
 

 

Abstract� We present a novel neuromorphic robot that 

interacts through touch sensing and visual signaling on its 

surface. The robo����
����
������
��������	����	�
���	�
����	���

containing trackballs for sensing touch, and LEDs for 

communication with users. In this paper, we explore tactile 

sensory decoding by constructing a spiking neural network 

(SNN) of somatosensory cortex. The SNN uses a biologically 

inspired, unsupervised learning rule, known as spike timing 

dependent plasticity, to classify a ��	������������	�	�����������

	������
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�
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movements, both rate and temporal neural coding performed 

well. Because of its unique form factor and means of 

interaction, this robot, which is called CARL-SJR, may be 

useful for exploring the neural coding of touch, and also for 

Human-Robot Interaction studies. 

I. INTRODUCTION 

The ability to engage the world through tactile sensing is 
prevalent in all organisms. In humans, touch is used to 
manipulate and categorize objects, react to stimuli, and to 
perceive and control the body [1, 2]. Tactile sensing in 
robotics is often inspired by biology and neuroscience. For 
example, whiskered robots have been developed to sense the 
borders and shape of objects [3-5]. Fingers and hands have 
been developed for humanoid robots to enable grasping and 
detecting surfaces [6-8]. Most of these humanoid robots are 
constructed from custom-made materials and sensing circuits 
for touch [9-11]. 

Rather than concentrating on touch sensors to manipulate 
objects, we have designed a neuromorphic robot that 
encourages tactile interaction with people. In contrast to 
many other robots that use custom-made sensors, we 
incorporated trackballs, which are typically found in 
cellphones and other devices, to signal the direction and 
velocity of tactile stimuli. Moreover, the robot has the 
capability to signal or communicate by flashing different 
colors in response to touch or other stimuli.  

Our robot, which is called the Cognitive Anteater 
Robotics Laboratory " Spiking Judgment Robot (CARL-
SJR), falls under the class of robotics known as Socially 
Assistive Robotics or SARs. SARs may aid in diagnosis and 
treatment of developmental disorders by providing consistent 
behavioral evaluations and standardized stimuli in diagnostic 
settings [12]. Children tend to form social bonds during 
interactions with robots [13]. Children with Autism Spectrum 
Disorders (ASD) or Attention Deficit Hyperactivity 
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Disorders (ADHD) respond well to robot artifacts and this 
might be a form of therapy for these subjects [12, 14-17]. 
Most of these systems focus on eye contact (e.g., shared 
attention, or shared gaze). However, these systems tend to 
ignore tactile interaction, which is impaired in many children 
with developmental disorders. One exception is the robot 
KASPAR, which has an artificial skin on its face [18, 19]. 
KASPAR has been shown to facilitate tactile engagement 
with autistic children [20]. Another exception is the Roball 
[21, 22], which has been developed for playing games with 
autistic children. Similar to CARL-SJR, Roball flashes colors 
and has panels that respond to touch, but Roboall has limited 
tactile sensing capability, cannot collect and store data, and 
lacks learning capabilities. 

Having a platform that can be handled and that can 
respond to contact has been shown to have therapeutic value 
���� ��������� ���� ��!������#�� �������� ��������� [23-25]. 
However, this form of robot therapy is purely reactive. There 
may be advantages in having a SAR paradigm in which the 
��
���������������������������#���������������������������������
by playing an interactive game where the subject must learn 
���� ��
��#����������������������������������������� ���������� �
with the goals of Sensory Integration Theory (SIT).  

SIT is intended to focus directly on the neurological 
processing of sensory information as a foundation for 
learning of higher-level (motor or academic) skills [26]. 
Treatment goals centers on improving sensory processing to 
either (a) develop better sensory modulation as related to 
attention and behavioral control, or (b) integrate sensory 
information to form better perceptual schemas and practical 
abilities as a precursor for academic skills, social interactions, 
or more independent functioning. SIT has shown benefits for 
children with ASD and ADHD [27-30]. 
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Figure 1. CARL-SJR. Top left. Rendering shows the trackballs protruding 

the surface. Top right. Transparent view shows electronics, camera, and 

drive system. Bottom. Example movements and color patterns on the 
prototype shell. Right movement produces blue, upward produces red, and 

left produces green. 
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CARL-SJR is in the prototype stage. The components of 
the robot are described below and the tactile shell is 
demonstrated. However, the main goal of the present article 
is to show that a spiking neural network (SNN) is sufficient 
to learn ��������������������������������������
��#�����������
This will become necessary when the robot is used in 
learning paradigms where a spatiotemporal pattern of 
activation is associated with positive or negative 
reinforcement.  

In particular, this paper compares the performance of a 
rate code versus temporal code for classifying different 
movements. The spatiotemporal nature of tactile stimuli, as 
well as noisy sensors and environments, make the perception 
of touch a complex problem. To encode tactile signals in the 
nervous system, there is evidence for both a rate code and a 
temporal code [2, 31]. A rate code is simpler and not as 
susceptible to noise [32]. However, a temporal code has a 
larger capacity for encoding patterns [33, 34]. 

The outline of the paper is as follows: Section II.A. 
describes the overall robot design, Section II.B. describes the 
construction of a SNN that gets input directly from a 
trackball array, Section III describes the ability of the SNN to 
learn and decode real hand movements, and Section IV 
discusses these results and how they will be used in the 
complete robot system. 

II. METHODS 

A. The CARL-SJR Neurorobot Platform 

CARL-SJR is an autonomous, mobile robotic platform, 
which has the ability to interact with users in a novel way. 
There is a convex shell covering CARL-SJR, which has an 
array of trackball sensors and light emitting diodes (LEDs) 
(see Fig. 1). Inputs to the trackballs, such as sweeps of a hand 
across the shell, are coded into neural spikes that retain 
temporal information. The LEDs may be used to display 
colors and patterns which can communicate behaviors, 
desires, or other useful information to a user or subject.  

The inside of the hemispherical shell contains an array of 
67 circuit boards each containing a PIC16LF1827 

microcontroller, red, green and blue LEDs, and a miniature 
trackball (Sparkfun.com COM-09308) which is accessible 
from the outside of the shell. When a user runs their hand 
along the shell they swipe the trackballs, which have 
independent magnetic encoders for each direction: up, down, 
left, and right. A group of trackball boards are joined into a 
row and are daisy chained by an SPI bus (see Fig. 2).  

The complete robot carries a suite of sensors including a 
pan-tilt-zoom camera, microphones, speakers, wheel 
encoders, and bump sensors. The robot also employs a 
holonomic drive system using three, triangularly oriented 
omni wheels in order to allow for mobility within the 
confined spaces of an office building. Fig. 2 shows a system 
overview of CARL-
�	#������������������������  

CARL-SJR has an onboard computer that runs the SNN 
algorithms and behavioral control. The board also handles the 
input and output of the robots sensors and actuators.   
Controller Area Network (CAN) busses handle motor output 
commands and the trackball array inputs.  

CARL-SJR can express itself by signaling visually 
through changes of its skin or shell (i.e., the LEDs 
surrounding each trackball). In Fig. 1 and the supplementary 
materials video accompanying this paper, we demonstrate 
how different movements can trigger different color 
responses. As one can see from the movie, the response is 
bright and vibrant, and movements in diagonal directions 
result in a mixing of colors (e.g., purple, teal, etc.).  

B. Prototype Trackball Array  

The main goal of the present paper is to explore different 
decoding methods for hand movements. Rather than use the 
complete robot for these decoding experiments, we 
constructed a smaller prototype trackball array to test the 
usefulness and accuracy of the trackball system. The 
prototype contained a 4 by 4 array of trackballs that was built 
with a PIC16F1824 monitoring each trackball board (see Fig. 
3). The row controllers of the trackball array were connected 
to a PC via a CAN bus. CAN messages were converted to 
serial (RS-232) format and transmitted to a PC running the 
SNN simulation. When the PC received a message, it 

Figure 2. System overview of CARL-
�	#������������� 
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translated the information into spike events that were input to 
the neural network simulation. Each message contains spike 
data for a single direction on a single trackball and only for 
one 8 ms window. 

Although these trackball messages contain directional 
information, the sensory data is noisy, making movement 
categorization difficult. Thus, a SNN with unsupervised 
learning was constructed to categorize different hand 
movements. 

C. Spiking Neural Network (SNN) Simulations 

A SNN was constructed to learn hand movement patterns 
across the trackball array, and to evaluate the ability of the 
network to discriminate different movements. The SNN 
simulation was composed of three populations of neurons as 
shown in Fig. 4. A population of 544 excitatory neurons and 
136 inhibitory neurons form a spiking neural network that 
loosely corresponds to primary somatosensory cortex, and a 
population of 256 excitatory input neurons that simulates 
thalamic neurons relaying touch information to the simulated 
cortex. Each neuron in the somatosensory cortex received 
100 synapses, which were randomly chosen from both input 
neurons and other somatosensory cortex neurons. These 
connections had delays ranging from 1 ms to 20 ms to mimic 
the variation in axonal conduction observed in cortex [35]. 
Excitatory connections labeled by E-STDP in Fig. 4 were 
subject to Spike Timing Dependent Plasticity [36, 37]. 

1) Neuron Model 
The current-based version of the Izhikevich neuron model 

was used to govern the dynamics of the spiking neurons [38]. 
The dynamics of inhibitory and excitatory neurons in the 
Izhikevich neuron model can be described as the following 
equations: 

dv/dt = 0.04v
2
 + 5v + 140 � u + I         (1) 

du/dt = a(bv � u)               (2) 

if v = 30, then v = c, u = u + d          (3) 

The variable v is the membrane potential, u is the 
recovery variable, I is the total current injected into a post-
synaptic neuron, and a, b, c, d are parameters chosen based 
on the neuron type. For regular spiking, excitatory neurons, 
we set a = 0.02, b =0 .2, c = �65.0, d = 8.0. For fast-spiking, 
inhibitory neurons, we set a = 0.1, b = 0.2, c = �65.0, d = 
2.0.  

The total current I injecting into a neuron in 
somatosensory cortex is described in the following equation. 

�������j + Ibackground_noise             (4) 

The variable sj is the synaptic weight of synapse j, which 
had an initial value of 6.0 and could range from 0.0 to 12.0.  
The weights of inhibitory synapses are fixed at -4.0. The 
summation of all sj presents the total current contributed by 
all firing pre-synaptic neurons. Ibackground_noise, which was set 
to 15.0 for one randomly selected neuron per ms, caused the 
somatosensory cortex to have spontaneous activity. 

The total current injected into an input neuron was the 
summation of Iinput_noise and Iinput. We set Iinput to 100 when the 
corresponding trackball was moving in the preferred 
direction; otherwise the current was set to 0. Iinput_noise, which 
was set to 16.5 for one randomly selected neuron per ms, 
caused the input area to have spontaneous activity. 

I = Iinput_noise + Iinput               (5) 

2)  Sensory Input 
The stimuli to our SNN simulation came directly from the 

trackball movement messages described above. Each of the 
16 trackballs gave a velocity signal for up, down, left, and 
right. These 64 input signals were connected to 4 neurons 
resulting in the 256 input neurons shown in Fig. 5. Because 
signals from the trackball array can arrive so rapidly that the 
������������#��������������������������� �����������������������
injected (see equation 5) in a round robin fashion to the 4 
neurons that respond to the same trackball and direction. 

3) Training and Testing Procedures 
To train the SNN, we recorded the input pattern of 100 

left moves and 100 right moves across the trackballs. Each 
movement was a manual sweep of the hand and the duration 
of a move ranged from 900 ms to 1600 ms with the average 
movement lasting 1285.4 ms ± 133.6 sd. These recorded 
inputs were fed into the input layer of the SNN by randomly 
choosing an input pattern and presenting it to the SNN every 
2000 ms.  

During training, excitatory connections were subject to 
STDP. The STDP function is depicted on the right side of 
Fig. 4. A

+
 and A

-
 ��������������������������� ��$LTP ����$LTD 

are 20 ms and 40 ms respectively. The learning rate for STDP 
was set to 0.005. We trained the SNN for 6400 seconds. At 
this time, the distribution of synaptic weights became U-
shaped, where most weights were either close to zero or near 
the maximum value of 12.0, and the minimum point was 
lower than 1% of maximum point. 

During testing, we presented an additional 100 left moves 
and 100 right moves to a trained SNN. These 200 moves 
were repeated 5 times. We developed a decoding algorithm to 
compare firing rate coding to temporal coding, specifically 
the reliability of polychronous groups [33]. 

For firing rate decoding, we recorded the firing rate of 
each neuron in the simulated somatosensory cortex and 
generated firing rate distributions for left and right movement 
trials. If the peak of the distribution for right moves was 
higher than that of left moves, we referred to this neuron as a 
right-responsive neuron, otherwise it was considered a left-
responsive neuron.  

Figure 4. Top) Spiking Neural Network Architecture. Bottom) Spike 

Timing Dependent Plasticity Learning Rule. 
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For temporal decoding, we identified polychronous 
groups by the following criteria: 1) The group started with an 
anchor neuron, that is, an input neuron spike. 2) A group 
member had to be connected to that anchor neuron and fire a 
spike within 4 ms of its axonal delay. 3) From this set of 
neurons, a downstream neuron needed to receive at least two 
spikes from the upstream neuron within 4 ms of its axonal 
delay.  This algorithm proceeded as a breadth-first search 
until criterion 3 no longer could be met. A polychronous 
group was considered a left-predictor if P(L | pg) > 0.5 and a 
right-predicator if P(R | pg) > 0.5).  

III. RESULTS 

A. SNN Activity During Movements 

The SNN took input directly from the trackball array and 
responded to hand movements. Fig. 5 shows firing activity 
from a representative left to right hand sweep (Fig. 5, top) 
and spontaneous activity with no input (Fig. 5, bottom). In 
the top chart of Fig. 5, the trackballs of the fourth column are 
contacted with a hand at 20 ms and then the third, second and 
first columns are contacted at 240 ms, 460 ms, and 670 ms, 
respectively. The duration of touching a column is roughly 
600 ms. The hand contacts the fourth column at 20 ms and 
leaves it at 660 ms. We recorded 200 left moves and 200 
right moves for training and testing spiking neural networks. 
The interval between two message events from the trackball 
array in our recording ranged from 5 ms to 20 ms, which 
could generate firing rates from 12.5Hz to 50Hz. The average 
number of message events for a left move was 443.7 with a 
standard deviation 80.9 ms, while the average number of 
message events for a right move was 340.2 ms with a 
standard deviation 54.8 ms. The lower raster diagram shows 
spontaneous activity of a SNN when there is no stimulus 
from the trackballs. The spikes are results of background 
noise and input noise (i.e., Iinput_noise and Ibackground_noise). 

The simulated somatosensory cortex showed repeatable 
patterns of firing in response to left and right hand 
movements. Fig. 6 shows the correlation of firing activity 
between 8 right (rows and columns 1-8) and 8 left (rows and 
columns 9-16) movements before training (Fig. 6, left) and 
after training (Fig. 6, right). Note that after training through 
unsupervised STDP, similar classes of movements are highly 
correlated, whereas different classes are not. 

B. Rate versus Temporal Coding of Movements 

We used Receiver Operator Characteristic (ROC) curves 
to evaluate the performance of rate decoding and 
polychronous group decoding. Fig. 7 shows the ROC curves 
for rate decoding left and right movements using left and 
right responsive neurons and for temporal decoding using left 
and right polychronous groups. For the rate code, we varied 
the firing rate threshold from 0.0Hz to 6.0Hz by steps of 
0.1Hz. For the temporal code we varied the number of 
repeating polychronous groups threshold from 0 to 100 by 
steps of 2. Over five different simulations, the average 
number of polychronous groups was 382±75sd, and the 
reoccurrence of a polychronous group across all trials ranged 
from 5% to 38% with a median value of 10%. 

Both firing rate and polychronous group decoding were 

Figure 6. Correlation of firing activity between movements. Rows and 

columns 1-8 are left movements. Rows and columns 9-16 are right 

movements. Left) SNN before training. Right) SNN after training. 

Figure 7. ROC curves for rate decoding (top) and polychronous group 

decoding (bottom). 

Figure 5. Top) Response of neurons to a left movement. Each dot 

represents a spike from a neuron. Rows 0-799 are excitatory and rows 
800-935 are inhibitory. Red dots represent the 256 input neurons. 

Bottom) Same network in the absence of a movement. 
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near perfect with the area under the ROC curve approaching 
1. The upper left region of the ROC curve is the desired case 
where there is a high true positive rate and a low false 
positive rate. To better understand the classification 
performance, we looked at the number of points that had a 
true positive rate above 90% and a false positive rate less 
than 10%. For rate coding, only right-responsive neurons fit 
this criteria, where there were 38 points with the thresholds 
ranged from 2.7 to 3.8 Hz. For polychronous groups, there 
were 45 points for right predictors, and 11 points for left 
predictors that met this desirable decoding criteria. The 
threshold ranged from 4 to 30 groups.  

It is interesting that the temporal coding outperformed 
firing rate coding. The inputs were noisy, real world signals 
that differed from trial to trial due to user variability. 
Although these polychronous groups were anchored to a 
specific trackball direction, it is still impressive that these 
tightly coupled spike orders repeated over multiple trials. It 
suggests that both types of coding can be used for learning 
and recalling tactile patterns. 

IV. CONCLUSION 

We presented a novel robot platform, CARL-SJR that is 
interactive and expressive. Its mode of communication is 
through changing its skin pattern or coloration. CARL-
�	#��
main sensory input was tactile. Unlike many tactile robots [7, 
10], which focus on grasping and manipulation, CARL-
�	#��
tactile sensing was designed to facilitate interaction with a 
person. Rather than using custom-made tactile sensors, we 
decided to use off-the-shelf trackballs. Therefore, the size of 
the tactile region could be very large and manufactured fairly 
inexpensively. At this time, CARL-SJR is in a prototype 
stage. Most of the components have been designed, but only 
the trackball array and interactive shell are currently 
operational.  

The present study examined the feasibility of using a 
SNN to categorize and decode hand movements with the 
trackball array. A SNN was constructed to learn hand 
movement patterns across the trackball array, and to evaluate 
the ability of the network to discriminate different 
movements. Both firing rate and polychronous group 
decoding were near perfect with the area under the ROC 
curve approaching 1 (see Fig. 7). These results demonstrate 
that a SNN with STDP is sufficient to learn spatiotemporal 
patterns related to hand movements.  

Although decoding hand movements might be possible by 
sampling the trackballs directly, having a SNN that can 
associate tactile movements with other environmental signals 
can support reinforcement learning. In the future, dopamine 
modulated STDP [39, 40], will be used to reinforce CARL-
SJR tactile interactions with valence. For instance, positive 
interactions, such as petting the robot in a desired speed and 
desired direction, could be reinforced with a color pattern on 
CARL-
�	#�� ������� 
������� �� ��������� �������������� ������
be used to shape CARL-
�	#�� 
�������. Future neural 
models for CARL-SJR will take advantage of these 
additional learning rules to exploit two way learning or 
behavior shaping, where CARL-SJR learns from the user, 
and the user learns from CARL-SJR.  

By providing a surface that encourages touch, CARL-SJR 
could be a standardized form of SIT, and would address 
impairments in tactile sensitivity and social interaction 
observed in children with developmental disorders [41-44]. 
In the future, we intend for users to play interactive games 
with CARL-SJR, in which the robot learns a pattern of 
interaction with the child, and the child learns how to best 
interact with the robot. We believe such interaction will 
transfer to play with others and lead to behavioral 
improvements.   
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