
Accelerated Gradient Temporal Difference Learning

Yangchen Pan, Adam White and Martha White
Department of Computer Science

Indiana University at Bloomington
{yangpan,adamw,martha}@indiana.edu

Abstract

The family of temporal difference (TD) methods span a spec-
trum from computationally frugal linear methods like TD(λ)
to data efficient least squares methods. Least square methods
make the best use of available data directly computing the TD
solution and thus do not require tuning a typically highly sensi-
tive learning rate parameter, but require quadratic computation
and storage. Recent algorithmic developments have yielded
several sub-quadratic methods that use an approximation to the
least squares TD solution, but incur bias. In this paper, we pro-
pose a new family of accelerated gradient TD (ATD) methods
that (1) provide similar data efficiency benefits to least-squares
methods, at a fraction of the computation and storage (2) sig-
nificantly reduce parameter sensitivity compared to linear TD
methods, and (3) are asymptotically unbiased. We illustrate
these claims with a proof of convergence in expectation and
experiments on several benchmark domains and a large-scale
industrial energy allocation domain.

Introduction
In reinforcement learning, a common strategy to learn an opti-
mal policy is to iteratively estimate the value function for the
current decision making policy—called policy evaluation—
and then update the policy using the estimated values. The
overall efficiency of this policy iteration scheme is directly in-
fluenced by the efficiency of the policy evaluation step. Tem-
poral difference learning methods perform policy evaluation:
they estimate the value function directly from the sequence of
states, actions, and rewards produced by an agent interacting
with an unknown environment.

The family of temporal difference methods span a spec-
trum from computationally-frugal, linear, stochastic approxi-
mation methods to data efficient but quadratic least squares
TD methods. Stochastic approximation methods, such as tem-
poral difference (TD) learning (Sutton 1988) and gradient
TD methods (Maei 2011) perform approximate gradient de-
scent on the mean squared projected Bellman error (MSPBE).
These methods require linear (in the number of features)
computation per time step and linear memory. These lin-
ear TD-based algorithms are well suited to problems with
high dimensional feature vectors —compared to available
resources— and domains where agent interaction occurs at

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a high rate (Szepesvari 2010). When the amount of data is
limited or difficult to acquire, the feature vectors are small, or
data efficiency is of primary concern, quadratic least squares
TD (LSTD) methods may be preferred. These methods di-
rectly compute the value function that minimizes the MSPBE,
and thus LSTD computes the same value function to which
linear TD methods converge. Of course, there are many do-
mains for which neither light weight linear TD methods, nor
data efficient least squares methods may be a good match.

Significant effort has focused on reducing the computation
and storage costs of least squares TD methods in order to span
the gap between TD and LSTD. The iLSTD method (Geram-
ifard and Bowling 2006) achieves sub-quadratic computation
per time step, but still requires memory that is quadratic in the
size of the features. The tLSTD method (Gehring et al. 2016)
uses an incremental singular value decomposition (SVD) to
achieve both sub-quadratic computation and storage. The ba-
sic idea is that in many domains the update matrix in LSTD
can be replaced with a low rank approximation. In practice
tLSTD achieves runtimes much closer to TD compared to iL-
STD, while achieving better data efficiency. A related idea is
to use random projections to reduce computation and storage
of LSTD (Ghavamzadeh et al. 2010). In all these approaches,
a scalar parameter (descent dimensions, rank, and number of
projections), controls the balance between computation cost
and quality of solution.

In this paper we explore a new approach called Accelerated
gradient TD (ATD), that performs quasi-second-order gradi-
ent descent on the MSPBE. Our aim is to develop a family of
algorithms that can interpolate between linear TD methods
and LSTD, without incurring bias. ATD, when combined
with a low-rank approximation, converges in expectation to
the TD fixed-point, with convergence rate dependent on the
choice of rank. Unlike previous subquadratic methods, con-
sistency is guaranteed even when the rank is chosen to be one.
We demonstrate the performance of ATD versus many linear
and subquadratic methods in three domains, indicating that
ATD (1) can match the data efficiency of LSTD, with signifi-
cantly less computation and storage, (2) is unbiased, unlike
many of the alternative subquadratic methods, (3) signifi-
cantly reduces parameter sensitivity for the stepsize, versus
linear TD methods, and (4) is significantly less sensitive to
the choice of rank parameter than tLSTD, enabling a smaller
rank to be chosen and so providing a more efficient incre-

mental algorithm. Overall, the results suggest that ATD may
be the first practical subquadratic complexity TD method
suitable for fully incremental policy evaluation.

Background and Problem Formulation
In this paper we focus on the problem of policy evaluation,
or that of learning a value function given a fixed policy. We
model the interaction between an agent and its environment
as a Markov decision process (S,A,P, r), where S denotes
the set of states,A denotes the set of actions, and P : S×A×
S → [0,∞) encodes the one-step state transition dynamics.
On each discrete time step t = 1, 2, 3, ..., the agent selects
an action according to its behavior policy, At ∼ µ(St, ·),
with µ : S ×A → [0,∞) and the environment responds by
transitioning into a new state St+1 according to P, and emits
a scalar reward Rt+1

def
= r(St, At, St+1).

The objective under policy evaluation is to estimate the
value function, vπ : S → R, as the expected return from each
state under some target policy π : S ×A → [0,∞):

vπ(s)
def
= Eπ[Gt|St = s],

where Eπ denotes the expectation, defined over the future
states encountered while selecting actions according to π.
The return, denoted by Gt ∈ R is the discounted sum of
future rewards given actions are selected according to π:

Gt
def
= Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 + ... (1)
= Rt+1 + γt+1Gt+1

where γt+1 ∈ [0, 1] is a scalar that depends on St, At, St+1

and discounts the contribution of future rewards exponentially
with time. The generalization to transition-based discount-
ing enables the unification of episodic and continuing tasks
(White 2016) and so we adopt it here. In the standard continu-
ing case, γt = γc for some constant γc < 1 and for a standard
episodic setting, γt = 1 until the end of an episode, at which
point γt+1 = 0, ending the infinite sum in the return. In the
most common on-policy evaluation setting π = µ, otherwise
π 6= µ and policy evaluation problem is said to be off-policy.

In domains where the number of states is too large or the
state is continuous, it is not feasible to learn the value of
each state separately and we must generalize values between
states using function approximation. In the case of linear func-
tion approximation the state is represented by fixed length
feature vectors x : S → Rd, where xt

def
= x(St) and the

approximation to the value function is formed as a linear
combination of a learned weight vector, w ∈ Rd, and x(St):
vπ(St) ≈ w>xt. The goal of policy evaluation is to learn w
from samples generated while following µ.

The objective we pursue towards this goal is to minimize
the mean-squared projected Bellman error (MSPBE):

MSPBE(w,m)=(bm −Amw)
>

C−1 (bm −Amw) (2)

where m : S → [0,∞) is a weighting function,

Am
def
= Eµ[(γt+1xt+1 − xt)

>w em,t]

bm
def
= Eµ[Rt+1em,t]

C is any positive definite matrix, typically C = Eµ[xtx
>
t]

with bm −Amw = Eµ[δt(w)em,t] for TD-error δt(w) =
Rt+1 + γt+1x

>
t+1w − x>t w. The vector em,t is called the

eligibility trace

em,t
def
= ρt(γt+1λem,t−1 +Mtxt) . ρt

def
=
π(st, at)

µ(st, at)

Mt s.t. Eµ[Mt|St = st] = m(s)/dµ(s) if dµ(s) 6= 0.

where λ ∈ [0, 1] is called the trace-decay parameter and
dµ : S → [0,∞) is the stationary distribution induced by
following µ. The importance sampling ratio ρt reweights
samples generated by µ to give an expectation over π

Eµ[δt(w)em,t]

=
∑
s∈S

dµ(s)Eπ[δt(w)(γλem,t−1 +Mtxt)|St = s].

This re-weighting enables vπ to be learned from samples
generated by µ (under off-policy sampling).

The most well-studied weighting occurs when Mt = 1
(i.e., m(s) = dµ(s)). In the on-policy setting, with µ = π,
ρt = 1 for all t and m(s) = dπ(s) the w that minimizes
the MSPBE is the same as the w found by the on-policy
temporal difference learning algorithm called TD(λ). More
recently, a new emphatic weighting was introduced with
the emphatic TD (ETD) algorithm, which we denote mETD.
This weighting includes long-term information about π (see
(Sutton et al. 2016, Pg. 16)),

Mt = λt + (1− λt)Ft . Ft = γtρt−1Ft−1 + 1.

Importantly, the AmETD
matrix induced by the emphatic

weighting is positive semi-definite (Yu 2015; Sutton et al.
2016), which we will later use to ensure convergence of our
algorithm under both on- and off-policy sampling. The Adµ
used by TD(λ) is not necessarily positive semi-definite, and
so TD(λ) can diverge when π 6= µ (off-policy).

Two common strategies to obtain the minimum w of
this objective are stochastic temporal difference techniques,
such as TD(λ) (Sutton 1988), or directly approximating
the linear system and solving for the weights, such as in
LSTD(λ) (Boyan 1999). The first class constitute linear
complexity methods, both in computation and storage, in-
cluding the family of gradient TD methods (Maei 2011),
true online TD methods (van Seijen and Sutton 2014; van
Hasselt et al. 2014) and several others (see (Dann et al. 2014;
White and White 2016) for a more complete summary).
On the other extreme, with quadratic computation and stor-
age, one can approximate Am and bm incrementally and
solve the system Amw = bm. Given a batch of t samples
{(Si, Ai, Si+1, Ri+1)}ti=1, one can estimate

Am,t
def
=

1

t

t∑
i=1

em,i(xi − γxi+1)>

bm,t
def
=

1

t

t∑
i=1

em,iRi+1,

and then compute solution w such that Am,tw = bm,t.
Least-squares TD methods are typically implemented incre-
mentally using the Sherman-Morrison formula, requiring
O(d2) storage and computation per step.

Our goal is to develop algorithms that interpolate between
these two extremes, which we discuss in the next section.

Algorithm derivation
To derive the new algorithm, we first take the gradient of the
MSPBE (in 2) to get

−1

2
∇wMSPBE(w,m) = A>mC−1Eµ[δt(w)em,t]. (3)

Consider a second order update by computing the Hessian:
H = A>mC−1A>m. For simplicity of notation, let A = Am

and b = bm. For invertible A, the second-order update is

wt+1 = wt − αt
2 H−1∇wMSPBE(w,m)

= wt + αt(A
>C−1A)−1A>C−1Eµ[δt(w)em,t]

= wt + αtA
−1CA−>A>C−1Eµ[δt(w)em,t]

= wt + αtA
−1Eµ[δt(w)em,t]

In fact, for our quadratic loss, the optimal descent direc-
tion is A−1Eµ[δt(w)em,t] with αt = 1, in the sense that
argmin∆w loss(wt+ ∆w) = A−1Eµ[δt(w)em,t]. Comput-
ing the Hessian and updating w requires quadratic computa-
tion, and in practice quasi-Newton approaches are used that
approximate the Hessian. Additionally, there have been re-
cent insights that using approximate Hessians for stochastic
gradient descent can in fact speed convergence (Schrau-
dolph et al. 2007; Bordes et al. 2009; Mokhtari and Ribeiro
2014). These methods maintain an approximation to the Hes-
sian, and sample the gradient. This Hessian approximation
provides curvature information that can significantly speed
convergence, as well as reduce parameter sensitivity to the
stepsize.

Our objective is to improve on the sample efficiency of lin-
ear TD methods, while avoiding both quadratic computation
and asymptotic bias. First, we need an approximation Â to
A that provides useful curvature information, but that is also
sub-quadratic in storage and computation. Second, we need
to ensure that the approximation, Â, does not lead to a biased
solution w.

We propose to achieve this by approximating only A−1

and sampling Eµ[δt(w)em,t] = b − Aw using δt(wt)et
as an unbiased sample. The proposed accelerated temporal
difference learning update—which we call ATD(λ)—is

wt+1 = wt + (αtÂ
†
t + ηI)δtet

with expected update

wt+1 = wt + (αtÂ
† + ηI)Eµ[δt(w)em,t] (4)

with regularization η > 0. If Â is a poor approximation of
A, or discards key information—as we will do with a low
rank approximation— then updating using only b − Âw
will result in a biased solution, as is the case for tLSTD
(Gehring et al. 2016, Theorem 1). Instead, sampling b −
Aw = Eµ[δt(w)em,t], as we show in Theorem 1, yields an
unbiased solution, even with a poor approximation Â. The
regularization η > 0 is key to ensure this consistency, by
providing a full rank preconditioner αtÂ

†
t + ηI.

Given the general form of ATD(λ), the next question is
how to approximate A. Two natural choices are a diagonal
approximation and a low-rank approximation. Storing and
using a diagonal approximation would only require linear
O(d) time and space. For a low-rank approximation Â, of
rank k, represented with truncated singular value decomposi-
tion Â = UkΣkV

>
k , the storage requirement is O(dk) and

the required matrix-vector multiplications are only O(dk) be-
cause for any vector v, Âv = UkΣk(V>k v), is a sequence
of O(dk) matrix-vector multiplications. Exploratory exper-
iments revealed that the low-rank approximation approach
significantly outperformed the diagonal approximation. In
general, however, many other approximations to A could be
used, which is an important direction for ATD.

We opt for an incremental SVD, that previously proved
effective for incremental estimation in reinforcement learning
(Gehring et al. 2016). The total computational complexity of
the algorithm is O(dk + k3) for the fully incremental update
to Â and O(dk) for mini-batch updates of k samples. Notice
that when k = 0, the algorithm reduces exactly to TD(λ),
where η is the stepsize. On the other extreme, where k = d,
ATD is equivalent to an iterative form of LSTD(λ). See the
appendix for a further discussion, and implementation details.

Convergence of ATD(λ)
As with previous convergence results for temporal difference
learning algorithms, the first key step is to prove that the
expected update converges to the TD fixed point. Unlike
previous proofs of convergence in expectation, we do not
require the true A to be full rank. This generalization is
important, because as shown previously, A is often low-rank,
even if features are linearly independent (Bertsekas 2007;
Gehring et al. 2016). Further, ATD should be more effective
if A is low-rank, and so requiring a full-rank A would limit
the typical use-cases for ATD.

To get across the main idea, we first prove convergence of
ATD with weightings that give positive semi-definite Am; a
more general proof for other weightings is in the appendix.

Assumption 1. A is diagonalizable, that is, there exists in-
vertible Q ∈ Rd×d with normalized columns (eigenvectors)
and diagonal Λ ∈ Rd×d, Λ = diag(λ1, . . . , λd), such that
A = QΛQ−1. Assume the ordering λ1 ≥ . . . ≥ λd.

Assumption 2. α ∈ (0, 2) and 0 < η ≤ λ−1
1 max(2−α, α).

Finally, we introduce an assumption that is only used to
characterize the convergence rate. This condition has been
previously used (Hansen 1990; Gehring et al. 2016) to en-
force a level of smoothness on the system.

Assumption 3. The linear system defined by A = QΛQ−1

and b satisfy the discrete Picard condition: for some p > 1,
|(Q−1b)j | ≤ λpj for all j = 1, . . . , rank(A).

Theorem 1. Under Assumptions 1 and 2, for any k ≥ 0,
let Â be the rank-k approximation Â = QΛkQ

−1 of Am,
where Λk ∈ Rd×d with Λk(j, j) = λj for j = 1, . . . , k and
zero otherwise. If m = dµ or mETD, the expected updating
rule in (4) converges to the fixed-point w? = A†mbm.

Further, if Assumption 3 is satisfied, the convergence rate is

‖wt −w?‖ ≤ max
(

max
j∈{1,...,k}

|1− α− ηλj |tλp−1
j ,

max
j∈{k+1,...,rank(A)}

|1− ηλj |tλp−1
j

)
Proof: We use a general result about stationary iterative
methods which is applicable to the case where A is not full
rank. Theorem 1.1 (Shi et al. 2011) states that given a singular
and consistent linear system Aw = b where b is in the range
of A, the stationary iteration with w0 ∈ Rd for t = 1, 2, . . .

wt = (I−BA)wt−1 + Bb (5)

converges to the solution w = A†b if and only if the follow-
ing three conditions are satisfied.

Condition I: the eigenvalues of I−BA are equal to 1 or
have absolute value strictly less than 1.

Condition II: rank(BA) = rank[(BA)2].

Condition III: nullspace(BA) = nullspace(A).

We verify these conditions to prove the result. First, because
we use the projected Bellman error, b is in the range of A
and the system is consistent: there exists w s.t. Aw = b.

To rewrite our updating rule (4) to be expressible in terms
of (5), let B = αÂ† + ηI, giving

BA = αÂ†A + ηA = αQΛ†kQ
−1QΛQ−1 + ηQΛQ−1

= αQIkQ
−1 + ηQΛQ−1

= Q(αIk + ηΛ)Q−1 (6)

where Ik is a diagonal matrix with the indices 1, . . . , k set to
1, and the rest zero.

Proof for condition I. Using (6), I − BA =
Q(I − αIk − ηΛ)Q−1. To bound the maximum ab-
solute value in the diagonal matrix I − αIk − ηΛ, we
consider eigenvalue λj in Λ, and address two cases. Because
Am is positive semi-definite for the assumed m (Sutton et
al. 2016), λj ≥ 0 for all j = 1, . . . , d.

Case 1: j ≤ k.
|1− α− ηλj | . for 0 < η < max

(
2− α
λ1

,
α

λ1

)
< max(|1− α|, |1− α− (2− α)|, |1− α− α|)
= max(|1− α|, 1, 1) < 1 . because α ∈ (0, 2).

Case 2: j > k. |1 − ηλj | < 1 if 0 < η < 2/λj
which is true for η = λ−1

1 max(2−α, α) for any α ∈ (0, 2).
Proof for condition II. (BA)2 does not change the number
of positive eigenvalues, so the rank is unchanged.
Proof for condition III. To show the nullspaces of BA
and A are equal, it is sufficient to prove BAw = 0 if and
only if Aw = 0. B = Q(αΛk + ηI)Q−1, is invertible
because η > 0 and λj ≥ 0. For any w ∈ nullspace(A), we
get BAw = B0 = 0, and so w ∈ nullspace(BA). For any
w ∈ nullspace(BA), BAw = 0 =⇒ Aw = B−10 = 0,
and so w ∈ nullspace(A).

Convergence rate. Assume w0 = 0. On each step, we up-
date with wt+1 = (I−BA)wt+Bb =

∑t−1
i=0(I−BA)iBb.

This can be verified inductively, where

wt+1 = (I−BA)

t−2∑
i=0

(I−BA)iBb + (I−BA)0Bb

=

t−1∑
i=0

(I−BA)iBb.

For Λ̄ = I− αIk − ηΛ, because (I−BA)i = QΛ̄iQ−1,

wt = Q

(
t−1∑
i=0

Λ̄i

)
Q−1Q(αΛ†k + ηI)Q−1b

= Q

(
t−1∑
i=0

Λ̄i

)
(αΛ†k + ηI)Q−1b

and because wt → w?,

‖wt −w?‖ = ‖Q

(∞∑
i=0

Λ̄i −
t∑
i=0

Λ̄i

)
(αΛ†k + ηI)Q−1b‖

= ‖QΛ̄t(αΛ†k + ηI)Q−1b‖ . Λ̄t(j, j)
def
=

λ̄tj
1− λ̄j

≤ ‖Q‖‖Λ̄t(αΛ†k + ηI)Q−1b‖
where ‖Q‖ ≤ 1 because Q has normalized columns.

For j = 1, . . . , k, we have that the magnitude of the values
in Λ̄t(αΛ†k + ηI) are

(1− α− ηλj)t

α+ ηλj
(αλ−1

j + η) =
(1− α− ηλj)t

λj
.

For j = k, . . . , rank(A), we get (1−ηλj)t
λj

.
Under the discrete Picard condition, |(Q−1b)j | ≤ λpj and

so the denominator λj cancels, giving the desired result. �

This theorem gives insight into the utility of ATD for speed-
ing convergence, as well as the effect of k. Consider TD(λ),
which has positive definite A in on-policy learning (Sutton
1988, Theorem 2). The above theorem guarantees ATD con-
vergences to the TD fixed-point, for any k. For k = 0, the
expected ATD update is exactly the expected TD update.
Now, we can compare the convergence rate of TD and ATD,
using the above convergence rate.

Take for instance the setting α = 1 for ATD, which is com-
mon for second-order methods and let p = 2. The rate of con-
vergence reduces to the maximum of maxj∈{1,...,k} η

tλt+1
j

and maxj∈{k+1,...,rank(A)} |1−ηλj |tλj . In early learning, the
convergence rate for TD is dominated by |1 − ηλ1|tλ1, be-
cause λj is largest relative to |1− ηλj |t for small t. ATD, on
the other hand, for a larger k, can pick a smaller η and so has
a much smaller value for j = 1, i.e., ηtλt+1

1 , and |1−ηλj |tλj
is small because λj is small for j > k. As k gets smaller,
|1− ηλk+1|tλk+1 becomes larger, slowing convergence. For
low-rank domains, however, k could be quite small and the
preconditioner could still improve the convergence rate in
early learning—potentially significantly outperforming TD.

ATD is a quasi-second order method, meaning sensitivity
to parameters should be reduced and thus it should be simpler
to set the parameters. The convergence rate provides intuition
that, for reasonably chosen k, the regularizer η should be
small—smaller than a typical stepsize for TD. Additionally,
because ATD is a stochastic update, not the expected update,
we make use of typical conventions from stochastic gradient
descent to set our parameters. We set αt = α0

t , as in previous
stochastic second-order methods (Schraudolph et al. 2007),
where we choose α0 = 1 and set η to a small fixed value.
Our choice for η represents a small final stepsize, as well as
matching the convergence rate intuition.

On the bias of subquadratic methods. The ATD(λ) up-
date was derived to ensure convergence to the minimum of
the MSPBE, either for the on-policy or off-policy setting. Our
algorithm summarizes past information, in Â, to improve the
convergence rate, without requiring quadratic computation
and storage. Prior work aspired to the same goal, however,
the resultant algorithms are biased. The iLSTD algorithm can
be shown to converge for a specific class of feature selec-
tion mechanisms (Geramifard et al. 2007, Theorem 2); this
class, however, does not include the greedy mechanism that
is used in iLSTD algorithm to select a descent direction. The
random projections variant of LSTD (Ghavamzadeh et al.
2010) can significantly reduce the computational complexity
compared with conventional LSTD, with projections down
to size k, but the reduction comes at a cost of an increase
in the approximation error (Ghavamzadeh et al. 2010). Fast
LSTD (Prashanth et al. 2013) does randomized TD updates
on a batch of data; this algorithm could be run incrementally
with O(dk) by using mini-batches of size k. Though it has a
nice theoretical characterization, this algorithm is restricted
to λ = 0. Finally, the most related algorithm is tLSTD, which
also uses a low-rank approximation to A.

In ATD Ât is used very differently, from how Ât is used
in tLSTD. The tLSTD algorithm uses a similar approxima-
tion Ât as ATD, but tLSTD uses it to compute a closed form
solution wt = Â†tbt, and thus is biased (Gehring et al. 2016,
Theorem 1). In fact, the bias grows with decreasing k, propor-
tionally to the magnitude of the kth largest singular value of
A. In ATD, the choice of k is decoupled from the fixed point,
and so can be set to balance learning speed and computation
with no fear of asymptotic bias.

Empirical Results
All the following experiments investigate the on-policy set-
ting, and thus we make use of the standard version of ATD
for simplicity. Future work will explore off-policy domains
with the emphatic update. The results presented in this section
were generated over 756 thousand individual experiments run
on three different domains. Due to space constraints detailed
descriptions of each domain, error calculation, and all other
parameter settings are discussed in detail in the appendix.
We included a wide variety of baselines in our experiments,
additional related baselines excluded from our study are also
discussed in the appendix.

1 2 3 4 5 6 7 8 9 101112131415161718
0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 101112131415161718
Alpha/N

0

0.1

0.2

0.3

0.4

0.5

P
A
M
E

TD(0)
LSTD

ATD

ETD

T0ETD
TOTD

TD(λ) TD(0)
ETD

TD(λ)

TOTD

T0ETD

! / η ! / η with n0=102 ! / η with n0=106

Constant step-size Decayed step-size

per
cen

tag
e e

rro
r percentage error

Figure 1: Parameter sensitivity in Boyan’s chain with constant
stepsize (LHS) and decayed stepsizes (RHS). In the plots above,
each point summarizes the mean performance (over 1000 time
steps) of an algorithm for one setting of α for linear methods, or η
for LSTD, and α/100 regularizer for ATD, using percentage error
compared to the true value function. In the decayed stepsize case,
where αt = α0

n0+1
n0+episode# , 18 values of α0 and two values of n0

were tested—corresponding to the two sides of the RHS graph.
The LSTD algorithm (in yellow) has no parameters to decay. Our
ATD algorithm (in black) achieves the lowest error in this domain,
and exhibits little sensitivity to it’s regularization parameter (with
stepsize as αt =

1
t

across all experiments).

Our first batch of experiments were conducted on Boyan’s
chain—a domain known to elicit the strong advantages of
LSTD(λ) over TD(λ). In Boyan’s chain the agent’s objective
is to estimate the value function based on a low-dimensional,
dense representation of the underlying state (perfect represen-
tation of the value function is possible). The ambition of this
experiment was to investigate the performance of ATD in a
domain where the pre-conditioner matrix is full rank; no rank
truncation is applied. We compared five linear-complexity
methods (TD(0), TD(λ), true online TD(λ), ETD(λ), true
online ETD(λ)), against LSTD(λ) and ATD, reporting the
percentage error relative to the true value function over the
first 1000 steps, averaged over 200 independent runs. We
swept a large range of stepsize parameters, trace decay rates,
and regularization parameters, and tested both fixed and de-
caying stepsize schedules. Figure 1 summarizes the results.

Both LSTD(λ) and ATD achieve lower error compared
to all the linear baselines—even thought each linear method
was tuned using 864 combinations of stepsizes and λ. In
terms of sensitivity, the choice of stepsize for TD(0) and
ETD exhibit large effect on performance (indicated by sharp
valleys), whereas true-online TD(λ) is the least sensitive to
learning rate. LSTD(λ) using the Sherman-Morrison update
(used in many prior empirical studies) is sensitive to the
regularization parameter; the parameter free nature of LSTD
may be slightly overstated in the literature.1

Our second batch of experiments investigated character-
istics of ATD in a classic benchmark domain with a sparse
high-dimensional feature representation where perfect ap-
proximation of the value function is not possible—Mountain
car with tile coding. The policy to be evaluated stochastically
takes the action in the direction of the sign of the velocity,
with performance measured by computing a truncated Monte

1We are not the first to observe this. Sutton and Barto (2016)
note that η plays a role similar to the stepsize for LSTD.

1000 2000 3000 4000 5000
0.2

0.4

0.6

0.8

1

2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

pe
rc

en
ta

ge
 e

rro
r

time steps

tLSTD

RP-LSTD

iLSTD

TD(0)fast LSTD

LSTDATD

TO-TD

TO-ETD

ATD

LSTD

tLSTD percentage error

! / η

rank = 50

Figure 2: The learning curves (LHS) are percentage error versus
time steps averaged over 100 runs of ATD with rank 50, LSTD and
several baselines described in text. The sensitivity plot (RHS) is
with respect to the learning rate of the linear methods, and regular-
ization parameter of the matrix methods. The tLSTD algorithm has
no parameter besides rank, while ATD has little sensitivity to it’s
regularization parameter.

Carlo estimate of the return from states sampled from the
stationary distribution (detailed in the appendix). We used
a fine grain tile coding of the the 2D state, resulting in a
1024 dimensional feature representation with exactly 10 units
active on every time step. We tested TD(0), true online TD(λ)
true online ETD(λ), and sub-quadratic methods, including
iLSTD, tLSTD, random projection LSTD, and fast LSTD
(Prashanth et al. 2013). As before a wide range of parameters
(α, λ, η) were swept over a large set. Performance was aver-
aged over 100 independent runs. A fixed stepsize schedule
was used for the linear TD baselines, because that achieved
the best performance. The results are summarized in figure 2.

LSTD and ATD exhibit faster initial learning compared
to all other methods. This is particularly impressive since
k is less than 5% of the size of A. Both fast LSTD and
projected LSTD perform considerably worse than the linear
TD-methods, while iLSTD exhibits high parameter sensitiv-
ity. tLSTD has no tunable parameter besides k, but performs
poorly due to the high stochasticity in the policy—additional
experiments with randomness in action selection of 0% and
10% yielded better performance for tLSTD, but never equal
to ATD. The true online linear methods perform very well
compared to ATD, but this required sweeping hundreds of
combinations of α and λ, whereas ATD exhibited little sen-
sitivity to it’s regularization parameter (see Figure 2 RHS);
ATD achieved excellent performance with the same parame-
ter setting as we used in Boyan’s chain.2

We ran an additional experiment in Mountain car to more
clearly exhibit the benefit of ATD over existing methods. We
used the same setting as above, except that 100 additional
features were added to the feature vector, with 50 of them
randomly set to one and the rest zero. This noisy feature
vector is meant to emulate a situation such as a robot that has
a sensor that becomes unreliable, generating noisy data, but
the remaining sensors are still useful for the task at hand. The
results are summarized in Figure 4. Naturally all methods
are adversely effected by this change, however ATD’s low

2For the remaining experiments in the paper, we excluded the
TD methods without true online traces because they perform worse
than their true online counterparts in all our experiments. This result
matches the results in the literature (van Seijen et al. 2016).

2000 4000 6000 8000 10000

10-1

100

1000 2000 3000 4000 5000
0.4

0.8

1.2

1.6

2

pe
rc

en
ta

ge
 e

rro
r

time steps

tLSTD

iLSTD

TD(0)/R-LSTD/F-LSTD

LSTD

TO-TD

TO-ETD

ATD

Mountain Car w noisy features

time steps

RP-LSTD

TD(0)

fast-LSTD

TO-ETD

tLSTD
ATD

TO-TD

Energy domain

Figure 3: Learning curves on Mountain Car with noisy features
(LHS) and on Energy allocation (RHS), in log scale.

rank approximation enables the agent to ignore the unreliable
feature information and learn efficiently. tLSTD, as suggested
by our previous experiments does not seem to cope well with
the increase in stochasticity.

Our final experiment compares the performance of several
sub-quadratic complexity policy evaluation methods in an in-
dustrial energy allocation simulator with much larger feature
dimension (see Figure 4). As before we report percentage
error computed from Monte Carlo rollouts, averaging perfor-
mance over 50 independent runs and selecting and testing
parameters from an extensive set (detailed in the appendix).
The policy was optimized ahead of time and fixed, and the
feature vectors were produced via tile coding, resulting in
an 8192 dimensional feature vector with 800 units active
on each step. Although the feature dimension here is still
relatively small, a quadratic method like LSTD nonetheless
would require over 67 million operations per time step, and
thus methods that can exploit low rank approximations are
of particular interest. The results indicate that both ATD and
tLSTD achieve the fastest learning, as expected. The intrinsic
rank in this domain appears to be small compared to the fea-
ture dimension—which is exploited by ATD and tLSTD with
r = 40—while the performance of tLSTD indicates that the
domain exhibits little stochasticity. The appendix contains
additional results for this domain—in the small rank setting
ATD significantly outperforms tLSTD.

Conclusion and future work
In this paper, we introduced a new family of TD learning
algorithms that take a fundamentally different approach from
previous incremental TD algorithms. The key idea is to use a
preconditioner on the temporal difference update, similar to
a quasi-Newton stochastic gradient descent update. We prove
that the expected update is consistent, and empirically demon-
strated improved learning speed and parameter insensitivity,
even with significant approximations in the preconditioner.

This paper only begins to scratch the surface of poten-
tial preconditioners for ATD. There remains many avenues
to explore the utility of other preconditioners, such as di-
agonal approximations, eigenvalues estimates, other matrix
factorizations and approximations to A that are amenable to
inversion. The family of ATD algorithms provides a promis-
ing avenue for more effectively using results for stochastic
gradient descent to improve sample complexity, with feasible
computational complexity.

References
Bertsekas, D. 2007. Dynamic Programming and Optimal
Control. Athena Scientific Press.
Bordes, A.; Bottou, L.; and Gallinari, P. 2009. SGD-QN:
Careful quasi-Newton stochastic gradient descent. Journal
of Machine Learning Research.
Boyan, J. A. 1999. Least-squares temporal difference learn-
ing. International Conference on Machine Learning.
Dabney, W., and Thomas, P. S. 2014. Natural Temporal
Difference Learning. In AAAI Conference on Artificial Intel-
ligence.
Dann, C.; Neumann, G.; and Peters, J. 2014. Policy eval-
uation with temporal differences: a survey and comparison.
The Journal of Machine Learning Research.
Gehring, C.; Pan, Y.; and White, M. 2016. Incremental Trun-
cated LSTD. In International Joint Conference on Artificial
Intelligence.
Geramifard, A., and Bowling, M. 2006. Incremental least-
squares temporal difference learning. In AAAI Conference
on Artificial Intelligence.
Geramifard, A.; Bowling, M.; and Zinkevich, M. 2007. iL-
STD: Eligibility traces and convergence analysis. In Ad-
vances in Neural Information Processing Systems.
Ghavamzadeh, M.; Lazaric, A.; Maillard, O. A.; and Munos,
R. 2010. LSTD with random projections. In Advances in
Neural Information Processing Systems.
Givchi, A., and Palhang, M. 2014. Quasi newton tempo-
ral difference learning. In Asian Conference on Machine
Learning.
Hansen, P. C. 1990. The discrete picard condition for discrete
ill-posed problems. BIT Numerical Mathematics.
Maei, H. 2011. Gradient Temporal-Difference Learning
Algorithms. Ph.D. Dissertation, University of Alberta.
Mahadevan, S.; Liu, B.; Thomas, P. S.; Dabney, W.; Giguere,
S.; Jacek, N.; Gemp, I.; and 0002, J. L. 2014. Proximal
reinforcement learning: A new theory of sequential decision
making in primal-dual spaces. CoRR abs/1405.6757.
Meyer, D.; Degenne, R.; Omrane, A.; and Shen, H. 2014.
Accelerated gradient temporal difference learning algorithms.
In IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning.
Mokhtari, A., and Ribeiro, A. 2014. RES: Regularized
stochastic BFGS algorithm. IEEE Transactions on Signal
Processing.
Prashanth, L. A.; Korda, N.; and Munos, R. 2013. Fast
LSTD using stochastic approximation: Finite time analysis
and application to traffic control. ECML PKDD.
Salas, D. F., and Powell, W. B. 2013. Benchmarking a
Scalable Approximate Dynamic Programming Algorithm
for Stochastic Control of Multidimensional Energy Storage
Problems. Dept Oper Res Financial Eng.
Schraudolph, N.; Yu, J.; and Günter, S. 2007. A stochastic
quasi-Newton method for online convex optimization. In
International Conference on Artificial Intelligence and Statis-
tics.

Shi, X.; Wei, Y.; and Zhang, W. 2011. Convergence of
general nonstationary iterative methods for solving singular
linear equations. SIAM Journal on Matrix Analysis and
Applications.
Sutton, R., and Barto, A. G. 1998. Reinforcement Learning:
An Introduction. MIT press.
Sutton, R., and Barto, A. G. 2016. Reinforcement Learning:
An Introduction 2nd Edition. MIT press.
Sutton, R. S.; Mahmood, A. R.; and White, M. 2016. An
emphatic approach to the problem of off-policy temporal-
difference learning. The Journal of Machine Learning Re-
search.
Sutton, R. 1988. Learning to predict by the methods of
temporal differences. Machine Learning.
Szepesvari, C. 2010. Algorithms for Reinforcement Learning.
Morgan & Claypool Publishers.
van Hasselt, H.; Mahmood, A. R.; and Sutton, R. 2014. Off-
policy TD (λ) with a true online equivalence. In Conference
on Uncertainty in Artificial Intelligence.
van Seijen, H., and Sutton, R. 2014. True online TD(lambda).
In International Conference on Machine Learning.
van Seijen, H.; Mahmood, R. A.; Pilarski, P. M.; Machado,
M. C.; and Sutton, R. S. 2016. True Online Temporal-
Difference Learning. In Journal of Machine Learning Re-
search.
Wang, M., and Bertsekas, D. P. 2013. On the convergence of
simulation-based iterative methods for solving singular linear
systems. Stochastic Systems.
White, A. M., and White, M. 2016. Investigating practi-
cal, linear temporal difference learning. In International
Conference on Autonomous Agents and Multiagent Systems.
White, M. 2016. Unifying task specification in reinforcement
learning. arXiv.org.
Yu, H. 2015. On convergence of emphatic temporal-
difference learning. In Annual Conference on Learning The-
ory.

Convergence proof
For the more general setting, where m can also equal
Dµ, we redefine the rank-k approximation. We say the
rank-k approximation Â to A is composed of eigenvalues
{λi1 , . . . , λik} ⊆ {λ1, . . . , λd} if Â = QΛkQ

−1 for diago-
nal Λk ∈ Rd×d, Λ(ij , ij) = λij for j = 1, . . . , k, and zero
otherwise.

Theorem 2. Under Assumptions 1 and 2, let Â be the rank-k
approximation composed of eigenvalues {λi1 , . . . , λik} ⊆
{λ1, . . . , λd}. If λd ≥ 0 or {λi1 , . . . , λik} contains all the
negative eigenvalues in {λ1, . . . , λd}, then the expected up-
dating rule in (4) converges to the fixed-point w? = A†b.

Proof: We use a general result about stationary iterative
methods (Shi et al. 2011), which is applicable to the case
where A is not full rank. Theorem 1.1 (Shi et al. 2011) states
that given a singular and consistent linear system Aw = b
where b is in the range of A, the stationary iteration with
w0 ∈ Rd for t = 1, 2, . . .

wi = (I−BA)wt−1 + Bb (5)

converges to the solution w = A†b if and only if the follow-
ing three conditions are satisfied.

Condition I: the eigenvalues of I−BA are equal to 1 or
have absolute value strictly less than 1.

Condition II: rank(BA) = rank[(BA)2].

Condition III: the null space N (BA) = N (A).

We verify these conditions to prove the result. First, because
we are using the projected Bellman error, we know that b is
in the range of A and the system is consistent: there exists w
s.t. Aw = b.

To rewrite our updating rule (4) to be expressible in terms
of (5), let B = αÂ† + ηI, giving

BA = αÂ†A + ηA

= αQΛ†kQ
−1QΛQ−1 + ηQΛQ−1

= αQIkQ
−1 + ηQΛQ−1

= Q(αIk + ηΛ)Q−1 (6)

where Ik is a diagonal matrix with the indices i1, . . . , ik set
to 1, and the rest zero.

Proof for condition I. Using (6), I − BA =
Q(I − αIk − ηΛ)Q−1. To bound the maximum ab-
solute value in the diagonal matrix I − αIk − ηΛ, we
consider eigenvalue λj in Λ, and address three cases.

Case 1: j ∈ {i1, . . . , ik}, λj ≥ 0:

|1− α− ηλj | . for 0 < η < max

(
2− α
λ1

,
α

λ1

)
< max(|1− α|, |1− α− (2− α)|, |1− α− α|)
= max(|1− α|, 1, 1) < 1 . because α ∈ (0, 2).

Case 2: j ∈ {i1, . . . , ik}, λj < 0: |1 − α − ηλi| = |1 −
α+ η|λi|| < 1 if 0 ≤ 1− α+ η|λi| < 1 =⇒ η < α/|λi|.

Case 3: j /∈ {i1, . . . , ik}. For this case, λj ≥ 0, by as-
sumption, as {i1, . . . , ik} contains the indices for all negative
eigenvalues of A. So |1− ηλi| < 1 if 0 < η < 2/λi.

All three cases are satisfied by the assumed α ∈ (0, 2) and
η ≤ λ−1

max max(2 − α, α). Therefore, the absolute value of
the eigenvalues of I−BA are all less than 1 and so the first
condition holds.

Proof for condition II. (BA)2 does not change the
number of positive eigenvalues, so the rank is unchanged.

BA = Q(αIk + ηΛ)Q−1

(BA)2 = Q(αIk + ηΛ)Q−1Q(αIk + ηΛ)Q−1

= Q(αIk + ηΛ)2Q−1

Proof for condition III. To show that the nullspaces of BA
and A are equal, it is sufficient to prove BAw = 0 if and
only if Aw = 0. Because B = Q(αΛk+ηI)Q−1, we know
that B is invertible as long as α 6= −ηλj . Because η > 0, this
is clearly true for λj ≥ 0 and also true for λj < 0 because
η is strictly less than α/|λj |. For any w ∈ nullspace(A),
we get BAw = B0 = 0, and so w ∈ nullspace(BA). For
any w ∈ nullspace(BA), we get BAw = 0 =⇒ Aw =
B−10 = 0, and so w ∈ nullspace(A), completing the proof.

�
With k = d, the update is a gradient descent update on the

MSPBE, and so will converge even under off-policy sampling.
As k << d, the gradient is only approximate and theoretical
results about (stochastic) gradient descent no longer obvi-
ously apply. For this reason, we use the iterative update anal-
ysis above to understand convergence properties. Iterative
updates for the full expected update, with preconditioners,
have been studied in reinforcement learning (c.f. (Wang and
Bertsekas 2013)); however, they typically analyzed different
preconditioners, as they had no requirements for reducing
computation below quadratic computation. For example, they
consider a regularized preconditioner B = (A + ηI)−1,
which is not compatible with an incremental singular value
decomposition and, to the best of our knowledge, current iter-
ative eigenvalue decompositions require symmetric matrices.

The theorem is agnostic to what components of A are
approximated by the rank-k matrix Â. In general, a natural
choice, particularly in on-policy learning or more generally
with a positive definite A, is to select the largest magnitude
eigenvalues of A, which contain the most significant informa-
tion about the system and so are likely to give the most useful
curvature information. However, Â could also potentially be
chosen to obtain convergence for off-policy learning with
m = dµ, where A is not necessarily positive semi-definite.
This theorem indicates that if the rank k approximation Â
contains the negative eigenvalues of A, even if it does not
contain the remaining information in A, then we obtain con-
vergence under off-policy sampling. We can of course use
the emphatic weighting more easily for off-policy learning,
but if the weighting m = dµ is desired rather than mETD,
then carefully selecting Â for ATD enables that choice.

Algorithm 1 Accelerated Temporal Difference Learning

. where U0 = [],V0 = [],Σ0 = [],b0 = 0, e0 = 0, initialized w0 arbitrarily

function ATD(k, η, λ)
x0 = first observation
η = a small final stepsize value, e.g., η = 10e− 4
for t = 0, 1, 2, ... do

In xt, select action At ∼ π, observe xt+1, reward rt+1, discount γt+1 (could be zero if terminal state)
βt = 1/(t+ 1)
δt = rt+1 + γt+1w

>xt+1 −w>xt
et = TRACE_UPDATE(et−1,xt, γt, λt) . or call EMPAHTIC_TRACE_UPDATE to use emphatic weighting
. UtΣtV

>
t = (1− βt)Ut−1Σt−1V

>
t−1 + βtet(xt − γt+1xt+1)>

[Ut,Σt,Vt]=SVD-UPDATE(Ut−1, (1− βt)Σt−1,Vt−1,
√
βtet,

√
βt(xt−γt+1xt+1), k) . see (Gehring et al. 2016)

. Ordering of matrix operations important, first multiply U>t et in O(dk) time

. to get a new vector, then by Σ†t and Vt to maintain only matrix-vector multiplications
wt+1 = wt + (1

t+1VtΣ
†
tU
>
t + ηI)(δtet) . where Σ†t = diag(σ̂−1

1 , . . . , σ̂−1
k ,0)

Algorithmic details
In this section, we outline the implemented ATD(λ) algo-
rithm. The key choices are how to update the approximation
to Â, and how to update the eligibility trace to obtain dif-
ferent variants of TD. We include both the conventional and
emphatic trace updates in Algorithms 2 and 3 respectively.
The low-rank update to Â uses an incremental singular value
decomposition (SVD). This update to Â is the same one used
for tLSTD, and so we refer the reader to (Gehring et al. 2016,
Algorithm 3). The general idea is to incorporate the rank one
update et(xt − γt+1xt+1)> into the current SVD of Â. In
addition, to maintain a normalized Â, we multiply by βt:

Ât+1 = (1− βt)Ât + βtet(xt − γt+1xt+1)>

= t
t+1Ât + 1

t+1et(xt − γt+1xt+1)>

Multiplying Ât by a constant corresponds to multiplying the
singular values. We also find that multiplying each compo-
nent of the rank one update by

√
1/(t+ 1) is more effective

than multiplying only one of them by 1/(t+ 1).

Algorithm 2 Conventional trace update for ATD

function TRACE_UPDATE(et−1,xt, γt, λt)
return γtλtet−1 + xt

Algorithm 3 Emphatic trace update for ATD

. where F0 ← 0, M0 ← 0 is initialized globally, before
executing the for loop in ATD(λ)

function EMPHATIC_TRACE_UPDATE(et−1,xt, γt, λt)
ρt ← π(st,at)

µ(st,at)
. Where ρt = 1 in the on-policy case

Ft ← ρt−1γtFt−1 + it . For uniform interest, it = 1
Mt ← λtit + (1− λt)Ft

return ρt(γtλtet−1 +Mtxt)

Detailed experimental specification
In both mountain car and energy storage domains we do not
have access to the parameter’s of the underlying MDPs (as
we do in Boyan’s chain), and thus must turn to Monte Carlo
rollouts to estimate vπ in order to evaluate our value function
approximation methods. In both domains we followed the
same strategy.

To generate training data we generated 100 trajectories
of rewards and observations under the target policy, starting
in randomly from a small area near a start state. Each tra-
jectory is composed of a fixed number of steps, either 5000
or 10000, and, in the case of episodic tasks like mountain
car, may contain many episodes. The start states for each
trajectory were sampled uniform randomly from (1) near the
bottom of the hill with zero velocity for mountain car, (2) a
small set of valid start states specified by the energy storage
domains (Salas and Powell 2013). Each trajectory represents
one independent run of the domain.

The testing data was sampled according to the on-policy
distribution induced by the target policy. For both domains we
generated a single long trajectory selecting actions according
to π. Then we randomly sampled 2000 states from this one
trajectory. In mountain car domain, we ran 500 Monte Carlo
rollouts to compute undiscounted sum of future rewards until
termination, and take the average as an estimate true value. In
the energy allocation domain, we ran 300 Monte Carlo roll-
outs for each evaluation state, each with length 1000 steps3,
averaging over 300 trajectories from each of the evaluation
states. We evaluated the algorithms’ performances by compar-
ing the agent’s prediction value with the estimated value of
the 2000 evaluation states, at every 50 steps during training.
We measured the percentage absolution mean error:

error(w) =
1

2000

2000∑
i=1

|wTx(si)− v̂π(si)|
|v̂π(si)|

,

3After 1000 steps, for γ = 0.99, the reward in the return is
multiplied by γ1000 < 10−5 and so contributes a negligible amount
to the return.

where v̂π(si) ∈ R denotes the Monte Carlo estimate of the
value of evaluation state si.

Algorithms
The algorithms included in the experiments constitute a wide
range of stochastic approximation algorithms and matrix-
based (sub-quadratic) algorithms. There are a few related
algorithms, however, that we chose not to include; for com-
pleteness we explain our decision making here.

There have been some accelerations proposed to gradient
TD algorithms (Mahadevan et al. 2014; Meyer et al. 2014;
Dabney and Thomas 2014). However, they have either shown
to perform poorly in practice (White and White 2016), or
were based on applying accelerations outside their intended
use (Meyer et al. 2014; Dabney and Thomas 2014). Dabney
and Thomas (2014) explored a similar update to ATD, but
for the control setting and with an incremental update to the
Fisher information matrix rather than A used here. As they
acknowledge, this approach for TD methods is somewhat ad
hoc, as the typical update is not a gradient, and rather their
method is better suited for the policy gradient algorithms
explored in that paper. Meyer et al. (2014) applied an acceler-
ated Nesterov technique, called SAGE, to the two timescale
gradient algorithms. Their approach does not take advantage
of the simpler quadratic form of the MSPBE, and so only uses
an approximate Lipschitz constant to improve selection of the
stepsize. Diagonal approximations to A constitute a strictly
more informative stepsize approach, and we found these to
be inferior to our low-rank strategy. The results by Meyer
et al. (2014) using SAGE for GTD similarly indicated little
to no gain. Finally, Givchi and Palhang (2014) investigated
using diagonal approximations to A for TD, using ideas from
the stochastic gradient descent literature. However, this paper
does not justify their strategy and has some errors. Through-
out, the TD update is called the gradient and A the Hessian,
the secant update for the diagonal of A−1 does not guarantee
positive stepsizes and so an ad hoc rule is introduced and the
convergence result is incomplete in that the cited theorem
does not permit a vector of stepsizes. Despite the errors, we
include the citation here for completeness.

On the other hand, the true-online methods have consis-
tently been shown to have surprisingly strong performance
(White and White 2016), and so we opt instead for these
practical competitors.

Boyan’s Chain
This domain was implemented exactly as describe in Boyan’s
paper (Boyan 1999). The task is episodic and the true value
function is known, and thus we did not need to compute
rollouts. Otherwise evaluation was performed exactly as de-
scribed above. We tested the following parameter settings:

• α0 ∈ {0.1×2.0j |j = −12,−11,−10, ..., 4, 5}, 18 values
in total

• n0 ∈ {102, 106}

• λ ∈ {0.0, 0.1, ..., 0.9, 0.91, 0.93, 0.95, 0.97, 0.99, 1.0},
16 values in total

• η ∈ {10j |j = −4,−3.5,−3, ..., 3.5, 4, 4.5}, 18 values in
total.

The linear methods, (e.g., TD(0) true online ETD(λ)), made
use of α0, n0, and λ, whereas the LSTD made use of η to
initialize the incremental approximation of A inverse and
λ. For the linear methods we also tested decaying stepsize
schedule as originally investigated by Boyan

αt = α0
n0 + 1

n0 + #terminations
.

We also tested constant stepsizes where αt = α0. The ATD
algorithm, as proposed was tested with one fixed parameter
setting.

Mountain Car
Our second batch of experiments was conducted on the clas-
sic RL benchmark domain Mountain Car. We used the Sutton
and Barto (1998) specification of the domain, where the
agent’s objective is to select one of three discrete actions
(reverse, coast, forward), based on the continuous position
and velocity of an underpowered car to drive it out of a valley,
at which time the episode terminates. This is an undiscounted
task. Each episode begins at the standard initial location —
randomly near the bottom of the hill — with zero velocity.
Actions were selected according to a stochastic Bang-bang
policy, where reverse is selected if the velocity is negative and
forward is selected if the velocity is positive and occasionally
a random action is selected—we tested randomness in action
selection of 0%, 10%, and 20%.

We used tile coding to convert the continuous state variable
into high-dimensional binary feature vectors. The position
and velocity we tile coded jointly with 10 tilings, each form-
ing a two dimensional uniform grid partitioned by 10 tiles
in each dimension. This resulted in a binary feature vector
of length 1000, with exactly 10 components equal to one
and the remaining equal to zero. We requested 1024 memory
size to guarantee the performance of tile coder, resulted in
finally 1024 features. We used a standard freely available
implementation of tile coding 4, which is described in detail
in Sutton and Barto (1998).

We tested the following parameter settings for Mountain
Car:
• α0 ∈ {0.1 × 2.0j |j = −7,−6, ..., 4, 5} divided by

number of tilings, 13 values in total

• λ ∈ {0.0, 0.1, ..., 0.9, 0.93, 0.95, 0.97, 0.99, 1.0}, 15
values in total

• η ∈ {10j |j = −4,−3.25,−2.5, ..., 3.5, 4.25, 5.0}, 13 val-
ues in total.

The linear methods (e.g., TD(0)), iLSTD, and fast LSTD
made use of α0 as stepsize, ATD uses α0/100 as regu-
larizer, whereas the LSTD, and random projection LSTD

4https://webdocs.cs.ualberta.ca/ sutton/tiles2.html

made use of the η as regularization for Sherman-Morrison
matrix initialization. All methods except fast LSTD and
TD(0) made use of the λ parameter. iLSTD used decay-
ing stepsizes with n0 = 102. In addition we fixed the
number of descent dimensions for iLSTD to one (recom-
mended by previous studies (Geramifard and Bowling 2006;
Geramifard et al. 2007)). We found that the linear methods,
on the other hand, performed worse in this domain with de-
cayed stepsizes so we only reported the performance for the
constant stepsize setting. In this domain we tested several set-
tings for the regularization parameter for ATD. However, as
the results demonstrate ATD is insensitive to this parameter.
Therefore we present results with the same fixed parameter
setting for ATD as used in Boyan’s chain. The low rank ma-
trix methods—including ATD—were tested with rank equal
to 20, 30, 40, 50, and 100. With rank 20, 30, 40, we ob-
served that ATD can still do reasonably well but converges
more slowly than rank 50. ATD with Rank 100 does perform
significantly better than rank 50.

Energy Allocation
Our final experiments were run on a simulator of a complex
energy storage and allocation task. This domain simulates
control of a storage device that interacts with a market and
stochastic source of energy as a continuing discounted RL
tasks. The problem was originally modeled as a finite hori-
zon undiscounted task (Salas and Powell 2013), with four
state variables at each time step: the amount of energy in
the storage device Rt, the net amount of wind energy Et,
time aggregate demand Dt, and price of electricity Pt in spot
market. The reward function encodes the revenue earned by
the agent’s energy allocation strategy as a real value number.
The policy to be evaluated was produced by an approximate
dynamic programming algorithm from the literature (Salas
and Powell 2013). The simulation program is from Energy
storage datasets II from http://castlelab.princeton.edu.

We made several minor modifications to the simulator to
allow generating training or testing data for policy evaluation.
First, we modified the original policy by setting the input time
index as (#timeindex mod 24) so that we can remove the
restriction that time index must be no greater than 24. Though
no longer an optimal policy, this still constitutes a valid policy
that provides the same distribution over actions for a given
state. Second, we added an additional variable, Dt−1, to
the state at time t, encoding the state as five variables. This
addition was to ensure a Markov state, are using only the
original four variables results in a time-dependent state. Third,
we considered the problem as a continuing task by setting
discount rate (γ = 0.99) when estimating values of states.

We used the following parameter setting of generating
the training data and testing data. The stochastic processes
associated with Pt, Et, Dt are jump process, uniform pro-
cess and sinusoidal process. The ranges of Rt, Et, Pt, Dt

are: [0, 30], [1, 7], [30, 70], [0, 7]. When generating the train-
ing trajectories, we randomly choose each state values from
the ranges: [0, 10], [1, 5], [30, 50], [0, 7].

Again, we used tile coding to convert the state variable
into high-dimensional binary feature vectors, similar to how
the acrobot domain was encoded in prior work (see Sut-

ton & Barto, 1998). We tile coded all 3-wise combinations,
all pair-wise combinations, and each of the five state vari-
ables independently (sometimes called stripped tilings). More
specifically we used:
• all five one-wise tilings of 5 state variables, with gridsize

= 4, numtilings = 32 (memory = 5× 4× 32)

• all ten two-wise tilings of 5 state variables, with gridsize =
4, numtilings = 32 (memory = 10× 42 × 32)

• all ten three-wise tilings of 5 state variables, with gridsize
= 2, numtilings = 32 (memory = 10× 23 × 32).

This resulted in a binary feature vector of length 8320, which
we hashed down to 8192 = 213. Training data and evaluation
were conducted in the exact same manner as the Mountain car
experiment. We tested a similar set of parameters as before:
• α0 ∈ {0.1 × 2.0j |j = −7,−6, ..., 4, 5} divided by

number of tilings, 13 values in total

• λ ∈ {0.0, 0.1, ..., 0.9, 1.0}, 10 values in total

• η ∈ {10j |j = −4,−3.25,−2.5, ..., 3.5, 4.25, 5.0}, 13 val-
ues in total.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

pe
rc

en
ta

ge
 e

rro
r

time steps

RP-LSTD

TD(0) fast-LSTD

TO-ETD
tLSTD

ATD

TO-TD

Energy domain
rank = 10

Figure 4: Learning curves on energy allocation domain with
rank equal to 10. Here we see the clear difference of the
effect of rank on these two methods. ATD is only using
the curvature information in Â, to speed learning, whereas
tLSTD uses Â in a closed form solution.

Due to the size of the feature vector we excluded LSTD
from the results, while iLSTD was also excluded due to it’s
slow runtime and poor performance in Mountain Car. Note
that though iLSTD avoids O(d2) computation per step for
sparse features, it still needs to store and update anO(d2) ma-
trix, and so does not scale as well as the other sub-quadratic
methods.

