t+ 1) ∈ A,B, we have α6t+1 = 1 and α′
6t+1 = 1, 2. It also follows that

#{B ∈ A(2n+ 2) : 2(6t+ 1) ∈ B} = #{A ∈ A(2n) : 2(8t+ 1) ∈ A}.
Since t ̸≡ 1 (mod 3), it follows that 3 ∤ 8t + 1. For any proper divisor d of 8t + 1,
we have d ≤ 8t+1

5 ≤ 24t+2
9 = 2n

32 . Thus, αd ≥ 2, which leads to 2αdd ∤ 2(8t+1). We
therefore have

#{A ∈ A(2n) : 2(8t+ 1) ∈ A} = #{A ∈ A(2n) : 8t+ 1 ∈ A} =
s(n)

2
.

Since t ̸≡ 4 (mod 5), it follows that 15 ∤ 6t+ 1. For any proper divisor d of 6t+ 1,
we have d ≤ 6t+1

7 ≤ 4(6t+1)
27 = 2n+2

33 . Thus, α′
d ≥ 3, which leads to 2α

′
dd ∤ 4(6t+ 1).

We therefore have

#{B ∈ A(2n+2) : 2(6t+1) ∈ B} = #{B ∈ A(2n+2) : 4(6t+1) ∈ B} =
s(n+ 1)

2
.

This readily implies s(n+ 1) = s(n). □
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3. Final remarks
The first 46 members of s(n) are listed in sequence A174094 of OEIS [6]. Since
46 = 6×7+4 and 7 ̸≡ 0 (mod 3), by Theorem 1.3, we have s(47) = s(46) = 529920.
Moreover, denote by ŝ(n) the number of members in A(2n) with a1 = 2⌊log3 2n⌋. It
is not difficult to see that both s(n) and ŝ(n) go to infinity as n goes to infinity.
Naturally we have the following question: can we find the formula or the order of
s(n) or ŝ(n)?
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